

Founded from ERC in Horizon 2020 program (grant agreement 818744)

A first look at RUN3

F. Di Giambattista, M. Folcarelli, S. Piacentini, A. Prajapati

Analysis Meeting

Istituto Nazionale di Fisica Nucleare

22/09/2023

Runs we will consider in the following

Start	Stop	Numbers			Description	Data runs	Dat
Issue with the pump : it abruptly stopped working							
2023-07-25 12:15:46	2023-07-28 10:33:13	22570	-	22717	Stability	73	
2023-07-28 11:13:45	2023-07-28 11:51:10	22718	-	22724	Daily Calibration		
2023-07-28 11:55:49	2023-07-31 12:11:05	22725	-	23350	Bkg	567	
2023-07-31 12:13:08	2023-07-31 12:50:11	23351	-	23357	Daily Calibration		
2023-07-31 12:52:29	2023-08-01 14:42:19	23358	-	23579	Bkg	200	
2023-08-01 14:44:07	2023-08-01 15:27:10	23580	-	23586	Daily Calibration		
2023-08-01 15:33:15	2023-08-02 11:54:39	23587	-	23760	Bkg	157	
2023-08-02 11:56:49	2023-08-02 12:41:09	23761	-	23767	Daily Calibration		
2023-08-02 12:43:32	2023-08-02 14:50:34	23768	I	23800	Stability	29	
Installation of the AmBe source							
2023-08-02 15:56:54	2023-08-03 9:57:41	23819	-	23984	AmBe Campaign	150	
2023-08-03 10:07:42	2023-08-03 12:28:56	23987	-	24022	AmBe + Fe	31	
2023-08-03 12:31:49	2023-08-04 21:35:21	24023	-	24328	AmBe Campaign	277	
2023-08-04 21:39:20	2023-08-07 20:00:35	24329	-	25427	Pedestal Study [AmBe - GEMs OFF]	1013	
Issue with the pump : it died after run 24328							

This sample is characterized by a **regular LY** condition, especially for the background part

- Quality cuts:
- Fiducial cuts:
 - events at the center of the image
 - \Rightarrow sc xmin > 400 AND sc xmax < 1900 to remove long tracks with an anomalous rms and size

 \Rightarrow sc rms > 6 to remove the fake clusters identified by the reconstruction \Rightarrow sc tgausssigma * 0.152 > 0.5 to remove the events on the CMOS

 \Rightarrow (sc xmean - 1152)² + (sc ymean - 1152)² < 800² to focus on

 \Rightarrow sc xmin > 400 AND sc xmax < 1900: Why?

SC_TMS A new variable: sc_integral/sc_nhits

It has the interpretation of "relative fluctuation" of the intensity of the pixels of a cluster

What are these bands at high energy?

Two possibilities:

- high sc rms
- high sc nhits

 \Rightarrow sc xmin > 400 AND sc xmax < 1900: Why?

- We selected those events by requiring: energy above 120 keV

They all look like this (more examples in the

The red box is given by sc xmin, sc_xmax, sc ymin, and sc ymax

The bright halos are reconstructed as a single track!

More examples

sc_xmin > 400 AND sc_xmax < 1900: Why?</pre>

Energy spectrum

Energy spectra normalized to the number of pictures and LY corrected, ws=100

- **Normalization** of these histograms:
 - obtained dividing by the **number of** runs
 - it works because the **trigger rate** (and therefore the deadtime) is the same

Energy spectrum

Energy spectra normalized to the number of pictures and LY corrected, ws=100

- **Normalization** of these histograms:
 - obtained dividing by the **number of** runs
 - it works because the **trigger rate** (and therefore the deadtime) is the

High energy excess

Let's define: $\delta = \frac{\text{corrected integral}}{\text{sc_nhits}}$

The **high energy excess** corresponds to an **high density excess**

We can select them by requiring $\delta > 0.03$

How they look like:

10

Looking into the other variables:

Energy spectra normalized to the number of pictures and LY corrected, ws=100

High energy excess

Spatial distribution

12

High energy excess

Conclusions:

• They are uniformly distributed:

➡ Inside the gas?

- ➡ From the GEMs / cathode?
- Strong correlation with:
 - ➡ Gas flow?
 - ➡ Filter line?
 - This hypothesis is favored by the fact that ⁵⁵Fe data taken previously using line 1 (runs 20817 21041) showed a rate of "red" events equal to 3.2 events/run, consistent with AmBe data

13

Low energy excess

Adding sc_width/sc_length > 0.8 to the standard selection

Adding $\delta > 0.1$ to remove residual MIP tracks

Low energy excess: separate the two peaks

Low energy excess

Low energy excess

Conclusions:

- They are uniformly distributed:
 - ➡ Inside the gas?
 - ➡ From the GEMs / cathode?
- They are not present neither in the simulation or the AmBe campaign data:
 - ➡ Gas flow?
 - ➡ Filter line?
 - This hypothesis is favored by the fact that ⁵⁵Fe data taken previously using line 1 (runs 20817 - 21041) showed a rate of "red" events equal to 3.2 events/ run, consistent with AmBe data

Energy spectra normalized to the number of pictures and LY corrected, ws=100

17

Looking for NRs

Red points:

 $\label{eq:sc_width} \begin{array}{l} \text{sc_width/sc_length} > 0.7 \\ \text{sc_length} < 2 \, \text{cm} \end{array}$

Some examples

Conclusions

- We found an excess of alphas in the bkg runs
- keV which is not present in the simulation or the AmBe data
- causes are still unknown
- **NRs in the AmBe data**:
 - our MC simulation
 - still working on the optimal section

• In the same dataset, we found a peak of ERs with an energy around 20

• Both can be explained by the use of two different filter lines, but the

• Finally, even if still preliminary, we clearly are able to identify "high" energy

• We still have to work on a reliable estimate of their rate to compare with

• The efficiency of our cuts drops significantly below ~ 25 keV, and we are

NRs: slimness and length

Histograms obtained subtracting the "alpha" excess in the bkg runs:

