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Early days

Ricardo Broglia and Aage Winther

Aage Bohr and Ben Mottelson



Early days

At that time NBIl was a fantastic place, a
sea port where you could meet very
famous physicists who spent there several
periods, like , OIr

and many others.

It was also the only place where physicists
coming from Soviet Union or East
Germany could come very easily.
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Early days

Life in Copenhagen - March 1987
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Early days

Erice School on Nuclear
Physics - October 1986

Italy vs Rest-of-the-world




First papers with Marcello on transfer reactions

Nuclear Physics A

]‘ [ "I' VII ;l 3 Volume 472, Issue 2, 28 September 1987, Pages 333-357
Sk ‘R

Multiparticle transfer and frictional forces in
heavy ion collisions

Show more v
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Abstract

We study the frictional forces in a low-energy heavy ion collision by solving the
independent particle transfer between two potentials moving on prescribed trajectories.
We conclude that, although one may extract both a tangential and a radial frictional force
for the initial stage of the collision, they will be different in the final stage of the reaction
and they depend on the shell structure. The strong coherence of the transfer process
shows up in the probability of remaining in the initial ground state, which is strongly
enhanced over the result obtained from incoherent transfer. This indicates that a
measurement of the absorption in the entrance channel is a sensitive measure of the
effect of two-body collisions and other relaxation mechanisms.

1987

Nuclear Physics A490 (1988) 471-484
North-Holland, Amsterdam

MICROSCOPIC THEORY OF MULTIPARTICLE TRANSFER AND
FUSION IN THE REACTION “Ca+*“Ca

M. BALDO and A. RAPISARDA
INFN, Corso Italia 57, 95129 Catania, Italy

R.A. BROGLIA

Dipartimento di Fisica, Universita di Milano
and
INFN sez. Milano, Via Celoria 16, 20133 Milano, Italy
and
Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen &, Denmark

A. WINTHER
Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen &, Denmark

Received 20 January 1988
(Revised 12 July 1988)

Abstract: The role of transfer in fusion reactions is studied within the framework of a microscopic model
In the case of the *°Ca+%°Ca reaction, the coupling to transfer channels is essentially adiabatic
and explains about one third of the observed enhancement over unrenormalized potential barrie|
estimates. Taking into account the excitation of low-lying vibrations in the adiabatic approximatior
brings theory in overall agreement with the data. Predictions for transfer processes are also presentec
which can be used to further discriminate between the potentials.

1988

PHYSICAL REVIEW C VOLUME 41, NUMBER 3 MARCH 1990

Theory of transfer reactions in peripheral heavy-ion collisions

A. Rapisarda
The Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen @, Denmark
and Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Corso Italia 57, I-95129 Catania, Italy

M. Baldo
Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Corso Italia 57, I-95129 Catania, Italy

R. A. Broglia
Dipartimento di Fisica, Universita di Milano, Istituto Nazionale di Fisica Nucleare, Sezione di Milano,
Via Celoria 16, 1-20133 Milano, Italy
and The Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen @, Denmark

A. Winther
The Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen @, Denmark
(Received 26 April 1989; revised manuscript received 5 October 1989)

The total absorption from the elastic channel due to transfer and inelastic processes in peripheral
heavy-ion collisions at low bombarding energies is calculated in a microscopic coupled-channel ap-
proach. It is demonstrated for the first time that considering the depopulation of the entrance chan-
nel as an incoherent depopulation due to transfer processes is a good approximation. Using the cor-
responding absorptive potential within the framework of the Born approximation to calculate the
transfer to individual channels, the results of full coupled-channels calculations are accurately

1990



At those times, at NBl the j

chaos group of Predrag

Cvitanovic was very
active, hosting several
International guests...

and thus me and
Marcello started to get
Interested also In chaos
theory
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In 1991 first paper with Marcello on
Chaotic Scattering

VOLUME 66, NUMBER 20 PHYSICAL REVIEW LETTERS 20 MAY 1991

Coexistence of Regular and Chaotic Scattering in Heavy-Ion Collisions

Andrea Rapisarda ‘">’ and Marcello Baldo?’

