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What is this talk about?

The main emphasis is to give you a short and pedestrian
introduction to the whys and hows we can use (with several
examples) machine learning methods in physics. And why this
could (or should) be of interest.

Additional info
Parts of this talk are based on Artificial Intelligence and Machine
Learning in Nuclear Physics, Amber Boehnlein et al., Reviews
Modern of Physics 94, 031003 (2022)

These slides at https://mhjensenseminars.github.io/
MachineLearningTalk/doc/web/overview.html

https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.94.031003
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.94.031003
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.94.031003
https://mhjensenseminars.github.io/MachineLearningTalk/doc/web/overview.html
https://mhjensenseminars.github.io/MachineLearningTalk/doc/web/overview.html
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One of the first many-body workshops at the ECT∗, Trento
summer 1997



Pairing in dense matter



AI/ML and some statements you may have heard (and what
do they mean?)

1. Fei-Fei Li on ImageNet: map out the entire world of
objects (The data that transformed AI research)

2. Russell and Norvig in their popular textbook: relevant to any
intellectual task; it is truly a universal field (Artificial
Intelligence, A modern approach)

3. Woody Bledsoe puts it more bluntly: in the long run, AI is
the only science (quoted in Pamilla McCorduck, Machines
who think)

If you wish to have a critical read on AI/ML from a societal point
of view, see Kate Crawford’s recent text Atlas of AI. See also
https://www.nationaldefensemagazine.org/articles/2023/
3/24/ukraine-a-living-lab-for-ai-warfare
Here: with AI/ML we intend a collection of machine learning
methods with an emphasis on statistical learning and data
analysis

https://cacm.acm.org/news/219702-the-data-that-transformed-ai-research-and-possibly-the-world/fulltext
http://aima.cs.berkeley.edu/
http://aima.cs.berkeley.edu/
https://www.pamelamccorduck.com/machines-who-think
https://www.pamelamccorduck.com/machines-who-think
https://www.katecrawford.net/
https://www.nationaldefensemagazine.org/articles/2023/3/24/ukraine-a-living-lab-for-ai-warfare
https://www.nationaldefensemagazine.org/articles/2023/3/24/ukraine-a-living-lab-for-ai-warfare


Types of machine learning

The approaches to machine learning are many, but are often split
into two main categories. In supervised learning we know the
answer to a problem, and let the computer deduce the logic behind
it. On the other hand, unsupervised learning is a method for finding
patterns and relationship in data sets without any prior knowledge
of the system.
An emerging third category is reinforcement learning. This is a
paradigm of learning inspired by behavioural psychology, where
learning is achieved by trial-and-error, solely from rewards and
punishment.



Main categories

Another way to categorize machine learning tasks is to consider the
desired output of a system. Some of the most common tasks are:
▶ Classification: Outputs are divided into two or more classes.

The goal is to produce a model that assigns inputs into one of
these classes. An example is to identify digits based on
pictures of hand-written ones. Classification is typically
supervised learning.

▶ Regression: Finding a functional relationship between an input
data set and a reference data set. The goal is to construct a
function that maps input data to continuous output values.

▶ Clustering: Data are divided into groups with certain common
traits, without knowing the different groups beforehand. It is
thus a form of unsupervised learning.



The plethora of machine learning algorithms/methods

1. Deep learning: Neural Networks (NN), Convolutional NN,
Recurrent NN, Boltzmann machines, autoencoders and
variational autoencoders and generative adversarial networks,
generative models

2. Bayesian statistics and Bayesian Machine Learning, Bayesian
experimental design, Bayesian Regression models, Bayesian
neural networks, Gaussian processes and much more

3. Dimensionality reduction (Principal component analysis),
Clustering Methods and more

4. Ensemble Methods, Random forests, bagging and voting
methods, gradient boosting approaches

5. Linear and logistic regression, Kernel methods, support vector
machines and more

6. Reinforcement Learning; Transfer Learning and more



What are the basic ingredients?

