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Early days
My collaboration with Marcello 
started after my degree in 
physics in 1983 with frequent 
v is i ts at the Nie ls Bohr 
Institute in Copenhagen
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Early days
NBI October 1984

3

Marcello
Me



Early days

Aage Bohr and Ben Mottelson 
Nobel prize winners in 1975  

for their studies on the nuclear structure
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Ricardo Broglia  and Aage Winther 
working on heavy ion collisions



Early days
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At that time NBI was a fantastic place, a 
sea port where you could meet very 
famous physicists who spent there several 
periods, like Abraham Pais, Sir Archibald 
Wheeler and many others. 

It was also the only place where physicists 
coming from  Soviet Union or East 
Germany could come very easily.

A. Pais

J.A. Wheeler



Early days
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Life in Copenhagen - March 1987



Early days
Erice School on Nuclear Physics - October 1986
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Early days
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Erice School on Nuclear 
Physics - October 1986

Italy   vs   Rest-of-the-world 



First papers with Marcello on transfer reactions
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1987

1990
1988



Early days
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P. Cvitanović

At those times, at NBI the 
chaos group of Predrag 
Cv i tanov ić was very 
active, hosting several 
international guests… 

a n d t h u s m e a n d 
Marcello  started to get 
interested also in chaos 
theory



In 1991 first paper with Marcello on  
Chaotic Scattering
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Chaotic scattering around the Coulomb barrier
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Chaotic scattering around the Coulomb barrier



Realistic  
Nuclear effective  

potential considered
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is the important 
deformation parameter  
which controls chaotic 

behavior 



Chaotic scattering around the Coulomb barrier
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Chaotic scattering around the 
Coulomb barrier
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Chaotic scattering around the Coulomb barrier
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Si  +     Mg 28 24

Realistic deformation deformation reduced to 10% of the real one



Review  paper on Chaotic Scattering
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Collaboration with the Chimera group (1995)…
moving towards nuclear multi fragmentation
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Chaos and Phase transitions
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The Hamiltonian Mean Field Model
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Antoni and Ruffo  PRE 52 
(1995) 2361

•The system has an infinite range force 

•It is a useful paradigmatic  model to study 
Hamil tonian  long-range interact ing 
(nonextensive) systems  as for example    
astrophysical  systems,  but  also fragmenting 
nuclei and  atomic  clusters



The Hamiltonian Mean Field Model
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The model can be seen as   N  classical interacting spins or particles moving on the unit circle. One can define  the total 
magnetization    M   as an  order parameter                                         
                                       where the single spin is 

The model shows a second-order phase transition, passing from a clustered 
phase to a homogeneous one as a function of energy

M=1 clustered phase for 
U<Uc

M=0 homogeneous   
phase for U>Uc



The Hamiltonian Mean Field Model
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The model  has a second order phase transition.  
The critical point is at

Close to the critical point

Hence M vanishes with the classical critical mean field exponent 1/2

Close to the critical point one gets  for

On the other hand, the specific heat                                          is

and

and for

with

� � �c

CV =
�U

�T

     Critical behavior of the model 



The Hamiltonian Mean Field Model
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Good agreement between exact canonical solution and numerical  
microcanonical simulations at equilibrium for various sizes N of the system

Latora, Rapisarda and Ruffo  PRL  80 (1998) 692,     
                                                        Physica D 131 (1999) 38

Comparison with numerical 
simulations at equilibrium



The Hamiltonian Mean Field Model
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Latora, Rapisarda and Ruffo  
Physica D 131 (1999) 38

One finds a maximum of the 
Largest  Lyapunov  Exponent 
in  correspondence  of  the 
c r i t i ca l  po int ,  where 
fluctuations in kinetic energy 
and the specific heat have also 
a peak!



The Hamiltonian Mean Field Model
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for 

for

   Dynamics  at Equilibrium: scaling of  the LLE



The Hamiltonian Mean Field Model
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In Hamiltonian systems with N degrees of freedom

(positive part only)

At low energy only a few 
degrees of freedom are 

active.

   Lyapunov spectra at Equilibrium



The Hamiltonian Mean Field Model
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with

A peak close to the critical point is found also for 

   Kolmogorov Sinai entropy 



The Hamiltonian Mean Field Model
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The HMF model can have also an antiferromagnetic behavior if one considers

The general canonical solution  for               is 

         Antiferromagnetic behavior  of  HMF



The Hamiltonian Mean Field Model
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One has a different behavior of the Largest Lyapunov exponent and the KS entropy in 
the ferromagnetic and  antiferromagnetic case

        Dynamics at  Equilibrium



The Hamiltonian Mean Field Model
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In the thermodynamic limit, the LLE       goes to zero for the whole energy 
range  in  the  antiferromagnetic  case,  while  it  remains  finite,  for  energies 
smaller  than the critical  one (Uc=0.75),  in  the ferromagnetic  one.  In the 
latter case it goes to zero for overcritical energies as 
�1 = constant �1 ⇠ N�1/3

�1

   LLE in the  thermodynamical limit  



The Hamiltonian Mean Field Model
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In the continuum limit, considering the one-body distribution function F,  the 
evolution of the HMF model is described by the 

 Vlasov equation

Supposing a  factorization of the distribution function

One gets the stationary equilibrium solution

In the overcritical region

In the low energy  region

and is the Bessel function 

is the phase of  Mwhere ,

Latora, Rapisarda and Ruffo Physica D 131 (1999) 38

 Equilibrium PDFs for the HMF model 



The Hamiltonian Mean Field Model
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At  low energy

  Comparison with numerical pdfs



The Hamiltonian Mean Field Model

34

At the 
critical point 

  Comparison with numerical pdfs at equilibrium 



The Hamiltonian Mean Field Model
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  When the system is started with initial conditions very  
far from  equilibrium….. 

  …… one observes many dynamical  anomalies, in 
particular  in an  energy  range below the critical point.

Out-of-equilibrium regime



The Generalized Hamiltonian Mean 
Field Model
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          The HMF model has been  generalized   
to  s tudy  the  dynamic  and 
thermodynamic  beha v ior   a s  a   
function  of  the  range    of    the   
interaction 

•Anteneodo and Tsallis,  PRL 80 (1998) 5313 
•Campa, Giansanti and Moroni, PRE 62 (2000) 303 
•Tamarit and Anteneodo,  PRL 84 (2000) 208 
•Campa, Giansanti and Moroni, J. Phys. A 36 (2003)  6897

α-XY model 

For                                     this generalized  model  reduces to HMF. 

For                                  one has interaction only among nearest  neighbour spins.��⇥

� � d

i           j
rij 

spins are put on a lattice 



The Generalized Hamiltonian Mean 
Field Model
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 The lifetime τ  of the QSS does  not 

 diverge for all  values  of α 

  see A. Campa et al.  Physica A 305 (2002) 137

Decreasing  the range of the interaction, i.e. diminishing nonextensivity 
anomalous behaviour disappears:
- Relaxation is very fast 
- No negative specific heat is observed

Anomalies  depend in a  
crucial way on the  
range of the interaction

      α-XY model and nonextensive effects



Complex behavior for systems with long-range interactions 
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Long range interactions slow down the dynamics 

and break ergodicity, inducing a complex behavior !!

A  simple and instructive example: birds flocking                  



The Hamiltonian Mean Field Model
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The anomalous QSS regime is the effect of non 
extensivity or, in other words, of the long-range 
character of the  interaction.   

These anomalies can be connected  to Tsallis  
generalized thermostatistics 
 

  Interpretation of  QSS regime
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  In the last decades a lot of effort has been devoted to understand if  thermostatistics  can be 
generalized to nonequilibrium complex systems 

  In particular one of these attempts is that one started by Constantino Tsallis  with his seminal paper on        
                                                 J. Stat. Phys. 52 (1988) 479 

For  reviews see  for example: 

•``Nonextensive Entropy - Interdisciplinary Applications'', C. Tsallis  and M. Gell-Mann 
eds.,   Oxford University Press (2003). 

