Neutron star matter: learning from collective modes

Constança Providência

Universidade de Coimbra, Portugal

CELEBRATING MARCELLO BALDO'S 80TH BIRTHDAY Catania, 16-27 October 2023

・ コット (雪) (小田) (コット 日)

Motivation

The thermal evolution of neutron stars depends on the elementary excitations affecting the stellar matter. In particular, the low-energy excitations, whose energy is proportional to the transferred momentum, can play a major role in the emission and propagation of neutrinos. in Baldo & Ducoin, PRD84,035806,2011

> . ヘロト 4 同 ト 4 ヨ ト 4 ヨ ト ヨ - りへの

Works of Marcelo Baldo and Camille Ducoin

- Elementary excitations in homogeneous neutron star matter (Phys.Rev.C 79 (2009) 035801)
- Elementary excitations in homogeneous superfluid neutron star matter: Role of the proton component (Phys.Rev.C 84 (2011) 035806)
- Elementary excitations in homogeneous superfluid neutron star matter: role of the neutron-proton coupling (Phys.Rev.C96 (2017) 2, 025811)
- Coupling between superfluid neutrons and superfluid protons in the elementary excitations of neutron star matter (Phys.Rev.C 99 (2019) 2, 025801)

Works of Marcelo Baldo and Camille Ducoin

- Elementary excitations in homogeneous neutron star matter (Phys.Rev.C 79 (2009) 035801)
- Elementary excitations in homogeneous superfluid neutron star matter: Role of the proton component (Phys.Rev.C 84 (2011) 035806)
- Elementary excitations in homogeneous superfluid neutron star matter: role of the neutron-proton coupling (Phys.Rev.C96 (2017) 2, 025811)
- Coupling between superfluid neutrons and superfluid protons in the elementary excitations of neutron star matter (Phys.Rev.C 99 (2019) 2, 025801)

Motivation

What information can we get from the collective modes of nuclear matter?

. うどの 前 《川々《川々《四》

defining the crust core transition

- nuclear modes of infinite matter
- coupling to the plasmon mode

EOS: relativistic mean field description

RMF Lagrangian for stellar matter

 Lagrangian density: causal Lorentz-covariant Lagrangian (baryon densities and meson fields)

$$\mathcal{L}_{\textit{NLWM}} = \sum_{\textit{B}=\textit{baryons}} \mathcal{L}_{\textit{B}} + \mathcal{L}_{\textit{mesons}} + \mathcal{L}_{\textit{I}} + \mathcal{L}_{\gamma},$$

- ► Baryonic contribution: $\mathcal{L}_B = \bar{\psi}_B \left[\gamma_\mu D_B^\mu M_B^* \right] \psi_B$, $D_B^\mu = i\partial^\mu - g_{\omega B}\omega^\mu - \frac{g_{\rho B}}{2} \tau \cdot \mathbf{b}^\mu$ $M_B^* = M_B - g_{\sigma B}\sigma$
- Meson contribution

$$\mathcal{L}_{\textit{mesons}} = \mathcal{L}_{\sigma} + \mathcal{L}_{\omega} + \mathcal{L}_{
ho} + \mathcal{L}_{\textit{non-linear}}$$

- Lepton contribution: homogeneous matter $\mathcal{L}_{l} = \sum_{l} \bar{\psi}_{l} [\gamma_{\mu} i \partial^{\mu} m_{l}] \psi_{l}$
- Electromagnetic contribution: $\mathcal{L}_{\gamma} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu}$
- Electron contribution: $\mathcal{L}_{e} = \bar{\psi}_{e} [\gamma_{\mu} (i\partial^{\mu} + eA^{\mu}) m_{e}] \psi_{e}$

EOS: relativistic mean field description

Density dependence of the EOS determined by introducing

- non-linear meson terms (Boguta&Bodmer 1977, Mueller&Serot 1996)
- ▶ NL3, NL3 $\omega\rho$, TM1, TM1 $\omega\rho$, FSU, FSU2, FSU2R

$$egin{aligned} \mathcal{L}_{\textit{non-linear}} = & -rac{1}{3} m{b} g_{\sigma}^3(\sigma)^3 - rac{1}{4} m{c} g_{\sigma}^4(\sigma)^4 + rac{\xi}{4!} (g_{\omega} \omega_{\mu} \omega^{\mu})^4 \ & + & \Lambda_{\omega} g_{\varrho}^2 m{\varrho}_{\mu} \cdot m{\varrho}^{\mu} g_{\omega}^2 \omega_{\mu} \omega^{\mu}, \end{aligned}$$

. うどの 前 《川々《川々《四》

Parameters: $g_i(i = \sigma, \omega, \rho)$, $b, c, \xi, \Lambda_{\omega}$ (Malik arxiv:2301.08169)