Almost every problem in ML and data science starts with the same
ingredients:
▶ The dataset x (could be some observable quantity of the

system we are studying)
▶ A model which is a function of a set of parameters α that

relates to the dataset, say a likelihood function p(x|α) or just
a simple model f (α)

▶ A so-called loss/cost/risk function C(x, f (α)) which allows us
to decide how well our model represents the dataset.

We seek to minimize the function C(x, f (α)) by finding the
parameter values which minimize C. This leads to various
minimization algorithms. It may surprise many, but at the heart of
all machine learning algortihms there is an optimization problem.



Low-level machine lerning, the family of ordinary least
squares methods

Our data which we want to apply a machine learning method on,
consist of a set of inputs xT = [x0, x1, x2, . . . , xn−1] and the
outputs we want to model yT = [y0, y1, y2, . . . , yn−1]. We assume
that the output data can be represented (for a regression case) by a
continuous function f through

y = f (x) + ϵ.



Setting up the equations

In linear regression we approximate the unknown function with
another continuous function ỹ(x) which depends linearly on some
unknown parameters θT = [θ0, θ1, θ2, . . . , θp−1].
The input data can be organized in terms of a so-called design
matrix with an approximating function ỹ

ỹ = Xθ,



The objective/cost/loss function

The simplest approach is the mean squared error

C (β) =
1
n

n−1∑
i=0

(yi − ỹi )
2 =

1
n

{
(y − ỹ)T (y − ỹ)

}
,

or using the matrix X and in a more compact matrix-vector
notation as

C (β) =
1
n

{
(y − Xθ)T (y − Xθ)

}
.

This function represents one of many possible ways to define the
so-called cost function.



Training solution

Optimizing wrt to th eunknown paramters θj we get

XTy = XTXθ,

and if the matrix XTX is invertible we have the optimal values

θ̂ =
(
XTX

)−1
XTy .



Ridge and LASSO Regression

Our optimization problem is

min
θ∈Rp

1
n

{
(y − Xθ)T (y − Xθ)

}
.

or we can state it as

min
θ∈Rp

1
n

n−1∑
i=0

(yi − ỹi )
2 =

1
n
||y − Xθ||22,

where we have used the definition of a norm-2 vector, that is

||x ||2 =

√∑
i

x2
i .



From OLS to Ridge and Lasso

By minimizing the above equation with respect to the parameters θ
we could then obtain an analytical expression for the parameters θ.
We can add a regularization parameter λ by defining a new cost
function to be optimized, that is

min
θ∈Rp

1
n
||y − Xθ||22 + λ||θ||22

which leads to the Ridge regression minimization problem where we
require that ||θ||22 ≤ t, where t is a finite number larger than zero.
We do not include such a constraints in the discussions here.



Lasso regression

Defining

C (X ,θ) =
1
n
||y − Xθ||22 + λ||θ||1,

we have a new optimization equation

min
θ∈Rp

1
n
||y − Xθ||22 + λ||θ||1

which leads to Lasso regression. Lasso stands for least absolute
shrinkage and selection operator. Here we have defined the norm-1
as

||x ||1 =
∑
i

|xi |.



Lots of room for creativity

Not all the algorithms and methods can be given a rigorous
mathematical justification, opening up thereby for experimenting
and trial and error and thereby exciting new developments.

A solid command of linear algebra, multivariate theory, probability
theory, statistical data analysis, optimization algorithms,
understanding errors and Monte Carlo methods is important in
order to understand many of the various algorithms and methods.
Job market, a personal statement: A familiarity with ML is
almost becoming a prerequisite for many of the most exciting
employment opportunities. And add quantum computing and there
you are!

https://www.analyticsindiamag.com/top-countries-hiring-most-number-of-artificial-intelligence-machine-learning-experts/
https://www.analyticsindiamag.com/top-countries-hiring-most-number-of-artificial-intelligence-machine-learning-experts/
https://www.analyticsindiamag.com/top-countries-hiring-most-number-of-artificial-intelligence-machine-learning-experts/


