

LX LNGS SC meeting

16 October 2023 Federica Petricca

MAX-PLANCK-INSTITUT FÜR PHYSIK

The CRESST Collaboration

The CRESST Experiment

Cryogenic Rare Event Search with Superconducting Thermometers

Direct detection of dark matter particles via their scattering off target nuclei

Scintillating CaWO₄ crystals as target

Target crystals operated as cryogenic calorimeters (~15mK)

Separate **cryogenic light detector** to detect the scintillation light signal

Detector Module:

Simultaneous signals from the transition edge sensors (TESs) allow for background discrimination on an event-by-event base

Event Discrimination

CRESST

Light Yield= Light signal Phonon signal Characteristic of the event type

Excellent discrimination between potential signal events (**nuclear recoils**) and dominant radioactive background (**electron recoils**)

Federica Petricca MAX-PLANCK-INSTITUT

The CRESST-III Strategy

- Cuboid crystals of $(20 \times 20 \times 10)$ mm³ ($\approx 24g$) •
- With self grown crystals ≈4 counts/(keV kg day) ۲
- Veto of surface-related background

©A. Eckert/MPP

First Results

First results from the CRESST-III low-mass dark matter program Phys. Rev. D 100, 102002 (2019)

- Non-blind data (dynamically growing): 20% randomly selected
- Target crystal mass:
- Gross exposure (before cuts):
- 5.689 kg days

• Nuclear recoil threshold:

30.1 eV

23.6g

- More than one order of magnitude improvement at 0.5 GeV/c²
- Extended reach from 0.5GeV/c² to 0.16GeV/c²
- Unexpected rise of event rate < 200eV

Leading sensitivity

- Dark matter 🛛 😳
- Background
 Background

Sensitivity projections

- a) Remove low-energy excess
- b) Develop reliable calibration for nuclear recoils at eV energies
- c) Increase number of read-out channels *

* Strategy subordinated to a)

The Event Rise

Present in different detectors, but spectral shape not compatible with one single common origin

To pinpoint its origin we prepared dedicated setups with hardware modifications to disentangle possible different contributions

- Crystal material
- Crystal surface
- Holding

...

• Facing surfaces

What happens below 100eV? Cross checks with other low threshold experiments very interesting

 June 15 - 16, 2021
 July 1

 https://indico.cern.ch/event/1013203/
 https://indico.cern.ch/event/1013203/

February 15-17, 2022 https://indico.scc.kit.edu/event/2575/ July 16, 2022

https://indico.cern.ch/event/1117540/

August 26, 2023 https://indico.cern.ch/event/1213348/

Current Measurement Campaign

CaWO₄ grown at TUM

Commercially grown CaWO₄

 Al_2O_3

Dedicated modifications to probe LEE:

- different target materials
- change how crystals are held
- remove scintillating components

Routinely achieved thresholds $< 100 \, eV$

Name	Material	Holding	Foil	Mass	Threshold
Comm2	CaWO ₄	bronze clamps	no	24.5g	29eV
TUM93A	CaWO ₄	$2 \text{ Cu} + 1 \text{ CaWO}_4$	yes	24.5g	54eV
Sapp1	Al_2O_3	Cu sticks	no	15.9g	157 eV
Sapp2	Al_2O_3	Cu sticks	yes	15.9g	52 eV
Li1	LiAIO ₂	Cu sticks	yes	11.2g	84 eV
Si2	Si	Cu sticks	no	0.35g	10eV

CRESST-III runs ongoing to look into the origin of the background

- Cryostat cold since summer 2020
- Dark matter data collection finished on August 6th, 2021
- Gamma and neutron calibrations were performed
- Data acquisition program to identify the Low Energy Excess (LEE) origin still ongoing

Federica Petricca MAX-PLANCK-INSTITUT

11

Energy (keV)

CRESST-III runs ongoing to investigate the origin of the background

From the first observation in 2019:

Low energy excess seen with all absorber materials and with different holding schemes

Observations on LEE

- Low energy excess decays with time •
- Low energy excess and its decay seem to be ٠ universal features, seen with all absorber materials and with different holding schemes
- Low energy excess does not scale with • mass/volume of the absorber

 10^{-1}

pulse shape as particle events

From the first observation in 2019:

Low energy excess events have the same

Observations on LEE

CRESST-III runs ongoing to investigate the origin of the background

arXiv:2207.09375 [astro-ph.CO]

•

Observations on LEE

CRESST-III runs ongoing to investigate the origin of the background

From the first observation in 2019:

- Diversity of the decay times observed puts tension on a possible interpretation as due to radioactive background
- Time dependence of the rate in the peak of the ⁵⁵Fe calibration sources not-compatible with the decay of the excess
- Neutron calibration has no effect on the LEE count rate
- Low energy excess can be repopulated with thermal cycles

BCK AWU LEE events 60-120 eV 250 100 Sapp2 – TUM93A e (days) 120 (days) Comm2 Si2 80 . ≩100 Я Ш¥ calibration 60 B 50 $\mathbf{\Sigma}$ 600 200 60 -1ę 9 9 Sapp2 TUM93A Comm2 Sapp2 TUM93A Comm2 Si2 Si2 Rate (day 40 Detector d Varm Up Neutron 5 Warm Narm 20 . . 0 TUM93A 55Fe events 75 $\tau = 3.8 \pm 0.3$ yr +++ 50 4 14 100 200 300 400 500 600 Time since cooldown (days)

arXiv:2207.09375 [astro-ph.CO]