Bayesian estimation of model parameters

Spanning the full range of NS properties with a microscopic model

Malik ApJ930 17, Malik arxiv: 2301.08169

Constraints				
Quantity		Value/Band	Ref	DDB
NMP (MeV)	$ ho_0$	0.153 ± 0.005	Typel & Wolter (1999)	√
	ϵ_0	-16.1 ± 0.2	Dutra et al. (2014)	\checkmark
	K_0	230 ± 40	Todd-Rutel & Piekar-	1
			ewicz (2005); Shlomo et al. (2006)	
	$J_{\rm svm.0}$	32.5 ± 1.8	Essick et al. (2021a)	1
PNM (MeV fm ⁻³)	P(ho)	$2 \times N^{3}LO$	Hebeler et al. (2013)	1
NS mass (M_{\odot})	<i>M</i> _{max}	>2.0	Fonseca et al. (2021)	1

NS properties: full posterior NL

- Observations: GW170817, NICER J0740 and J0030, HESS
- **RMF models:** NL3 $\omega\rho$,FSU2, FSU2R, IUFSU, BigApple, TM1-2($\omega\rho$)

・ロット (雪) (日) (日)

▶ Bayesian study Left: Set 1 ($\xi < 0.004$), 2, 3 ($\xi > 0.015$)

Density modes

Small perturbation of the nuclear system

- Semiclassical description: Vlasov equation for the distribution functions determine time evolution.
- Small oscillations around an equilibrium are considered
- Equilibrium state characterized by: P_{Fn}, P_{Fp}, P_{Fe}
- Charge neutrality: $P_{Fe} = P_{Fp}$
- Perturbed fields: $F_i = F_{i0} + \delta F_i$,
- Perturbed distribution function: $f = f_0 + \delta f$,

$$\delta f_i = \{S_i, f_{0i}\}$$

. シロシ 4 同 > 4 ヨ > 4 ヨ > ヨ - シ۹ペ

• Generating function: $S(\mathbf{r}, \mathbf{p}, t) = \text{diag}(S_p, S_n, S_e)$,

Linearized Equations of Motion

The time evolution of f_i is described by the Vlasov equation

$$rac{\partial f_i}{\partial t} + \{f_i, h_i\} = 0, \qquad i = p, n, e$$

The linearized relativistic Vlasov equation

$$\begin{aligned} \frac{d\mathcal{S}_{i}}{dt} + \{\mathcal{S}_{i}, h_{0i}\} &= \delta h_{i} \\ \delta h_{e} &= -e \left[\delta A_{0} - \frac{\mathbf{p} \cdot \delta \mathbf{A}}{\epsilon_{0e}} \right], \\ \delta h_{i} &= -g_{s} \delta \phi \frac{M^{*}}{\epsilon_{0}} + \delta \mathcal{V}_{0i} - \frac{\mathbf{p} \cdot \delta \mathcal{V}_{i}}{\epsilon_{0}}, \quad i = p, n \end{aligned}$$

Longitudinal fluctuations:

$$\begin{pmatrix} S_i & \delta F_j & \delta \rho_i & \delta h_i \end{pmatrix} = \begin{pmatrix} S_{\omega,i}(x) & \delta F_{\omega,j} & \delta \rho_{\omega,i} & \delta h_{\omega,i} \end{pmatrix} e^{i(\mathbf{q}\cdot\mathbf{r}-\omega t)}$$

$$x = \cos(\mathbf{p}\cdot\mathbf{q}),$$

$$i = e, p, n,$$

$$j = \sigma, \omega, \rho, \gamma$$

Dispersion relations

• In terms of the transition densities: $\delta \rho_i = \frac{3}{2} \frac{k}{P_{Ei}} \rho_{0i} A_{\omega i}$,

$$\begin{pmatrix} 1+F^{pp}L_p & F^{pn}L_p & C_A^{pe}L_p \\ F^{np}L_n & 1+F^{nn}L_n & 0 \\ C_A^{ep}L_e & 0 & 1-C_A^{ee}L_e \end{pmatrix} \begin{pmatrix} A_{\omega p} \\ A_{\omega n} \\ A_{\omega e} \end{pmatrix} = 0,$$

► Lindhard function, speed of sound: $L(s_i) = 2 - s_i \ln\left(\frac{s_i+1}{s_i-1}\right), \text{ with } (s_i = \omega/\omega_{oi} = \omega/(k \ V_{Fi}), \ V_{F_i} = \frac{P_{F_i}}{\epsilon_{F_i}}$ $F^{ij} = C_s^{ij} - C_v^{ij} - \tau_i \ \tau_j \ C_\rho^{ij} - C_A^{ij} \delta_{ip} \delta_{jp}, \quad i, j = n, p,$

dispersion relation

$$\begin{bmatrix} 1 - C_A^{ee} L_e \end{bmatrix} \begin{bmatrix} 1 + L_p F^{pp} + L_n F^{nn} + L_p L_n (F^{pp} F^{nn} - F^{pn} F^{np}) \end{bmatrix} \\ - C_A^{ep} C_A^{pe} L_e L_p (1 + L_n F^{nn}) = 0.$$

. うりつ E イヨマイヨマー型マー

Dispersion relations

• In terms of the transition densities: $\delta \rho_i = \frac{3}{2} \frac{k}{P_{ei}} \rho_{0i} A_{\omega i}$,

$$\begin{pmatrix} 1+F^{pp}L_p & F^{pn}L_p & C_A^{pe}L_p \\ F^{np}L_n & 1+F^{nn}L_n & 0 \\ C_A^{ep}L_e & 0 & 1-C_A^{ee}L_e \end{pmatrix} \begin{pmatrix} A_{\omega p} \\ A_{\omega n} \\ A_{\omega e} \end{pmatrix} = 0,$$

► Lindhard function, speed of sound: $L(s_i) = 2 - s_i \ln\left(\frac{s_i+1}{s_i-1}\right)$, with $(s_i = \omega/\omega_{oi} = \omega/(k V_{Fi}))$, $V_{F_i} = \frac{P_{F_i}}{\epsilon_{F_i}}$ $F^{ij} = C_s^{ij} - C_v^{ij} - \tau_i \tau_j C_\rho^{ij} - C_A^{ij} \delta_{ip} \delta_{jp}$, i, j = n, p,

dispersion relation

$$\begin{bmatrix} 1 - C_A^{ee} L_e \end{bmatrix} \begin{bmatrix} 1 + L_p F^{pp} + L_n F^{nn} + L_p L_n (F^{pp} F^{nn} - F^{pn} F^{np}) \end{bmatrix} \\ - C_A^{ep} C_A^{pe} L_e L_p (1 + L_n F^{nn}) = 0.$$

. うどの 前 《川々《川々《四》

Equivalent to $\Delta = det[Re(1 - \Pi_0 \mathbf{v}_{res}] = 0$

Solutions of dispersion relation

- pair of branches associated with each fluid if the interaction between particles is repulsive enough, and interfluid interaction not too strong
- ► pair of branches are above and below the $\omega = qV_{Fi}$, the lower branch is strongly damped
- a single branch identifies an unstable mode: it defines the spinodal region

Collective modes

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQで

Collective modes in asymmetric pn matter

500

Collective modes in asymmetric pn matter

see also: Haensel, NPA301,53; Greco et al PRC67, 015203

Collective modes in asymmetric pn matter

EoS behavior

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨー

Unstable mode: dynamical Spinodal (pne vs pn) NL3 versus TW, k=11 MeV versus 80 MeV

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Collective models (pn)

- Sound velocities of the Collective Modes for different isospin asymmetries
- np matter

(Providência et al PRC74,045802(2006)

<ロ> (四) (四) (三) (三) (三) (三)

Collective models (pne)

(Providência et al PRC74,045802(2006)

Multifluid RPA equations

· ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

RPA equations for N species in terms of polarization propagator

$$\Pi^{ik}(\boldsymbol{q},\omega) = \Pi^{i}_{0}(\boldsymbol{q},\omega) \left[\delta_{ik} + \sum_{j} v^{ij}_{res} \Pi^{jk}(\boldsymbol{q},\omega) \right], \quad i,k = 1, 2, ..., N$$

- Branches of the dispersion relation: Poles of the response function
- The strength function (-Im Π^{ik}(q, ω)) gives information on the collectivity of the modes
 - Collective modes correspond to peaks of strength function
 - width of peak gives damping rate
- Micro: BHF with 2B Argonne v₁₈ plus 3B Urban IX
- Skyrme: NRAPR and SLy230a

Collective modes (pe)

(Baldo&Ducoin PRC79,035801)

Collective modes (pe): spectral function

(Baldo&Ducoin PRC79,035801)

Collective modes (pe): spectral function

(Baldo&Ducoin PRC79,035801)

electron-proton system: spectral function

(ロ)、

Collective modes (pn)

(Baldo&Ducoin PRC79,035801)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Collective modes (pn): spectral function

(Baldo&Ducoin PRC79,035801)

Model behavior is determined by quantities as the effective masses and residual interactions

э.

Collective modes (pn): models

(Baldo&Ducoin PRC79,035801)

Model behavior is determined by quantities as the effective masses and residual interactions

Collective modes (pne)

(Baldo&Ducoin PRC79,035801)

▲□▶▲□▶▲□▶▲□▶ □ のへ⊙

Collective modes (pne): spectral function

(Baldo&Ducoin PRC79,035801)

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Conclusions

- the RPA formalism is essential to identify the collective modes, and their damping
- density modes in npe matter are extremely model dependent:
 - knowledge of high density behavior is necessary
 - can we learn about the high density behavior from the excitations?

proton plasmon mode:

always present due to repulsive Coulomb reduced to a sound like mode by electrons gets stronger for larger k - less e^- screening may merge with neutron mode

- Effect of superfluidity: PRC84, PRC96, PRC99
- Effect of magnetic fields?

ヘロン 人間 とくほど 人ほど 一日

Congratulations !