Large Enriched Germanium Experiment for Neutrinoless ββ Decay

Natalia Di Marco *on behalf of the LEGEND Collaboration* GSSI&LNGS

LX meeting LNGS Scientific Committee 16-17 October 2023

The LEGEND project

LEGEND

The collaboration aims to develop a phased, ⁷⁶Gebased double-beta decay experimental program with <u>discovery potential</u> at a half-life beyond **10²⁸ years**

Majorana

LEGEND-200

200 kg in upgrade of existing infrastructure at LNGS BG goal: <0.6 c /(FWMH t y) Discovery sensitivity at a halflife of 10²⁷ years

Status: data taking with 140kg of HPGe

LEGEND-1000

1000 kg

Background goal <0.025 cts/(FWHM t yr)

Discovery sensitivity at a halflife beyond 10²⁸ years

Status: CDR

The LEGEND Collaboration

270 members, 58 Institutions, 12 Countries

CIEMAT Comenius Univ. Czech Tech. Univ. Prague and IEAP Daresbury Lab. Duke Univ. and TUNL Gran Sasso Science Inst. Indiana Univ. Bloomington Inst. Nucl. Res. Rus. Acad. Sci. Jagiellonian Univ. Joint Inst. for Nucl. Res. Joint Res. Centre Geel Lab. Naz. Gran Sasso Lancaster Univ. Leibniz Inst. for Crystal Growth Leibniz Inst. for Polymer Research Los Alamos Natl. Lab. Max Planck Inst. for Nucl. Phy. Max Planck Inst. for Physics Natl. Res. Center Kurchatov Inst. Natl. Res. Nucl. Univ. MEPhl North Carolina State Univ. Oak Ridge Natl. Lab. Polytech. Univ. of Milan Princeton Univ. Queen's Univ. Roma Tre Univ. and INFN Simon Fraser Univ. SNOLAB South Dakota Mines Tech. Univ. Dresden Tech. Univ. Munich Tennessee Tech. Univ. Univ. of California and LBNL Univ. college London Univ. of Cagliari and INFN Univ. of Cagliari and INFN Univ. of Gagliari and INFN Univ. of Houston Univ. of Liverpool Univ. of Milan and INFN Univ. of Milano Bicocca and INFN Univ. of New Mexico Univ. of North Carolina at Chapel Hill Univ. of Padova and INFN Univ. of Regina Univ. of South Carolina Univ. of South Dakota Univ. of Tennessee Univ. of Texas at Austin Univ. of Tuebingen Univ. of Tuebingen Univ. of Warwick Univ. of Washington and CENPA Univ. of Zurich Williams College

LEGEND-200 Timeline

2020

- Post GERDA Test (PGT)
- Upgrade of cryostat infrastructure

- Upgrade of cryostat infrastructure
- Electronics and DAQ test

2023

- Construction & commissioning of LAr •
- 60 kg campaign + special calibration
- •142 kg installation & commissioning

2021

- Commissioning

Mechanics & glovebox installation

 Physics data taking (Spring 2023)

LEGEND-200 Timeline

@Today

- Deployed 101 detectors in 10 strings, 142.5 kg
- Electronics for full 200 kg installation available & tested
- DAQ & slow control fully available
- So far: focus on the analysis of BEGe & ICPC detectors
 PSD development for other detectors ongoing

> 2024 plan

- Data taking will continue until mid-April 2024
- Goal exposure: 90 kg·yr
- Fix hardware failure, perform maintenance
- May 2024: deployment of additional detectors (30-40 kg)
- 2025: final deployment:
 ~ 190 kg of enriched HPGe detectors in total

• Data taking

New ICPC detectors currently in production

2024

LEGEND-200 Data taking performance

- ✓ The averaged total lifetime was 65%
- ✓ The average lifetime during periods p03, p04, p06, and p07 was 94% (limited by calibration operations).
- ✓ Period p05 repeated weather-related power outages \rightarrow temperature instabilities of the clean room \rightarrow gain instabilities.
- Extensive high-voltage scans and measurements with calibration sources were performed in July to optimize detector performance.

