## A revolutionary archaeological Pb observatory for astrophysical neutrino sources

#### Luca Pattavina INFN - Laboratori Nazionali del Gran Sasso





European Research Counci Established by the European Commission



Funded by the European Union



# RESENCYA

LNGS LX Scientific Committee - 16.10.2023



#### RES-NOVA IN ONE SLIDE

#### **Detecting SuperNova neutrinos**

1 SN / 50 years



#### using an innovative technology for <u>high-statistic</u> and <u>flavor independent</u> studies



Survey 90% of SN in Milky Way



# SUPERNOVAE: COSMIC FIREWORKS

#### SETTING THE STAGE



High-energy explosions of massive stars

#### Star binding energy is converted into: all flavor-neutrinos, GW, EM radiation

Why neutrinos are interesting?

# SUPERNOVAE: COSMIC FIREWORKS

#### SETTING THE STAGE



High-energy explosions of massive stars

- Star binding energy is converted into: all flavor-neutrinos, GW, EM radiation
- Why neutrinos are interesting?
  - Direct **probes** and **messengers** of SN dynamics Highest luminosity
  - Neutrinos provide early alerts of the explosion

#### SUPERNOVA NEUTRINO SIGNAL

#### WHAT IS THE AVERAGE NEUTRIND ENERGY?



 $v_x$  is the most **intense** component of the flux

Current SN neutrino detectors are mostly sensitive to anti-v<sub>e</sub>/v<sub>e</sub>



 $v_x$  is the most **energetic** component of the flux

#### ALL NEUTRIND FLAVORS ARE DETECTED **COHERENT NEUTRING-NUCLEUS SCATTERING**



> High interaction cross-section





#### > Equally sensitive to all v-flavors

#### ALL NEUTRIND FLAVORS ARE DETECTED COHERENT NEUTRIND-NUCLEUS SCATTERING



> High interaction cross-section



\* Spin 0 interaction



#### > Equally sensitive to all v-flavors

$$F^2(q^2) E^2_{\nu} Q^2_W$$

Nuclear Form Neutrino factor energy

$$Q_W = N - Z(1 - 4\sin^2)$$

Weak nuclear charge



#### ALL NEUTRIND FLAVORS ARE DETECTED COHERENT NEUTRIND-NUCLEUS SCATTERING



- > High interaction cross-section

cross-section



#### > Equally sensitive to all v-flavors



8

# ALL NEUTRIND FLAVORS ARE DETECTED



#### Pb ideal target

Highest neutron number Highest nuclear stability

\* Nuclear Weak Form Factor measured!





#### ALL NEUTRIND FLAVORS ARE DETECTED **COHERENT NEUTRING-NUCLEUS SCATTERING**



#### Pb ideal target

Highest neutron number Highest nuclear stability

\* Nuclear Weak Form Factor measured!





# ALL NEUTRIND FLAVORS ARE DETECTED



#### Pb ideal target

Highest neutron number Highest nuclear stability

\* Nuclear Weak Form Factor measured!







#### RES-NOVA GIVES UNIQUE INSIGHTS INTO SNE INNOVATIVE EXPERIMENTAL APPROACH



#### Detection channel

Coherent neutrinonucleus scattering

#### Technology

Cryogenic detectors

#### **Target material** PbWO<sub>4</sub> from archaeological-Pb

#### RES-NOVA DETECTOR TECHNOLOGY ADVANCED CRYOGENIC DETECTORS Cryogenic detectors made from Pb





# High-radiopurity crystal **PbWO<sub>4</sub> crystals**

Commercial crystal (HEP applications) Good cryogenic performance High density crystal

#### Thermometer at mK

#### **Transition Edge Sensor**

Top tech for light-DM searches Production + operation scalability

#### **RES-NOVA** DETECTOR TECHNOLOGY **ADVANCED CRYDGENIC DETECTORS Cryogenic detectors made from Pb**



J.W. Beeman, LP et al., Eur. Phys. J. A 49, 50 (2013)



#### RES-NOVA GIVES UNIQUE INSIGHTS INTO SNE INNOVATIVE EXPERIMENTAL APPROACH



#### Detection channel

Coherent neutrinonucleus scattering

#### Technology

Cryogenic detectors **Target material** PbWO<sub>4</sub> from archaeological-Pb

#### CRYDGENIC DETECTORS BUILT FROM ARCHAEDLOGICAL PB FROM PASSIVE MATERIAL TO ACTIVE DETECTOR COMPONENT



Archaeological Pb:

Archaeo-Pb cryogenic detector

**†** from underwater shipwreck

 $\star$  2000 years old

High radiopurity: < 1 mBq/kg

L. Pattavina et al., Eur. Phys. J. A 55, 127 (2019)

| <46 µBq/kg                         | <45 µBq/ł                                        |
|------------------------------------|--------------------------------------------------|
|                                    | • •                                              |
| <31 µBq/kg                         | <46 µBq/ł                                        |
| (2.3±0.4) · 10 <sup>7</sup> µBq/kg | <715 µBq/                                        |
|                                    | <31 μBq/kg<br>(2.3±0.4) · 10 <sup>7</sup> μBq/kg |