‘DCentro Siciliano di Fisica Nucleare e Struttura della Materia, Corso Italia 57, 95129 Catania, Italy

@D stituto Nazionale di Fisica Nucleare, Sezione di Catania, Corso Italia 57, 95129 Catania, Italy
(Received 26 November 1990)

Classical dynamics of heavy-ion scattering is investigated in the case of a collision between a supposed
spherical nucleus, **Si, and a deformed one, **Mg, at energies above the Coulomb barrier. Evidence of
regular and irregular motion is found. The chaotic behavior justifies the presence of Ericson’s fluctua-
tions observed for this reaction, while the presence of regular motion embedded in the chaotic region
could be the crucial point to explain the nature of the observed isolated resonances, once the semiclassi-

cal theory is applied.




Chaotic scattering around the Coulomb barrier

VOLUME 60, NUMBER 6 PHYSICAL REVIEW LETTERS 8 FEBRUARY 1988

Classical Irregular Scattering and Its Quantum-Mechanical Implications

R. Blimel and U. Smilansky

Max Planck Institute for Quantum Optics, 8046 Garching, Federal Republic of Germany, and

Department of Nuclear Physics, The Weizmann Institute of Science, 76100 Rehovot, Israel
(Received 28 September 1987)

We analyze the effect of irregular classical scattering on the corresponding quantum-mechanical
scattering matrix. Using semiclassical arguments, we show that the fluctuations in the S matrix and the
cross sections are consistent with a random-matrix description (Ericson fluctuations). The results are il-

lustrated by a numerical solution of a simple quantum problem, whose classical counterpart displays ir-
regular scattering.

FIG. 1. The function /,(6;,I; =7h) showing IS for E =1.7,
R =0.1, and V' =3.0.




Chaotic scattering around the Coulomb barrier
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Chaotic scattering around the Coulomb barrier
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Chaotic scattering around the Coulomb barrier

*°Si + “"Mg

Realistic deformation deformation reduced to 10% of the real one
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Review paper on Chaotic Scattering

Chaotic scattering in heavy-ion reactions
M. Baldo, E. G. Lanza, and A. Rapisarda

Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Dipartimento di Fisica, Université di Catania,
Corso Italia 57, 1-95129 Catania, Italy

(Received 14 June 1993; accepted for publication 13 September 1993)

We discuss the relevance of chaotic scattering in heavy-ion reactions at energies around the
Coulomb barrier. A model in two and three dimensions which takes into account rotational
degrees of freedom is discussed both classically and quantum mechanically. The typical chaotic
features found in this description of heavy-ion collisions are connected with the anomalous

behavior of several experimental data.

CHAOS 3 (4), 1993 1054-1500/93/3(4)/691/16/$6.00 © 1993 American Institute of Physics 691




Collaboration with the Chimera group (19995)...
moving towards nuclear multi fragmentation

NUCLEAR
PHYSICS A

BESEVIER Nuclear Physics A583 (1995) 461-464

Chimera: a project of a 411 detector for heavy 10on reactions studies at
intermediate energy

S.Aiello®, A.Anzalone®, M.Baldo®, G.Cardella’, S.Cavallaro®¢, E.De Filippo®,

A .Di Pietro®*¢, S.Femino®f, P.Figuera®, P.Guazzoni??, C.lacono-Manno?, G.Lanzano®,
U.Lombardo®®, S.Lo Nigro®¢, A.Musumarra®*®, A.Pagano®, M.Papa®, S.Pirrone’,
G.Politi®¢, F.Porto®¢, A.Rapisarda®, F.Rizzo®¢, S.Sambataro®¢, M.L.Sperduto®*¢,
C.Sutera®, L.Zetta®9.

INFN: ®Lab. Naz. del Sud, ®Sez. di Catania and ‘Gruppo coll. di Messina, ?Sez. di

Milano
Dip. di Fisica: ¢Univ. di Catania,’ Univ. di Messina,’Univ. di Milano

PHYSICAL REVIEW C

VOLUME 58, NUMBER 4

NUCLEAR
PHYSICS A

EISEVIER Nuclear Physics A583 (1995) 343-346

Beyond linear response theory in multifragmentation
M. Baldo, G.F. Burgio and A. Rapisarda **

3INFN sez. di Catania and Dipartimento di Fisica Universita di Catania,
Corso Italia 57, 1-95129 Catania, Italy

Within the framework of the Vlasov equation, we discuss the validity of linear response
theory in the dynamics of fragment formation. Considering a hot piece of nuclear matter
inside the spinodal zone, we demonstrate by numerical simulations that after the first
stages of the time evolution, nonlinear terms become important and cannot be neglected.
Nonlinear and chaotic dynamics seems to characterize multifragmentation occurring in
heavy-ion collisions.