Selected references
▶ Mehta et al. and Physics Reports (2019).
▶ Machine Learning and the Physical Sciences by Carleo et al
▶ Artificial Intelligence and Machine Learning in Nuclear Physics,

Amber Boehnlein et al., Reviews Modern of Physics 94,
031003 (2022)

▶ Dilute neutron star matter from neural-network quantum states
by Fore et al, Physical Review Research 5, 033062 (2023)

▶ Neural-network quantum states for ultra-cold Fermi gases,
Jane Kim et al, Nature Physics Communcication, submitted

▶ Message-Passing Neural Quantum States for the
Homogeneous Electron Gas, Gabriel Pescia, Jane Kim et
al. arXiv.2305.07240,

▶ Efficient solutions of fermionic systems using artificial neural
networks, Nordhagen et al, Frontiers in Physics 11, 2023

▶ Report from the A.I. For Nuclear Physics Workshop by
Bedaque et al., Eur J. Phys. A 57, (2021)

▶ Particle Data Group summary on ML methods
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https://link.aps.org/doi/10.1103/RevModPhys.91.045002
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.94.031003
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.94.031003
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.94.031003
https://journals.aps.org/prresearch/pdf/10.1103/PhysRevResearch.5.033062
https://journals.aps.org/prresearch/pdf/10.1103/PhysRevResearch.5.033062
https://doi.org/10.48550/arXiv.2305.08831
https://doi.org/10.48550/arXiv.2305.08831
https://doi.org/10.48550/arXiv.2305.07240
https://doi.org/10.48550/arXiv.2305.07240
https://doi.org/10.48550/arXiv.2305.07240
https://doi.org/10.3389/fphy.2023.1061580
https://doi.org/10.3389/fphy.2023.1061580
https://link.springer.com/article/10.1140/epja/s10050-020-00290-x
https://link.springer.com/article/10.1140/epja/s10050-020-00290-x
https://pdg.lbl.gov/2021/reviews/rpp2021-rev-machine-learning.pdf


Machine learning. A simple perspective on the interface
between ML and Physics



ML in Nuclear Physics (or any field in physics)
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Machine learning in physics (my bias): Why?
1. ML tools can help us to speed up the scientific process cycle

and hence facilitate discoveries
2. Enabling fast emulation for big simulations
3. Revealing the information content of measured observables

w.r.t. theory
4. Identifying crucial experimental data for better constraining

theory
5. Providing meaningful input to applications and planned

measurements
6. ML tools can help us to reveal the structure of our models
7. Parameter estimation with heterogeneous/multi-scale datasets
8. Model reduction
9. ML tools can help us to provide predictive capability

10. Theoretical results often involve ultraviolet and infrared
extrapolations due to Hilbert-space truncations

11. Uncertainty quantification essential
12. Theoretical models are often applied to entirely new nuclear

systems and conditions that are not accessible to experiment



Scientific Machine Learning

An important and emerging field is what has been dubbed as
scientific ML, see the article by Deiana et al "Applications and
Techniques for Fast Machine Learning in Science, Big Data 5,
787421 (2022):https://doi.org/10.3389/fdata.2022.787421"

The authors discuss applications and techniques for fast machine
learning (ML) in science – the concept of integrating power ML
methods into the real-time experimental data processing loop to
accelerate scientific discovery. The report covers three main areas

1. applications for fast ML across a number of scientific domains;
2. techniques for training and implementing performant and

resource-efficient ML algorithms;
3. and computing architectures, platforms, and technologies for

deploying these algorithms.



ML for detectors



Physics driven Machine Learning

Another hot topic is what has loosely been dubbed Physics-driven
deep learning. See the recent work on Learning nonlinear
operators via DeepONet based on the universal approximation
theorem of operators, Nature Machine Learning, vol 3, 218 (2021).

