My relationship with Marcello in short

I have known Marcello for more than 50 years

we published together over 55 papers

26 in the Nuclear Matter and Brueckner Theory

25 BCS theory and NM Superfluidity

My relationship with Marcello

ICTP (Trieste, 1969)

I have known Marcello for more than 50 years

we published together over 55 papers

26 in the Nuclear Matter and Brueckner Theory

25 BCS theory and NM Superfluidity

80° Marcello's Anniversary

Marcello's Contributions to the Theory of Nuclear-Matter Superfluidity

Outline:

- BCS calculations with realistic interactions
- Selfenergy and corrections
- Transition to Bose condensate
- from Homogeous to Inhomogeneus Matter:
- Superfluid States of Nuclear Matter in Astrophysics

Cottage Le Muse, 2022

BCS Calculations with Realistic Interactions degenerate Fermi Systems

Inter.Coll.: J. Cugnon, A. Lejeune (1990-96)

 $\Delta_{k} = \sum V_{kk'} \frac{\Delta_{k'}}{2\sqrt{(e_{k'} - e_{F})^{2} + \Delta_{k'}^{2}}}$ $\rho = \sum_{k} \theta(e_{F} - e_{k})$

 $V_{kk'}$ bare interaction (from exp phase shifts)

 $e_{\rm k} = {\rm k}^2/{\rm 2m} + {\rm U}_{\rm k}$ from BHF

- independent of interaction
- overestimate the experimental values in nuclei
- peacked at low densities

Querelle with J. Cugnon: $V_{kk'}$ or $G_{kk'}$?

$$\Delta_{k} = \sum_{k'} V_{kk'} \frac{\Delta_{k'}}{2\sqrt{(e_{k'} - e_{F})^{2} + \Delta_{k'}^{2}}}$$

L. Cooper et.al. (PRC 1959)

"...the true two-body potential v must be used rather than the gmatrix, since we are looking for a state which arises from strong two-body interactions and hence corresponds to iteration of v..."

Marcello was right !

Querelle with J. Cugnon: $V_{kk'}$ or $G_{kk'}$?

$$\Delta_{k} = \sum_{k'} V_{kk'} \frac{\Delta_{k'}}{2\sqrt{(e_{k'} - e_{F})^{2} + \Delta_{k'}^{2}}}$$

Etna volcano, 2900m a.s.l., 1990

L. Cooper et.al. (PRC 1959)

"...the true two-body potential v must be used rather than the gmatrix, since we are looking for a state which arises from strong two-body interactions and hence corresponds to iteration of v..." analytical demonstration

Gap Equation : $\Delta = V GG_s \Delta$

Splitting the (e,p)-space into two sub-spaces, P and Q, such that

Q:
$$\Delta << |e - e_F|$$
 $n_p^2 << n_p$

the gap equation splits

$$\Delta = \tilde{\mathbf{V}} \, \mathbf{G} \mathbf{G}_{s} \, \Delta$$
$$\tilde{\mathbf{V}} = \mathbf{V} + \mathbf{V} \, \frac{Q}{2e_{F} - e_{p} - e_{p'}} \, \tilde{\mathbf{V}}$$

(Bethe-Goldostone like Eq.)

 $Q = 1 - n_p - n_{p'} \approx Pauli operator$

Medium Dispersive Effects quasi-degenerate Fermi Systems

Self-energy corrections

 $\begin{aligned} \mathbf{G^{-1}} \left(\boldsymbol{\mathcal{E}}, \, p \right) &= \mathbf{G_0^{-1}} - \, \boldsymbol{\boldsymbol{\Sigma}} \left(\boldsymbol{\mathcal{E}}, \, p \right) = Z^{-1} \left(\boldsymbol{\mathcal{E}} - \left(p^2 - p_F^2 \right) / 2m^* \right) \\ \mathbf{G^{-1}}_S \left(\boldsymbol{\mathcal{E}}, \, p \right) &= \mathbf{G_0^{-1}} \left(\boldsymbol{\mathcal{E}}, p \right) + \mathbf{G_0} (- \, \boldsymbol{\mathcal{E}}, -p) \, |\Delta|^2 \end{aligned}$

quasi-particle strength $Z(p)^{-1} = (1 - \frac{\delta \Sigma(p,\omega)}{\delta \omega})_F$