OCTOBER 1998

Generalized entropy and temperature in noclear nmitifragmentation

A Atlmi,* M. Baldo,' G. F. Butgic,’ and A. Rapizarda’
Istimumo Naziomale di Fisica Nucleare, Sezione di Camnia and Diparimenso d Fisice, Universita di Caxnia,

Corso Iralaa 57, I-95129 Camnia, Ik
(Received 2 Febrmry 1998)
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Chaos and Phase transitions

VOLUME 80, NUMBER 4 PHYSICAL REVIEW LETTERS 26 JANUARY 1998

Lyapunov Instability and Finite Size Effects in a System with Long-Range Forces

Vito Latora*®

Center for Theoretical Physics, Laboratory for Nuclear Sciences and Department of Physics,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Andrea Rapisarda’

Istituto Nazionale di Fisica Nucleare, Sezione di Catania and Dipartimento di Fisica,
Universitd di Catania, Corso Italia 57, I-95129 Catania, Italy

Stefano Ruffo?

Centro Internacional de Ciencias, Cuernavaca, Morelos, Mexico
(Received 29 July 1997; revised manuscript received 29 October 1997)

We study the largest Lyapunov exponent A and the finite size effects of a system of N fully coupled
classical particles, which shows a second order phase transition. Slightly below the critical energy
density U,., A shows a peak which persists for very large N values (N = 20000). We show, both
numerically and analytically, that chaoticity is strongly related to kinetic energy fluctuations. In the limit
of small energy, A goes to zero with an N-independent power law: A ~ JVU. In the continuum limit
the system is integrable in the whole high temperature phase. More precisely, the behavior A ~ N ~!/3
1s found numerically for U > U, and justified on the basis of a random matrix approximation.
[SO0031-9007(97)05121-1]




The Hamiltonian Mean Field Model

2

P11 ,
EAPERETPAR
=1 2 2N 121 (1995) 2301

*The system has an infinite range force

oIt iIs a useful paradigmatic model to study
Hamiltonian long-range interacting
(nonextensive) systems as for example
astrophysical systems, but also fragmenting
nucleli and atomic clusters

21



The Hamiltonian Mean Field Model

The model can be seen as N classical interacting spins or particles moving on the unit circle. One can define the total
magnetizaton M asan order parameter

where the single spin is

m, = (cosU;,sinv; )

M=1 clustered phase for
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The model shows a second-order phase transition, passing from a clustered
phase to a homogeneous one as a function of energy




The Hamiltonian Mean Field Model

The model has a second order phase transition.
The critical point is at

Hence M vanishes with the classical critical mean field exponent 1/2

_ U
- oT

5 |
CV(TC)=— and CV=_ for T>T
2 2 ‘
Close to the critical point CV ~ (TYC —T)a with

23

On the other hand, the specific heat Cy




amiltonian Mean Field Model
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\parison with numerical
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Good agreement between exact canonical solution and numerical
microcanonical simulations at equilibrium for various sizes N of the system
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The Hamiltonian Mean Field Model

One finds 2 maximum of the

Largest Lyapunov Exponent | .o

in correspondence of the
critical point, where
fluctuations in kinetic energy
and the specific heat have also

a peak!

Latora, Rapisarda and Ruffo
Physica D 131 (1999) 38
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The Hamiltonian Mean Field Model

Dynamics at Equilibrium: scaling of the LLE

260



The Hamiltonian Mean Field Model

Lyapunov spectra at Equilibrium

In Hamiltonian systems with N degrees of freedom

K' = _7\'2N—i+1

l

o
—
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zZ ZZ Z
n

At low energy only a few
degrees of freedom are
active.
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(positive part only)
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The Hamiltonian Mean Field Model

Kolmogorov Sinai entropy

28



The Hamiltonian Mean Field Model

Antiferromagnetic behavior of HMF

The HMF model can have also an antiferromagnetic behavior if one considers

The general canonical solution for + }/ is

Ferromagnetic case Antiferromagnetic case
Theory (ce.) |

* N=100

 N=1000

——— Theoy (c.e.)
* N=100
2 N=1000

]
]
]
]
]
]
1
]
|
|
]
]
|
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The Hamiltonian Mean Field Model