From their abstract
A less known but powerful result is that an NN with a single hidden
layer can accurately approximate any nonlinear continuous operator.
This universal approximation theorem of operators is suggestive of
the structure and potential of deep neural networks (DNNs) in
learning continuous operators or complex systems from streams of
scattered data. ... We demonstrate that DeepONet can learn
various explicit operators, such as integrals and fractional
Laplacians, as well as implicit operators that represent deterministic
and stochastic differential equations.

https://www.nature.com/articles/s42256-021-00302-5
https://www.nature.com/articles/s42256-021-00302-5
https://www.nature.com/articles/s42256-021-00302-5


And more

▶ An important application of AI/ML methods is to improve the
estimation of bias or uncertainty due to the introduction of or
lack of physical constraints in various theoretical models.

▶ In theory, we expect to use AI/ML algorithms and methods to
improve our knowledge about correlations of physical model
parameters in data for quantum many-body systems. Deep
learning methods show great promise in circumventing the
exploding dimensionalities encountered in quantum mechanical
many-body studies.

▶ Merging a frequentist approach (the standard path in ML
theory) with a Bayesian approach, has the potential to infer
better probabilitity distributions and error estimates.

▶ Machine Learning and Quantum Computing is a very
interesting avenue to explore. See for example a recent talk by
Sofia Vallecorsa.

https://www.youtube.com/watch?v=7WPKv1Q57os&list=PLUPPQ1TVXK7uHwCTccWMBud-zLyvAf8A2&index=5&ab_channel=ECTstar


Argon-46 by Solli et al., NIMA 1010, 165461 (2021)
Representations of two events from the Argon-46 experiment. Each
row is one event in two projections, where the color intensity of
each point indicates higher charge values recorded by the detector.
The bottom row illustrates a carbon event with a large fraction of
noise, while the top row shows a proton event almost free of noise.



Many-body physics, Quantum Monte Carlo and deep
learning

Given a hamiltonian H and a trial wave function ΨT , the variational
principle states that the expectation value of ⟨H⟩, defined through

⟨E ⟩ =
∫
dRΨ∗

T (R)H(R)ΨT (R)∫
dRΨ∗

T (R)ΨT (R)
,

is an upper bound to the ground state energy E0 of the hamiltonian
H, that is

E0 ≤ ⟨E ⟩.

In general, the integrals involved in the calculation of various
expectation values are multi-dimensional ones. Traditional
integration methods such as the Gauss-Legendre will not be
adequate for say the computation of the energy of a many-body
system. Basic philosophy: Let a neural network find the
optimal wave function



Quantum Monte Carlo Motivation

Basic steps
Choose a trial wave function ψT (R).

P(R,α) =
|ψT (R,α)|2∫
|ψT (R,α)|2 dR

.

This is our model, or likelihood/probability distribution function
(PDF). It depends on some variational parameters α. The
approximation to the expectation value of the Hamiltonian is now

⟨E [α]⟩ =
∫
dRΨ∗

T (R,α)H(R)ΨT (R,α)∫
dRΨ∗

T (R,α)ΨT (R,α)
.



Quantum Monte Carlo Motivation

Define a new quantity

EL(R,α) =
1

ψT (R,α)
HψT (R,α),

called the local energy, which, together with our trial PDF yields

⟨E [α]⟩ =
∫

P(R)EL(R,α)dR ≈ 1
N

N∑
i=1

EL(Ri ,α)

with N being the number of Monte Carlo samples.



Energy derivatives

The local energy as function of the variational parameters defines
now our objective/cost function.
To find the derivatives of the local energy expectation value as
function of the variational parameters, we can use the chain rule
and the hermiticity of the Hamiltonian.
Let us define (with the notation ⟨E [α]⟩ = ⟨EL⟩)

Ēαi =
d⟨EL⟩
dαi

,

as the derivative of the energy with respect to the variational
parameter αi We define also the derivative of the trial function
(skipping the subindex T ) as

Ψ̄i =
dΨ

dαi
.



Derivatives of the local energy

The elements of the gradient of the local energy are

Ēi = 2
(
⟨Ψ̄i

Ψ
EL⟩ − ⟨Ψ̄i

Ψ
⟩⟨EL⟩

)
.

From a computational point of view it means that you need to
compute the expectation values of

⟨Ψ̄i

Ψ
EL⟩,

and

⟨Ψ̄i

Ψ
⟩⟨EL⟩

These integrals are evaluted using MC intergration (with all its
possible error sources). Use methods like stochastic gradient or
other minimization methods to find the optimal parameters.



Why Feed Forward Neural Networks (FFNN)?

According to the Universal approximation theorem, a feed-forward
neural network with just a single hidden layer containing a finite
number of neurons can approximate a continuous multidimensional
function to arbitrary accuracy, assuming the activation function for
the hidden layer is a non-constant, bounded and
monotonically-increasing continuous function.



Illustration of a single perceptron model and an FFNN

Figure: In a) we show a single perceptron model while in b) we dispay a
network with two hidden layers, an input layer and an output layer.



Monte Carlo methods and Neural Networks

Machine Learning and the Deuteron by Kebble and Rios and
Variational Monte Carlo calculations of A ≤ 4 nuclei with an
artificial neural-network correlator ansatz by Adams et al.
Adams et al:

HLO = −
∑
i

∇⃗2
i

2mN
+

∑
i<j

(C1 + C2 σ⃗i · σ⃗j) e−r2ij Λ
2/4

+ D0
∑

i<j<k

∑
cyc

e−(r
2
ik+r2ij )Λ

2/4 , (1)

where mN is the mass of the nucleon, σ⃗i is the Pauli matrix acting
on nucleon i , and

∑
cyc stands for the cyclic permutation of i , j ,

and k . The low-energy constants C1 and C2 are fit to the deuteron
binding energy and to the neutron-neutron scattering length

https://www.sciencedirect.com/science/article/pii/S0370269320305463?via%3Dihub
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.022502
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.022502


Deep learning neural networks, Variational Monte Carlo
calculations of A ≤ 4 nuclei with an artificial neural-network
correlator ansatz by Adams et al.

An appealing feature of the neural network ansatz is that it is more
general than the more conventional product of two- and three-body
spin-independent Jastrow functions

|ΨJ
V ⟩ =

∏
i<j<k

(
1 −

∑
cyc

u(rij)u(rjk)
)∏

i<j

f (rij)|Φ⟩ , (2)

which is commonly used for nuclear Hamiltonians that do not
contain tensor and spin-orbit terms. The above function is replaced
by a four-layer Neural Network.

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.022502
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.022502
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.022502


Dilute neutron star matter from neural-network quantum
states by Fore et al, Physical Review Research 5, 033062
(2023) at density ρ = 0.04 fm−3

https://journals.aps.org/prresearch/pdf/10.1103/PhysRevResearch.5.033062
https://journals.aps.org/prresearch/pdf/10.1103/PhysRevResearch.5.033062
https://journals.aps.org/prresearch/pdf/10.1103/PhysRevResearch.5.033062


Pairing and Spin-singlet and triplet two-body distribution
functions at ρ = 0.01 fm−3
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Pairing and Spin-singlet and triplet two-body distribution
functions at ρ = 0.04 fm−3
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Pairing and Spin-singlet and triplet two-body distribution
functions at ρ = 0.08 fm−3
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The electron gas in three dimensions with N = 14 electrons
(Wigner-Seitz radius rs = 2 a.u.), Gabriel Pescia, Jane Kim
et al. arXiv.2305.07240,

https://doi.org/10.48550/arXiv.2305.07240
https://doi.org/10.48550/arXiv.2305.07240


Efficient solutions of fermionic systems using artificial neural
networks, Nordhagen et al, Frontiers in Physics 11, 2023

The Hamiltonian of the quantum dot is given by

Ĥ = Ĥ0 + V̂ ,

where Ĥ0 is the many-body HO Hamiltonian, and V̂ is the
inter-electron Coulomb interactions. In dimensionless units,

V̂ =
N∑
i<j

1
rij
,

with rij =
√

r2i − r2j .
Separable Hamiltonian with the relative motion part (rij = r)

Ĥr = −∇2
r +

1
4
ω2r2 +

1
r
,

Analytical solutions in two and three dimensions (M. Taut 1993 and
1994).

https://doi.org/10.3389/fphy.2023.1061580
https://doi.org/10.3389/fphy.2023.1061580
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.48.3561
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.48.3561


Why Boltzmann machines?