• Special issue of  Europhysics News 36 (2005)  

•Complexity, metastability and nonextensivity, CYNEXT07,  AIP conference proceedings 965 
(2007) 

•Introduction to Nonextensive Statistical Mechanics: Approaching a complex world - 
Springer 2009 (2nd edition 2023) 

For a regularly  updated bibliografy: http://tsallis.cat.cbpf.br/biblio.htm 

Tsallis generalized formalism

http://tsallis.cat.cbpf.br/biblio.htm
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The generalized Tsallis entropy  is  

Sq   is non extensive, i.e. for two independent systems A and B one gets 

It is easy to show that        reduces to the Boltzmann entropy for  

The Boltzmann weight is also generalized  (q-exponential)  and reads

In general the standard statistical mechanics 
formalism is q-invariant

Tsallis generalized formalism



42

For  recent successful applications of the  generalized statistics, see for example

Turbulence 
Beck, Lewis and Swinney      Phys. Rev. E 63 (2001) 035303R ;  Beck, Physica A 

295 (2001) 195   and    Phys. Rev. E 72, 056133 (2005) 

High energy collisions Wilk et al  Phys. Rev. Lett.  84 (2000) 2770, Beck  Physica A 286 (2000) 164;  
Bediaga, Curado, De Miranda , Physica A 286 (2000) 156; 

Depmann et al.,  Phys Rev. D  (2020)

Biological systems Upaddhyaya et al Physica A 293 (2001) 549; 
R.J. Al-Azawi et al., Peer J Computer Science (2021) 

Maps at the edge of chaos 
V.Latora, M.Baranger, A. Rapisarda and C.Tsallis, Phys. Lett. A 273 (2000) 
97; U. Tirnakli, Phys. Rev. E 66;(2002) 066212;  E.P. Borges, C. Tsallis,G.F.J. 
Ananos, P.M.C. de Oliveira, Phys. Rev. Lett. 25 (2002) 254103. Tirnakli, U.; 
Borges, E.P. Sci. Rep. 6 (2016)  23644  

For recent studies on the theoretical foundations see 
C Tsallis, Introduction to nonextensive statistical mechanics, Springer 2009 (2nd 

ed 2023) C. 
S Umarov, C Tsallis, S Steinberg - Milan J. Math  76 (2008) 307   
C. Tsallis, M. Gell-Mann and Y. Sato, PNAS 102 (2005) 15377 
C. Tsallis, M. Gell-Mann, Y. Sato, Europhysics News  36 (2005) 

C. Beck and E.G.D. Cohen, Superstatistics    Physica A 322  (2003) 267 
F. Baldovin and A. Robledo,  Phys. Rev. E  66 (2002) 045104(R) and Europhys. Lett. 60 

(2002) 518

Econophysics L. Borland, Phys. Rev. Lett. 89 (2002) 098701  

Cosmic rays C. Tsallis, J.C. Anjos and  E.P. Borges, Phys. Lett. A   310 (2003) 372.  

Cold atoms P. Douglas, S. Bergamini and F. Renzoni, Phys Rev Lett 96, 110601 

K.E. Daniels, C. Beck and E. Bodenschatz, Physica D 193, 208 (2004)

L Borland, Europhys News 36, 228 (2005)

Granular media G. Combe et al  Phys. Rev. Lett. 115 (2015) 238301

Complex Networks N. Cinardi, A. Rapisarda, C. Tsallis, Jour. Stat Mech. (2020)  043404

Foundations and applications
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  q-exponential decay of the correlation function C(t,0) for the  
HMF model 

 Tsallis and Buckman PRE 54  (1996) R2197

The decay of the  velocity correlation function can be 
reproduced very well by means of the generalized q-
exponential 

In our case  x=-t/τ .  Within a generalized Fokker-Plank 
equation which generates Tsallis q-exponential pdfs [1], 
one can extract the following relation between the 
exponent        of the anomalous diffusion and q 