<sup>210</sup>Pb **x10**<sup>4</sup> lower than commercial low-background Pb

 $(Q_{\beta}-value: 63 \text{ keV}, T_{1/2}= 22.3 \text{ y})$ 







#### RES-NOVA GIVES UNIQUE INSIGHTS INTO SNE INNOVATIVE EXPERIMENTAL APPROACH



Detection channel

Coherent neutrinonucleus scattering

#### Technology

Cryogenic detectors **Target material** PbWO<sub>4</sub> from archaeological-Pb



#### RES-NOVA GIVES UNIQUE INSIGHTS INTO SNE INNOVATIVE EXPERIMENTAL APPROACH



#### Galactic SN neutrino signal:

Water Cherenkov (SuperK): 0.2 ev./m<sup>3</sup> Liquid Scintillator (SNO+): 0.4 ev./m<sup>3</sup> <u>RES-NOVA: ~200 ev./m<sup>3</sup></u> Detection channel

Coherent neutrinonucleus scattering

#### Technology

Cryogenic detectors

#### **Target material** PbWO<sub>4</sub> from archaeological-Pb

#### What can we learn?

Core-collapse physics studies

Characterization of SN remnants

Neutrino mass properties

Multi-messenger Astronomy



#### NEUTRIND DBSERVATORY AT THE CM-SCALE AN ARRAY OF PBWO4 CRYSTALS



|   | Size:<br>Threshold:<br>SN @ 10 kpc: | RN-demo @ LI<br>(30 cm) <sup>3</sup><br>1 keV<br>~10 counts | <section-header></section-header> |
|---|-------------------------------------|-------------------------------------------------------------|-----------------------------------|
|   | Size:<br>Threshold:<br>SN @ 10 kpc: | RN-1<br>(60 cm) <sup>3</sup><br>1 keV<br>~50 counts         |                                   |
| 4 | Size:<br>Threshold:<br>SN @ 10 kpc: | RN-2<br>(140 cm) <sup>3</sup><br>1 keV<br>~900 counts       |                                   |



# SN ENERGY RECONSTRUCTION IN RES-NOVA

### Reconstruction of A<sub>T</sub> and <E> by likelihood analysis





Precision in total SN energy reconstruction

| $V_X/$ | 'a | nt | i-v <sub>x</sub> |
|--------|----|----|------------------|
|        |    |    |                  |

| RN-I | 30% |
|------|-----|
| RN-2 | 8%  |
| RN-3 | 4%  |

L. Pattavina et al., Phys. Rev. D 102, 063001 (2020)

#### SK-Gd\* (IBD) 25%

A. Gallo Rosso et al., JCAP 04 (2018) 040 \* >90% Gd loading



#### **RES-NOVA** DETECTS SN NEUTRINOS



L. Pattavina et al., *Phys. Rev. D* 102, 063001 (2020)

#### **RES-NOVA** DETECTS SN NEUTRINOS



22

L. Pattavina et al., *Phys. Rev. D* 102, 063001 (2020)

RES-NOVA Group of Interest, *Eur. Phys. J. C* 82, 692 (2022)

N. Ferreiro, L. Pattavina et al., J. Low Temp. Phys. 11, 184 (2022)





#### PRELIMINARY WORK









#### **RES-NOVA PROOFS OF PRINCIPLE**

#### ACHIEVEMENT OF LOW THRESHOLD AND LOW BACKGROUND



Nuclear recoil threshold – 300 eV (PbWO<sub>4</sub> – 20 g)









#### RESNOVA TECHNOLOGY DEMONSTRATOR





# Signal significance $[\sigma]_{10}$

10<sup>0</sup>



<15 kpc 90% of Galactic SNe are included

L. Pattavina et al., JCAP 10 (2021) 064

#### **RES-NOVA PRODUCES KNOWLEDGE**

#### **CROSS-DISCIPLINARY**



#### Secure physics results:

- Direct Dark Matter search Physics results during the R&D phase
- Solar neutrino detection
- Solar axion searches
- ► Neutrino-mass via 2EC decay of <sup>180</sup>W

#### Already big resonance in the community:

- Non-standard neutrino interactions
- Primordial black-holes
- Supermassive black-hole formation
- Neutron skin measurement

[JCAP 11 (2021) 020, New J. Phys. 23 (2021) 031201, Phys. Rev. D 103 (2021) 083002, JCAP 08 (2021) 019, Phys. Rev.D 106 (2022) 12, 123034, Nucl. Phys.B 977 (2022) 115737, Phys. Lett.B 829 (2022) 137050]



#### ARE WE READY FOR THE NEXT SN ?

SN1987A neutrinos took 160,000 y to reach our detectors

→ In 2022 the most advanced EU neutrino detector went off-line





#### ARE WE READY FOR THE NEXT SN ?

Timeliness A unique window of opportunity for a new technology

**Experimental** approach Multi-disciplinarity

Feasibility Proof of principle detectors gave promising results

**RES-NOVA** demo is funded Long-term science program on neutrino physics



# NASA/CXC/SAO/STSc





#### BACK-UP SLIDES