Dynamics at Equilibrium

One has a different behavior of the Largest Lyapunov exponent and the KS entropy in
the ferromagnetic and antiferromagnetic case

30



The Hamiltonian Mean Field Model

LLLE in the thermodynamical limit

In the thermodynamic limit, the LLE )\; goes to zero for the whole energy
range in the antiferromagnetic case, while it remains finite, for energies
smaller than the critical one (Uc=0.75), in the ferromagnetic one. In the
latter case it goes to zero for overcritical energies as

)\1 N N—1/3

A1 = constant

anfferromagnetic case

31



The Hamiltonian Mean Field Model

Equilibrium PDFs for the HMF model

In the continuum limit, considering the one-body distribution function F, the
evolution of the HMF model is described by the

Vlasov equation

Supposing a factorization of the distribution function |F = f ( p) g (ﬂ, t)

One gets the stationary equilibrium solution

M cos(O—¢ /

-b)
T

g = 8o
where & I the phase of M

and 7, is the Bessel function

In the overcritical region

In the low energy region

Latora, Rapisarda and Ruffo Physica D 131 (1999) 38

32



The Hamiltonian Mean Field Model

Comparison with numerical pdfs

N=1000 U=0.095 (a)

e {h120 1y

Distribution funclion
Distribuiion funclion

At low energy 0o -
18 -1.2 -08 -02 0.2 08 1.2 1.8

P

N=1000 U=0.36

= {heory

(c)

Distrbulionfunciion
Deirbuioniuncion

0.0 -
-18 -1.2 -08 -02 0.2 08 1.2 1.8

P
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The Hamiltonian Mean Field Model

At the
critical point

Comparison with numerical pdfs at equilibrium

Distribuiion funciion

Distrbulioniunciion
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U=0.75
— {haory (1/21
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- Wi
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The Hamiltonian Mean Field Model

When the system is started with initial conditions very

far from equilibrium

one observes many dynamical anomalies, in
particular in an energy range below the critical point.

35



The Generalized Hamiltonian
Field Model

a-XY model The HMF model has been ge.nerahzed
to study the dynamic and

thermodynamic behavior as a

function of the range of the
N 5?2 N Il —cos(@. -0 . &

H = 2 Pi + : E" ( l J )J interaction
~ 2 2N v

= ij

spins are put on a lattice -Anteneodo and Tsallis, PRL 80 (1998) 5313

Campa, Giansanti and Moroni, PRE 62 (2000) 303
*Tamarit and Anteneodo, PRL 84 (2000) 208

Campa, Giansanti and Moroni, J. Phys. A 36 (2003) 6897

For [ @7 § d J this generalized model reduces to HMF.

For [ X — QOJ one has interaction only among nearest neighbour spins.




The Generalized Hamiltonian Mean
Field Model

0-XY model and nonextensive effects

Anomalies depend in a
crucial way on the
range of the interaction

The lifetime T of the QSS does not

diverge for all values of O

see A. Campa et al. Physica A 305 (2002) 137

Decreasing the range of the interaction, i.e. diminishing nonextensivity (& >0)
anomalous behaviour disappears:

- Relaxation is very fast (T xe™)

- No negative specific heat is observed

37



Complex behawor for systems with long-range interactions

File Edit Zoom Tabs Help

Interface | Information | Procedures

4 [3 > alc -. ﬁ on h &1 2" E ;'mﬂd‘

Button Slider Switch Chooser Monitor Plot  Output  Text

SETUP ‘

populatlon '

i

vision-radius

g’ R AMNGE| OF INTERACTION

x-coordinate-pdf

- X-COr
|

minimum-separation 1.00 max-cohere-turn 3.00

—_—

max-align-turn 3.00 max-separate-turn 3.00 t

A simple and instructive example: birds flocking

Long range interactions slow down the dynamics
and break ergodicity, inducing a complex behavior !
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The Hamiltonian Mean Field Model

Interpretation of QSS regime

The anomalous QSS regime is the effect of non
extensivity or, in other words, of the long-range
character of the interaction.

These anomalies can be connected to Tsallis
generalized thermostatistics




Tsallis generalized formalism

In the last decades a lot of effort has been devoted to understand if thermostatistics can be
generalized to nonequilibrium complex systems

In particular one of these attempts is that one started by Constantino Tsallis with his seminal paper on
J. Stat. Phys. 52 (1988) 479

For reviews see for example:

* "Nonextensive Entropy - Interdisciplinary Applications”, C. Tsallis and M. Gell-Mann

Introduction to eds., Oxford University Press (2003).
Nonextensive

Statistical Mechanics

APPROACHING A COMPLEX WORLD

» Special issue of Europhysics News 36 (2005)

SR «Complexity, metastability and nonextensivity, CYNEXTO7, AIP conference proceedings 965
(2007)

‘Introduction to Nonextensive Statistical Mechanics: Approaching a complex world -
Springer 2009 (2nd edition 2023)

For a regularly updated bibliografy: http://tsallis.cat.cbpf.br/biblio.htm



http://tsallis.cat.cbpf.br/biblio.htm

Tsallis generalized formalism

The generalized Tsallis entropy is S

q

1—2191.‘]
- ~1

q

S, is non extensive, i.e. for two independent systems A and B one gets

S,(A+B)=§ (A)+S_ (B)+(1—-¢g)S,(A)S, (B)

It is easy to show that reduces to the Boltzmann entropy for q=1

The Boltzmann weight is also generalized (g-exponential) and reads

1
177 E

e (—E/kT) = 1—(1—q)k£T —e M for g—1

In general the standard statistical mechanics
formalism Is g-invariant




Foundations and applications

For recent studies on the theoretical foundations see
C Tsallis, Introduction to nonextensive statistical mechanics, Springer 2009 (2nd

ed 2023)
S Umarov, C Tsallis, S Steinberg - Milan J. Math 76 (2008) 307

|“I\t|[)‘:]de‘)'(ctg:2i‘t’g C. Tsallis, M. Gell-Mann and Y. Sato, PNAS 102 (2005) 15377
Statistical Mechianics C. Tsallis, M. Gell-Mann, Y. Sato, Europhysics News 36 (2005)
- C. Beck and E.G.D. Cohen, Superstatistics Physica A 322 (2003) 267
F. Baldovin and A. Robledo, Phys. Rev. E 66 (2002) 045104(R) and Europhys. Lett. 60
Constantino Tsalls (2002) 518

For recent successful applications of the generalized statistics, see for example

@Springer
Cold atoms P. Douglas, S. Bergamini and F. Renzoni, Phys Rev Lett 96, 110601

- | Beck, Lewis and Swinney =~ Phys. Rev. E 63 (2001) 035303R ; Beck, Physica A
urbulence 295 (ooD) 195 and Phys. Rev. E 72, 056133 (2005)

K.E. Daniels, C. Beck and E. Bodenschatz, Physica D 193, 208 (2004)

Wilk et al Phys. Rev. Lett. 84 (2000) 2770, Beck Physica A 286 (2000) 164;
Bediaga, Curado, De Miranda , Physica A 286 (2000) 156;
Depmann et al., Phys Rev. D (2020)

Cosmic rays C. Tsallis, J.C. Anjos and E.P. Borges, Phys. Lett. A 310 (2003) 372.

High energy collisions

Econophysics L. Borland, Phys. Rev. Lett. 89 (2002) 098701 L Borland, Europhys News 36, 228 (2005)

Upaddhyaya et al Physica A 293 (2001) §49;

Bioloaical svstems R.J. Al-Azawi et al., Peer J] Computer Science (2021)

Granular media G. Combe et al Phys. Rev. Lett. 115 (2015) 238301

V.Latora, M.Baranger, A. Rapisarda and C.Tsallis, Phys. Lett. A 273 (2000)

Maps at the edge of chaos 97; U. Tirnakli, Phys. Rev. E 66;(2002) 066212; E.P. Borges, C. Tsallis,G.F]J.
Ananos, PM.C. de Oliveira, Phys. Rev. Lett. 25 (2002) 254103. Tirnakli, U,
Borges, E.P. Sci. Rep. 6 (2016) 23644

Complex Networks N. Cinardi, A. Rapisarda, C. Tsallis, Jour. Stat Mech. (2020) 043404




g-exponential decay of the correlation function C(t,0) for the
HMF model

IIIIII I I Illllll

| |
U=0.69 N=1000 (500 events) s MOIC The decay of the velocity correlation function can be
e — - gexp:g=1.12 1=170 A=l reproduced very well by means of the generalized g-

A M1IC exponential 1

= g-expig=1.55 1=245 A=0.725 Aeq (.X) = A[l + (1 — Q)X]E

In our case x=-t/tr. Within a generalized Fokker-Plank

equation which generates Tsallis g-exponential pdfs [1],
one can extract the following relation between the
exponent of the anomalous diffusion and q

__2
3—q

| IIIIIII
| llIlIll

Y

In our case =1.38-1.4, thus we expect q=1.55-1.6,
which is confirmed®by the fit in the figure for M1IC. On
the other hand, for MOIC the decay is almost
exponential.
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Tsallis and Buckman PRE 54 (1996) R2197




g-exponential decay also for different initial conditions
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HMF model and g-statistics

Anomalous diffusion vs g-exponential decay

W o-XY-model

1.6 B N=5000 «=0 M=0ic.

15+ U=0.69 A N=2000 =0 butdifferenti.c.
14 O N=1000 « inside[0,1], M=1 ic.

!

—_— T
2/(3-q) 12 o M=02ic. M=04ic

Tl
1,0
0,9
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0,7
0,6

0,5
1.0 1,1 1.2 13 1.4 15 1,6

Anomalous diffusion exponent Y

Rapisarda and Pluchino,

Europhysics News 36 (2005) 202




The Kuramoto Model

(Kuramoto 1975)

Eqs. for the N coupled oscillators
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Kuramoto dynamics

KURAMOTO MODEL: SYNCHRONIZATION OF N COUPLED OSCILLATORS
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Similarities between Kuramoto and HMF model

* Both models can be derived from the more general one

v N

Conservative case Dissipative case

B=0,K=1Lw, =0 B>1,K20,0 #0
HMF

KURAMOTO

A. Pluchino, A. Rapisarda, Physica A 365 (2006) 184




As for HMF there 15 a peak in the LLE at the phase transition
(no dependence on the size 1s observed) and the transition seems very
similar to a second order one

Gaussian g(w)
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Miritello, Pluchino, Rapisarda Epl 85 (2009) 10007




The same happen for a uniform distribution of
frequencies, but now the transition is sharp
and similar to a first order one
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phase diagram

DL DL DL L L L

Fully Synchronized Phase

(r>0.8, LLE<D)
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Fig. 2. Phase Diagram K versus o for the Kuramoto model
with N = 20000. The critical line separates the fully synchro-
nized phase (characterized by r > 0.8 and a slightly negative
LLFE) from the "edge of chaos” incoherent one (characterized
by r = 0 and a vanishing, but positive, LLE'). The partially
synchronized regime (characterized by 0 < r < 0.8 and a pos-
itive LLE') 1s also visible between the two, around the phase
transition. In particular, just below the critical line, we rec-
ognize a weakly synchronized sub-region of the partially syn-
chronized regime, with values 0 < r < 0.2 and LLE > 0.01,
that we call "fully chaotic regime” (see text). In the insets,
the bounded g(w) distributions (with w € [—2,2]) used in the
simulations are plotted for three increasing values of o. See
text.

Miritello, Pluchino, Rapisarda, Physica A 388 (2009) 4818 '




Smooth change from 2nd to 1st order phase
transition vs the standard deviation of the
Initial distribution of frequencies
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Phase transitions and chaos in long-range models
of coupled oscillators
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PACS 05.45.Jn — High-dimensional chaos
PACS 05.45.Xt — Synchronization; coupled oscillators
PACS 05.70.Fh — Phase transitions: general studies

Abstract — We study the chaotic behavior of the synchronization phase transition in the
Kuramoto model. We discuss the relationship with analogous features found in the Hamiltonian
mean-field (HMF') model. Our numerical results support the connection between the two models,
which can be considered as limiting cases (dissipative and conservative, respectively) of a more
general dynamical system of damped /driven coupled pendula. We also show that, in the Kuramoto
model, the shape of the phase transition and the largest Lyapunov exponent behavior are strongly
dependent on the distribution of the natural frequencies.
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Central limit theorem

The Central Limit Theorem says that the distribution of an average will
tend to be Normal as the sample size increases, regardless of the

distribution from which the average is taken except when the moments of
the parent distribution do not exist.

The distribution of the ‘
average converges quite /;;ﬁ't\
fast to the final Gaussian 0 E/Zﬂ‘;’.ﬁ‘.\\\!\‘
attractor 0 0.5 1

A

Distributionlod i{bamwdidni statmpleosigeis 36
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Central limit theorem

Usually the convergence is quite fast
and begins in the central part of the PDF

CLT test

finite sum of nrandom variables in the interval [0.5,0.5]

53




CLT for the logistic map
In the chaotic regime

CENTRAL LIMIT BEHAVIOR OF DETERMINISTIC... PHYSICAL REVIEW E 75, 040106(R) (2007)

10! ® =17
B . B i a=1.
® N=10;n,=5x10° ® o138

[ ] .’\':2x106:nini=106 e a=19
10° | — eq.(11); N=2x10° =00136
eq.(11); N=10 —_— P=0.1248
— P=0.0613

FIG. 3. (Color online) Probability density of rescaled sums of
iterates of the logistic map as given by Eq. (8) for a=1.7,1.8,1.9
and N=2x10° n;,;=10°. The solid lines show Gaussians

i

Vim 2 = . . ) . .
eY727) [\ 2o with variance parameter o determined from Eq.

(3).

FIG. 2. (Color online) Probability density of rescaled sums of
iterates of the cubic map (10) for N=10" and N=10. The number of
initial values is n;,=10°, respectively ny,;=5 X 10°. The solid lines
correspond to Eq. (11).

where
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Generalized Central limit theorem

At the edge of chaos g-Gaussians appear

RAPID COMMUNICATIONS
TIRNAKLI, BECK, AND TSALLIS

PHYSICAL REVIEW E 75, 040106(R) (2007)

14 -6
e -
® MN=2 .llim-—SXlU

15 -6
N=2"". —
® N=2 '"ini‘l6xm

® =175
o e =2

: =3
— =75 f=13

— =175 f=13

FIG. 4. (Color online) Probability density of the quantity y/o at FIG. 5. (Color online) Probability density of the quantity y/o at
the critical point a, for z=2, N=2", and N=2"". the critical point a, for z=1.75,2,3.
[iIrnakli, Beck, Tsallis

PRE 75 (2007) 040106 (R)
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Generalized Central limit theorem

Milan j. math. 76 (2008), 307-328
(€) 2008 Birkhauser Verlag Basel [Switzerland

14249286 /010807-2, published online 14.3.2008 - -
DOI 10.1007/=00082-008-0087-y I Milan Joumal of Mathematics

The previous numerical
results are suppgrted by On a ¢-Central Limit Theorem

a generalization of the Congsl.;ent VYIth N?llextelmlve
T Statistical Mechanics
CLT within

Tsallis g-statistics

Sabir Umarov, Constantino Tsallis and Stanly Steinberg

Abstract. The standard central limit theorem plays a fundamental role

in Boltzmann-Gibhs statistical mechanies. This important physical the-

(with ¢ € R) instead of its particular BG casa S§) = Spg = —

The theory which emerges is usually referred to as nonertensive statis-
tical mechanics and recovers the standard theory for ¢ = 1. During the
last two decades, this ¢-generalized statistical mechanics has bean suc-
cessfully applied to a comsiderable amount of physically interesting com-
plex phenomena. A conjecture|2| and numerical indications available in

the literature have been, for a few years, suggasting the possibility of
¢-versions of the standard central limit theorem by allowing the ran-

dom variablas that are being summed to be strongly correlated in some
special manner, the case ¢ = 1 corresponding to standard probabilistie
independenoca. This is what we prove in the presant paper for 1 < ¢ < 3.
The attractor, in the usual sense of a central limit theorem, is given by
a distribution of the form p(x) = Cg1 — (1 — g)B2?]*/ 13- with 5 > 0,
and normalizing corstant €. Thesa distributions, sometimes referred
to as ¢-Gaussians, are known to make, under appropriate constraints,
extremal the functional Sy (in its continuous version). Their ¢ = 1 and
¢ = 2 particular cases recover raspectively Gaussian and Cauchy distri-
butions.