Inter.Coll.: , H.-J. Schulze, J. Cugnon, A. Lejeune

+

 $\Sigma =$

Medium Polarization Effects quasi-degenerate Fermi Systems

Nuclear Matter (β-stable)

Inter.Coll.: , H.-J. Schulze, J. Cugnon, A. Lejeune

 $\Sigma =$

Medium Polarization Effects *quasi-degenerate Fermi Systems*

Nuclear Matter (β-stable)

Rostock,2009

Spin-triplet n-p Pairing

A.M. Lane (Nuclear Theory, Benjamin 1964) :

"The neglect of the neutron-proton interaction is the major weakness of the pairing force theory. This interaction is just as strong as that between a pair of like nucleons. In fact in the T=0 state is stronger."

Investigation keywords:

Crossover from n-p Fermi system to deuteron Bose system

- Suppression in nuclei (N=Z: Bertsch (20109), Sagawa & Colò (2014))
- Searching experimental evidence (low energy HIC, NS cooling,...)

Inter.Coll.: P. Schuck

Low-density Crossover to Deuteron Bose Condensate

Inter.Coll.: P. Schuck

$$2(\varepsilon_{p} - \mu)\phi_{p_{+}}(1 - 2np) \sum_{p'} V(p, p')\phi_{p'} = 0$$

$$p = \frac{N}{V} = \sum_{p} \frac{1}{2} \left(1 - \frac{\varepsilon_{p} - \mu}{E}\right)$$

 $\varphi = \Delta/2E$ (pairing correlation fnct)

 $2n = 1 - (\varepsilon - \mu)/E$ (occupation number)

 $\mathsf{E} = [(\mathcal{E} - \mu)^2 + \Delta^2)]^{\frac{1}{2}}$

at home, 1999

The puzzle of the missing neutron-proton pairing in nuclei short history

• A.M. Lane . (Nuclear Theory, Benjamin 1964)

« The neglect of the neutron-proton interaction is the major weakness of the pairing force theory. This interaction is just as strong as that between a pair of like nucleons. In fact in the T=0 state is stronger»

G.F. Bertsch et al (PRC 2010)

Study the effect of **spin-orbit splitting** on the pairing in N=Z nuclei and predict a crossover

from spin-singlet to spin-triplet pairing at A ~ 140 N >> Z Fermi energy splitting prevents np pairing moving from lighter to heavier nuclei the pairing force quenches down due to the surface dependence of spin-orbit force

$$H_{\rm sp} = \frac{p^2}{2m} + V_{\rm WS} f(r) + \vec{\ell} \cdot \vec{s} \, V_{\rm so} \frac{1}{r} \frac{df(r)}{dr}$$

H. Sagawa et al (Physica Scripta,2014) Study interplay between S=1 np and nn S=0 pairing in pf-shell of N=Z nuclei , based on the pairing **w.f. projection on the jj coupling**

On the surface nature of the nuclear pairing

from low density pairing in nuclear matter to surface pairing in nuclei

Int.Coll.: E.Saperstein et al.

Guess LDFA : pairing located on the nuclear surface

Moscow, 1993

1D-Inhomogeneous Nuclear Matter

Semi-infinite slab

Superfluidity in Neutron Stars

Anomalously large post-glitche relaxation time

Superfluidity in Neutron Stars

- selected papers -

The role of superfluidity in the structure of the neutron star crust, M. Baldo, U. Lombardo, E.E. Saperstein and S.V. Tolokonnikov, Nucl. Phys. A 750 (2005) 409.

Elementary excitations in homogeneous superfluid neutron star matter : M. Baldo and C. Ducoin Phys. Rev. C84, 035806 (2011); C96, 025811 (2017); C99, 025801 (2019)

The neutron star in Cassiopeia A : equation of state, superfluidity and Joule heating, A. Bonanno, M. Baldo, G.F. Burgio and V. Urpin, Astronomy & Astrophysics 561, L5 (2014)

A well-deserved rest after a long journey

Great Wall 1993

A well-deserved rest after a long journey

Long Live Marcello!

Great Wall 1993