TAUP2023 data set

- ✓ only BEGe and ICPC detectors considered for analysis (3/4 of the total mass)
- ✓ Exposure 10.1 kg·yr

LEGEND-200 Energy Resolution and PSD

Energy Resolution

- Weekly energy calibration between physics runs using
 ²²⁸Th sources
- Overall improvement in energy resolution @Q_{ββ}
- Energy scale very stable between calibrations

LEGEND-200 Energy Resolution and PSD

Energy Resolution

- Weekly energy calibration between physics runs using ²²⁸Th sources
- Overall improvement in energy resolution @Q_{ββ}
- Energy scale very stable between calibrations

Pulse Shape Discrimination

- Based on A/E parameter, evaluated for each event
- ✓ PSD tuned to 90% survival at ²⁰⁸TI DEP
 → very good rejection of multi-site events

LEGEND-200 Background after QC

- Data cleaning (DC)
- Muon veto (μ)
- Ge-detector anticoincidence (AC)

- ✓ No unexpected background components ²³⁸U & ²³²Th decay chains, ⁴⁰K, ⁴²K
- ✓ Improved peak-to-Compton ratio
 - Reduces Compton continuum background
 - Higher detection efficiency due to larger mass detectors
- ✓ Higher rate from ²⁰⁸Tl compared to GERDA
 - Expected -> more construction material
- Similar spectral shape

Energy (keV)

LEGEND-200 Background after QC + LAr

10⁻³

Energy (keV)

LEGEND-200 Background after QC + LAr

LEGEND-200 Background after QC + LAr + PSD

LEGEND-200 Background Index

Water tank + PMTs (shielding + muon veto)

Stainless steel cryostat – Xenon doped atmospheric LAr

Neutron moderator + LAr read-out system

Reentrant tube – Underground LAr (Uar)

Ge detector strings and ULAr read-out system

- ✓ 336, large-mass ICPC detectors: ~3 kg avg. mass
- ✓ 1000 kg HPGe Detectors (ICPC)
- Single string, modular approach
- Detector strings can be individually installed: early data as detectors are produced

- ✓ Successfully migrated from GERDA / MAJORANA DEMONSTRATOR & upgraded infrastructure to accommodate larger LEGEND-200 detector array
- ✓ Installed first 142 kg of HPGe detectors in LEGEND-200 in October 2022
- ✓ Very good performance of all detector systems
- Background in first LEGEND-200 physics data (10.1 kg yr)
- No unexpected background components
- Background in the ROI after analysis cuts compatible with LEGEND-200 goal
- ✓ Data taking is currently ongoing & new detectors will be added in early 2024

Conclusions 2

LEGEND1000

- ✓ Design and reviews on-going
- It builds on breakthrough developments by GERDA, MAJORANA, and LEGEND-200
- ✓ LEGEND will span the inverted ordering and a large part of the normal ordering space
- ✓ Discovery sensitivity <18.4 meV for 3/4 many-body methods & 12/15 calculations

BACKUP

LEGEND-200 Energy resolution

- Weekly energy calibration between physics runs using ²²⁸Th sources
- ✓ Overall improvement in energy resolution @ $Q_{\beta\beta}$
- Energy scale very stable between calibrations

LEGEND-200 PSD performance

 ✓ PSD tuned to 90% survival at ²⁰⁸TI DEP
 → very good rejection of multi-site events

LEGEND-200 LAr perfomance

- Improved silicon photo-multiplier (SiPM) readout
- ✓ Improved geometry + optically active PEN \rightarrow less shadowing
- ✓ Improved wavelength-shifting (TPB) fiber coating

 \rightarrow ~ 3x more light wrt. GERDA

 \rightarrow application e.g. BiPo tagging

With improved p.e. yield comes improved background suppression
 We can use time information from LAr signal for particle identification

30 Data FEGENI Fit: $a \cdot e^{-t/\tau} + c$ 25 Preliminary 95% CL 20 -Counts / 150hs 10 ²¹⁴Bi 214Po 210 Ph Q_= 3.3 MeV T., = 164µs E = 7.7 MeV FTC=0FTC = 0.8ELArBi ≤ 3.3 MeV = 5.4 MeV 5-0+ 200 1000 400 600 800 1200 1400 1600 ∆t [µs]

LAr instrumentation now acts as a full-fledged detector

LEGEND-200 LAr performance

- 3x more light compared to GERDA
- Improved geometry + optically active PEN → less shadowing
- Cs-137 calibration allows estimate of p.e. yield → O(0.1) p.e./keV

LEGEND-200 Background after QC + LAr

After LAr cut:

- ²⁰⁸Tl peak is completely suppressed
- ⁴²K peak survives to < 20%
- ⁴⁰K peak fully accepted
- Pure $2\nu\beta\beta$ at low energy
- Uniform detector rate

LEGEND-200 Background decomposition

LEGEND

[WIP] Decomposition before analysis cuts

 Well described by expected contributions with current statistics

LEGEND-1000 Sensitivity

LEGEND-200 Timeline

2021

• Mechanics & glovebox installation

2020

- Post GERDA Test (PGT)
- Upgrade of cryostat infrastructure

- Upgrade of cryostat infrastructure
- Electronics and DAQ test

LEGEND-200 Timeline

• Construction & commissioning of LAr •

Mini Shroud installation

2022

2023 • Commissioning 60 kg campaign + special calibration •142 kg installation & commissioning

• Physics data taking (Spring 2023)