Central limit behavior in the HMF model

A Lerrens Journal ExpPLoring
THE FRONTIERS OF PHYSICS October 2007

EPL, 80 (2007) 26002 www.epljournal.org
doi: 10.1209/0295-5075/80/26002

Nonergodicity and central-limit behavior for long-range

Hamiltonians

A. PrucHINO!, A. RAPISARDA! and C. TsALLIs??

! Dipartimento di Fisica e Astronomia, Universita di Catania, and INFN sezione di Catania - Via S. Sofia 6/,

I-95123 Catania, Italy
2 Centro Brasileiro de Pesquisas Fisicas - Rua Xavier Sigaud 150, 22290-180 Rio de Janeiro-RJ, Brazil

3 Santa Fe Institute - 1399 Hyde Park Road, Santa Fe, NM 87501, USA
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We have been studying the behavior of PDFs obtained
considering time averages of the variables y so defined
(along deterministic trajectories )

1 < .
e (17 =1,2,...N
Y = NG E@ p;(i0) J =12,

where p; are the velocities of the jth rotor taken at fixed
intervals of time ¢ along the same trajectory




Central limit behavior in the HMF model

We consider
deterministic

trajectories
in different
regimes and

for different
energies and
system sizes

N=100 - M1ic - average over 100 events

Temperature

—— Equilibrium temperatures

100000
time

Fig. 1: Temperature evolution for the HMF system, with
N=100 and M1 initial conditions, for U=0.69 (red line)
and for U=0.4 (blue line). A range of 100000 time steps is
plotted. The presence of a QSS regime is visible only in the
U=0.69 case, although a transient regime exist also for U=0.4.
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CLT for the Hamiltonian Mean Field Model

Inequivalence between ensemble average and time average

for N=100000

5, I ] i | 1 I | I ! | i I 1 | I I I 1 N : I' l J I ¥ I ! I ' ] X l ! I J [ ! I
- Ensemble average [ Time average
" N=100000 - U=0.69 QSS - t=1000 - 10 events 1 _ N=100000 - U=0.69 - QSS

.
—

. - (-Gaussian (q=1.4)
.— Gaussian 1 - *R, - — Gaussian

. . |lmeaverage |/ Linear scale
The g-Gaussian curve is Ne100000-U00 055 medniEr 1]

Bl gl + = Gaussian
able to reproduce well not | T
only the tail, but also the "

central part of the PDF




CLT for the Kuramoto model

Kuramoto Model- N=20000 - K=0.1 - Uniform g(®)
0.,0002

0,0001
0
-0,0001

-0,0002 L
10°

1 &
Vi /— i=1 k( )

When the system is
at the edge of chaos
a q-Gaussian-like
attractor emerges

0 2
}v-<“v>/0
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A review of the latest
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Figure 13. Inertial a-XY d-dimensional model (for d = 1,2,3) for a/d = 0.9. Left: g,-Gaussian

distribution of momenta (for comparison, a Maxwellian distribution is indicated in dashed line).

Right: gr-exponential distribution of energies (for comparison, a BG distribution is indicated in

dashed line). Both distributions are averaged along the very long-time interval indicated in the insets.

Figure reproduced from Ref. [72].
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Abstract: Despite its centennial successes in describing physical systems at thermal equilibrium,
Boltzmann-Gibbs (BG) statistical mechanics have exhibited, in the last several decades, several
flaws in addressing out-of-equilibrium dynamics of many nonlinear complex systems. In such
circumstances, it has been shown that an appropriate generalization of the BG theory, known as
nonextensive statistical mechanics and based on nonadditive entropies, is able to satisfactorily handle
wide classes of anomalous emerging features and violations of standard equilibrium prescriptions,
such as ergodicity, mixing, breakdown of the symmetry of homogeneous occupancy of phase space,
and related features. In the present study, we review various important results of nonextensive
statistical mechanics for dissipative and conservative dynamical systems. In particular, we discuss
applications to both discrete-time systems with a few degrees of freedom and continuous-time ones
with many degrees of freedom, as well as to asymptotically scale-free networks and systems with
diverse dimensionalities and ranges of interactions, of either classical or quantum nature.

Keywords: nonextensive statistical mechanics; long-range dynamical systems; entropy; complex
systems

1. Introduction

Statistical mechanics constitutes one of the pillars of contemporary theoretical physics.
It was introduced in the 19th century by L. Boltzmann and J.W. Gibbs, and the name
was coined by Gibbs himself. It is based on mechanics (classical, quantum, relativistic),
electromagnetism, and theory of probabilities. Probabilities enter through the so-called
entropic functional S, whose generic form for discrete stochastic variables is given by

S({p:}) = kF({pi}) ():m —1) (1)

where F({p;}) is an appropriate generic functional, k being typically equal either to unity
or to the Boltzmann constant k. Historically, Boltzmann and Gibbs used continuous
variables (p(x) instead of p;). The corresponding discrete form is given by

w
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