Federica Petricca MAX-PLANCK-INSTITUT

Spin dependent dark matter interactions with LiAlO₂ targets in CRESST-III

Phys. Rev. D 106, 092008 <u>arXiv:2207.07640</u> [astro-ph.CO]

New Dark Matter Results

Results on sub-GeV dark matter from a 10eV threshold Si CRESST-III Detector

Accepted for publication: Phys. Rev. D arXiv:2212.12513 [astro-ph.CO]

- 0.35 g Si cryogenic detector
- energy resolution $\sigma_{BL} = (1.36 \pm 0.05) eV$
- energy threshold $E_{th} = (10.0 \pm 0.2) eV_{nr}$
- total exposure 55 g day

New Detector Design

CRESST

Details presented at the EXCESS workshop

Hypothesis: LEE related to TES or TES/crystal interface

→ Instrument detectors with two sensors $20 \times 20 \times 10 \ mm^3$

New Detector Design

Details presented at the EXCESS workshop

4

Absorber events

1 Ap Ag≥tt

• High thresholds, $5\sigma_{BL}$ of 137 eV and 148 eV

- Above ground measurement
- Reduction of events at threshold

Details presented at the EXCESS workshop

• Very promising performance and results

New Detector Design

- Underground measurement campaign at the test facility of CRESST at LNGS foreseen soon
- DoubleTES modules will be measured in the next CRESST-III measurement run, foreseen to start early 2024

New Detector Design

$CaWO_4$

- Two measurements in September and November 2022
- Above ground, wet cryostat
- Two insulated heaters for independent stabilisation
- Gravity-assisted holding scheme

 $20 \times 20 \times 10 \ mm^3$

Diamond

- Measurement in April 2023
- Above ground, wet cryostat
- Two insulated heaters for independent stabilisation
- Gravity-assisted holding scheme

 $7 \times 7 \times 2 mm^3$

Silicon – on – sapphire

- Two measurements in September and October (ongoing) 2023
- Above ground, wet cryostat
- Two insulated heaters for independent stabilisation
- Gravity-assisted holding scheme

$20 \times 20 \times 0.4 \text{ mm}^3$

Thank you for your attention!

Observations on LEE

Federica Petricca MAX-PLANCK-INSTITUT

Observations on LEE

CRESST-III runs ongoing to investigate the origin of the background

From the first observation in 2019:

- Spectra of low energy excess can be modelled with multiple components
 - Exponential component strongly influenced by warmups
 - Power law component less influenced
 - Power law very prominent at energies directly above threshold
 - Exponential more prominent further away from threshold

New Detector Design

Details presented at the EXCESS workshop

- Non calibrated spectra below threshold
- Spectra not corrected with efficiency

New Detector Design

Details presented at the EXCESS workshop

• Inverted stream analysis: non calibrated noise spectra from empty baselines

Calibration Of sub-keV Nuclear Recoils

(4 . 1)

MAX-PLANCK-INSTITUT

L. Thulliez et al 2021 JINST 16 P07032

CRESST

larget nucleus (A)			Compound nucleus (A+1)			
Isotope	<i>Y</i> _{ab} [24]	$\sigma_{n,\gamma}$ [25]	<i>S_n</i> [26]	I_{γ}^{s} [26, 27]	Recoil	
	(%)	(barn)	(keV)	(%)	(eV)	
^{182}W	26.50	20.32	6191	13.94	112.5	
^{183}W	14.31	9.87	7411	5.83	160.3	
^{184}W	30.64	1.63	5754	1.48	96.1	
^{186}W	28.43	37.89	5467	0.26	85.8	

Nuclear recoils induced by the capture of thermal neutrons can allow

In CaWO₄ crystals, thermal neutrons captured by W isotopes provide

 $\mathbf{\alpha}$

an accurate energy calibration in the energy range of O(100 eV).

1 4

nuclear recoils in the range [80-160] eV.

Experimental realization: commercial neutron source (activity in the range of O(MBq)) properly moderated and shielded, faced to cryogenic CaWO₄ detector.

28

CRESST calibration with W recoil

Observation of a low energy nuclear recoil peak in the neutron calibration data of the CRESST-III Experiment <u>arXiv:2</u>303.15315 [physics.ins-det]

- Reliable method for sub-keV calibration without internal sources
 - L. Thulliez et al 2021 JINST 16 P07032
- Calibration of the crystal volume
- Verification of the n-recoil energy scale down to 100eV
- Analogous peak at 1144eV for ²⁷Al visible in Sapphire

The CRESST-III Programme

Upgrade of CRESST-III to read-out 288 channels

Background

2021-2023: Experimental campaign to pinpoint the origin of background

Readout

2021-2022:

Finalized procurement of:

- SQUID read-out electronics (MPG central funds)
- low T wiring

2024:

Installation inside CRESST facility at LNGS

Detector R&D

2021-2023:

- lower threshold
- complementary materials
- high production rate

2024:

• production and testing of detectors