What is known as restricted Boltzmann Machines (RMB) have
received a lot of attention lately. One of the major reasons is that
they can be stacked layer-wise to build deep neural networks that
capture complicated statistics.
The original RBMs had just one visible layer and a hidden layer, but
recently so-called Gaussian-binary RBMs have gained quite some
popularity in imaging since they are capable of modeling continuous
data that are common to natural images.
Furthermore, they have been used to solve complicated quantum
mechanical many-particle problems or classical statistical physics
problems like the Ising and Potts classes of models.



The structure of the RBM network

Hidden Layer 

Visible Layer ai(vi)

bμ(hμ)

WiμvihμInteractions 



The network

The network layers:
1. A function x that represents the visible layer, a vector of M

elements (nodes). This layer represents both what the RBM
might be given as training input, and what we want it to be
able to reconstruct. This might for example be the pixels of an
image, the spin values of the Ising model, or coefficients
representing speech.

2. The function h represents the hidden, or latent, layer. A vector
of N elements (nodes). Also called "feature detectors".



Goals

The goal of the hidden layer is to increase the model’s expressive
power. We encode complex interactions between visible variables by
introducing additional, hidden variables that interact with visible
degrees of freedom in a simple manner, yet still reproduce the
complex correlations between visible degrees in the data once
marginalized over (integrated out).
The network parameters, to be optimized/learned:

1. a represents the visible bias, a vector of same length as x.
2. b represents the hidden bias, a vector of same lenght as h.
3. W represents the interaction weights, a matrix of size M × N.



Joint distribution

The restricted Boltzmann machine is described by a Boltzmann
distribution

Prbm(x, h) =
1
Z
e
− 1

T0
E(x,h)

, (3)

where Z is the normalization constant or partition function, defined
as

Z =

∫ ∫
e
− 1

T0
E(x,h)

dxdh. (4)

It is common to ignore T0 by setting it to one.



Quantum dots and Boltzmann machines, onebody densities
N = 6, ℏω = 0.1 a.u.



Onebody densities N = 30, ℏω = 1.0 a.u.



Onebody densities N = 30, ℏω = 0.1 a.u.



Extrapolations and model interpretability

When you hear phrases like predictions and estimations and
correlations and causations, what do you think of? May be you
think of the difference between classifying new data points and
generating new data points. Or perhaps you consider that
correlations represent some kind of symmetric statements like if A
is correlated with B , then B is correlated with A. Causation on the
other hand is directional, that is if A causes B , B does not
necessarily cause A.



Physics based statistical learning and data analysis

The above concepts are in some sense the difference between
old-fashioned machine learning and statistics and Bayesian
learning. In machine learning and prediction based tasks, we are
often interested in developing algorithms that are capable of
learning patterns from given data in an automated fashion, and
then using these learned patterns to make predictions or
assessments of newly given data. In many cases, our primary
concern is the quality of the predictions or assessments, and we are
less concerned about the underlying patterns that were learned in
order to make these predictions.
Physics based statistical learning points however to approaches that
give us both predictions and correlations as well as being able to
produce error estimates and understand causations. This leads us
to the very interesting field of Bayesian statistics.



Bayes’ Theorem

Bayes’ theorem

p(X |Y ) =
p(X ,Y )∑n−1

i=0 p(Y |X = xi )p(xi )
=

p(Y |X )p(X )∑n−1
i=0 p(Y |X = xi )p(xi )

.

The quantity p(Y |X ) on the right-hand side of the theorem is
evaluated for the observed data Y and can be viewed as a function
of the parameter space represented by X . This function is not
necessarily normalized and is normally called the likelihood function.
The function p(X ) on the right hand side is called the prior while
the function on the left hand side is the called the posterior
probability. The denominator on the right hand side serves as a
normalization factor for the posterior distribution.



Quantified limits of the nuclear landscape

Predictions made with eleven global mass model and Bayesian
model averaging

https://journals.aps.org/prc/abstract/10.1103/PhysRevC.101.044307


Observations (or conclusions if you prefer)

▶ Need for AI/Machine Learning in physics, lots of ongoing
activities

▶ To solve many complex problems and facilitate discoveries,
multidisciplinary efforts efforts are required involving scientists
in physics, statistics, computational science, applied math and
other fields.

▶ There is a need for focused AI/ML learning efforts that will
benefit accelerator science and experimental and theoretical
programs



More observations

▶ How do we develop insights, competences, knowledge in
statistical learning that can advance a given field?
▶ For example: Can we use ML to find out which correlations are

relevant and thereby diminish the dimensionality problem in
standard many-body theories?

▶ Can we use AI/ML in detector analysis, accelerator design,
analysis of experimental data and more?

▶ Can we use AL/ML to carry out reliable extrapolations by
using current experimental knowledge and current theoretical
models?

▶ The community needs to invest in relevant educational efforts
and training of scientists with knowledge in AI/ML. These are
great challenges to the CS and DS communities

▶ Quantum computing and quantum machine learning not
discussed here

▶ Most likely tons of things I have forgotten



Possible start to raise awareness about ML in your own field

▶ Make an ML challenge in your own field a la Learning to
discover: the Higgs boson machine learning challenge.
Alternatively go to kaggle.com at
https://www.kaggle.com/c/higgs-boson

▶ HEP@CERN and HEP in general have made significant
impacts in the field of machine learning and AI. Something to
learn from

https://home.cern/news/news/computing/higgs-boson-machine-learning-challenge
https://home.cern/news/news/computing/higgs-boson-machine-learning-challenge
https://www.kaggle.com/c/higgs-boson


Education
1. Incorporate elements of statistical data analysis and Machine

Learning in undergraduate programs
2. Develop courses on Machine Learning and statistical data

analysis
3. Build up a series of courses in Quantum Information

Technologies (QIT)
4. Modifying contents of present Physics programs or new

programs on Computational Physics and Quantum
Technologies
4.1 study direction/option in quantum technologies
4.2 study direction/option in Artificial Intelligence and Machine

Learning
4.3 and more

5. Master of Science/PhD programs in Computational and Data
Science
5.1 UiO has already MSc programs in CS and DS
5.2 MSU has own graduate programs plus dual degree programs in

CS and DS
5.3 Many other universities are developing or have similar programs



Possible courses

Topics in a Bachelor of Science/Master of Science

1. General university course on quantum mech and quantum
technologies

2. Information Systems
3. From Classical Information theory to Quantum Information

theory
4. Classical vs. Quantum Logic
5. Classical and Quantum Laboratory
6. Discipline-Based Quantum Mechanics
7. Quantum Software
8. Quantum Hardware
9. more



Important Issues to think of

1. Lots of conceptual learning: superposition, entanglement, QIT
applications, etc.

2. Coding is indispensable.
3. Teamwork, project management, and communication are

important and highly valued
4. Engagement with industry: guest lectures, virtual tours,

co-ops, and/or internships.



Observations

1. Students do not really know what QIT is.
2. ML/AI seen as black boxes/magic!
3. Students perceive that a graduate degree is necessary to work

in QIS. A BSc will help.



Future Needs/Problems

1. There are already great needs for specialized people (Ph. D. s,
postdocs), but also needs of people with a broad overview of
what is possible in ML/AI and/or QIT.

2. There are not enough potential employees in AI/ML and QIT .
It is a supply gap, not a skills gap.

3. A BSc with specialization is a good place to start
4. It is tremendously important to get everyone speaking the

same language. Facility with the vernacular of quantum
mechanics is a big plus.

5. There is a huge list of areas where technical expertise may be
important. But employers are often more concerned with
attributes like project management, working well in a team,
interest in the field, and adaptability than in specific technical
skills.