  

In our case       =1.38-1.4, thus we expect q=1.55-1.6, 
which is confirmed by the fit in the figure for M1IC. On 
the other hand, for M0IC the decay is almost 
exponential.
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   q-exponential decay also for different initial conditions  
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Anomalous diffusion vs q-exponential decay

Rapisarda and Pluchino,

 Europhysics News 36 (2005) 202

HMF model and q-statistics 
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  The Kuramoto Model

Order parameter

mean field equation

Eqs. for the N coupled oscillators

(Kuramoto  1975)

Phase transition

Global synchronization

Incoherent phase



47

Kuramoto dynamics

sin( ) 1,...,i i iM K i Nθ ω θ= + Ψ − =!
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Similarities between Kuramoto and   HMF model

Both models  can  be derived from the more general one

sin( ) 1,...,i i i iB M K i Nϑ θ θ ω+ + −Ψ = =!! !

  B = 0, K = 1,ω i = 0    B≫ 1, K ≥ 0,ω i ≠ 0

sin( ) 1,...,i iM i Nϑ θ= Ψ − =!! sin( ) 1,...,i i iM K i Nθ ω θ= + Ψ − =!

Conservative case Dissipative case 

A. Pluchino, A. Rapisarda, Physica A 365 (2006) 184 

HMF KURAMOTO
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As for HMF there is a peak in the LLE at the phase transition 
(no dependence on the size is observed) and the transition seems very 

similar to a second order one 

  
Kc =

2
π g(0)

Miritello, Pluchino, Rapisarda  Epl  85 (2009) 10007 

Kc = 1.6
Gaussian g(w)
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The same happen for a uniform distribution of 
frequencies, but now the transition is sharp 

and similar to a first order one

Kc = 2.55



51

phase diagram

Miritello, Pluchino, Rapisarda,   Physica A 388 (2009) 4818



52

Smooth change  from 2nd to 1st order phase 
transition vs the standard deviation of the 

initial distribution of frequencies 

Miritello, Pluchino, Rapisarda  Epl 85  (2009) 10007
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Central limit theorem

The distribution of the 
average  converges quite 
fast to the final Gaussian 

attractor 

The Central Limit Theorem says that …….the distribution of an average will 
tend to be Normal as the sample size increases, regardless of the 

distribution from which the average is taken except when the moments of 
the parent distribution do not exist.  
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Central limit theorem
Usually the convergence is quite fast  

and begins in the central part of the PDF
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where 

CLT for the logistic map  
in the chaotic regime
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CLT  at the  edge of chaos
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Generalized Central limit theorem

Tirnakli, Beck, Tsallis  PRE 75 (2007) 040106 (R)

also for generalized maps 

At the  edge of chaos  q-Gaussians appear
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Generalized Central limit theorem

The previous numerical 
results are  supported by 
a  generalization of the 

CLT within  
Tsallis q-statistics
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Central limit behavior in the HMF model 
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We have  been  studying  the  behavior  of  PDFs  obtained 
considering time averages  of  the  variables  y  so defined 
(along deterministic trajectories )

where   pj   are the velocities  of  the j-th  rotor taken at  fixed 
intervals of time     along the same trajectory�

yi =
1�
n

n�

i

pj(i�) j = 1, 2, ...N
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We  consider 
deterministic 
trajectories 
in  different 
regimes  and 
for  different 
energies  and   
system sizes

Central limit behavior in the HMF model 



CLT for the  Hamiltonian Mean Field Model
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Linear scaleThe  q-Gaussian  curve  is 
able to reproduce well not 
only the tail,  but also the 
central part of the PDF

Inequivalence between ensemble average and time average 
for N=100000



64

When the system is 
at the edge of chaos 
a  q-Gaussian-like  
attractor emerges

CLT for the Kuramoto model
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A review of the latest results



Happy 80th birthday Marcello !!! 
Many thanks for your inspirational and invaluable guidance !
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Thanks for your attention
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