

Abstracts Embeddings Evaluation

A Case Study of Artificial Intelligence and Medical Imaging for the COVID-19 Infection

Giovanni Zurlo, Elisabetta Ronchieri

September 18, 2023 ML_INFN, Bologna, IT

Table of Contents

► Introduction

Methodology

Results

Conclusions and Future Work

Problem Domain 1 Introduction

- The SARS-CoV-2 pandemic triggered unprecedented research efforts across various disciplines.
- This study delves into the collaborative prospects of artificial intelligence (AI) and medical imaging to expedite the analysis of scientific COVID-19 articles on larger scale.
- By harnessing the capabilities of natural language processing (NLP) and contextualized vector representations, the investigation scrutinizes the potential of popular biomedical transformer-based models to capture the semantic attributes in the medical imaging literature.

Table of Contents2 Methodology

Introduction

Methodology

Results

Conclusions and Future Work

Data Collection Workflow

2 Methodology

Papers Sources 2 Methodology

Considered the National Institutes of Health (NIH)'s iSearch COVID-19 Portfolio

Welcome to the COVID-19 Portfolio

The *iSearch* COVID-19 portfolio is NIH's comprehensive, expert-curated source for publications and preprints related to either COVID-19 or the novel coronavirus SARS-CoV-2. Our COVID-19 Portfolio tool leverages the cutting-edge analytical capability of the *iSearch* platform, with its powerful search functionality and faceting, and includes

PRISMA-based Corpus Definition 2 Methodology

1. Broad query

AI AND COVID-19 AND 'Medical Imaging'

2. Modality-specific query

AI AND COVID-19 AND Lung AND (CT OR CXR OR US OR PET)

- CT Computerized Tomography
- CXR Chest X-Ray
- US Ultrasound
- PET Positron Emission Tomography

Collected papers \in period Jan 1, 2020 - May 27, 2023 Used Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) to select papers

Data Enrichment 2 Methodology

Identified 560 gold-papers

- 163 papers manually labelized to address the issue of class imbalance
- 397 papers derived by Born et al. (2020) (see ref [6] in the paper) based on a supplementary dataset titled 'Detailed results of systematic meta-analysis', merged by using title and already labelized

Data Enrichment - Labeling Assignment ² Methodology

Chose to adopt the tasks and modalities classification framework already adopted in Born et al. (2020) (see ref [6] in the paper)

Primary Task

- Detection/Diagnosis
- Monitoring/Severity
- Assessment
- Post-Hoc
- Prognosis/Treatment
- Review
- Risk Identification
- Segmentation-only (for lung tissue or other disease features without any clinically relevant downstream tasks)

• Multimodal

Data Enrichment - Labeling Assignment 2 Methodology

12 Bidirectional Encoder Representation (BERT) models

- original BERT in its base and large versions
- SciBERT
- BioBERT in its base and large versions
- PubMedBERT in its base and large versions
- CORD-19 BERT
- COVID SciBERT
- ClinicalCovidBERT
- RadBERT
- BioCovidBERT

3 SPECTER models

- standard model
- two-others with task-specific adapters

Models Distinctions Summary

2 Methodology

Model	Training Corpus	Weights Initialization	Vocabulary	Details on Training Corpus
\mathbf{BERT}_{base}	Wiki+Books	From-scratch	Derived from corpus	800M + 2.5B words, 1M steps
SciBERT	SemanticScholar Full-Texts	$\operatorname{BERT}_{base}$	Derived from corpus	$1.14 \mathrm{M}$ Full-Texts, 18% from computer science and 82% from broad biomedical domain
$\mathbf{BioBERT}_{base}$	PubMed abstracts	$BERT_{Base}$	Same as $BERT_{Base}$	Updated 2019. 4.5B Words, 1M steps
$\mathbf{PubMedBERT}_{base}$	PubMed abstracts + PMC Full-Texts	From-scratch	Derived from corpus	Updated Feb. 2020. 16.8B Words, $100\mathrm{K}$ steps
CORD-19 BERT	CORD-19 dataset	$BERT_{Base}$	Same as $BERT_{Base}$	Updated Early 2020
$\mathbf{CovidSciBERT}$	CORD-19 dataset	SciBERT	Extended from SciB- ERT	Updated Early 2020
ClinicalCovidBERT	CORD-19 dataset	Bio+Clinical BERT [1]	Same as BERT_{Base}	Full-Texts updated June 2020, 150K steps
RadBERT	Radiology Reports	$\operatorname{BioBERT}_{base}$	Same as BERT_{Base}	$4{\rm M}$ reports from 600K unique patients treated at Stanford Health Care from 1992 to 2014
SPECTER 2	6M Triplets of Papers Citations	SciBERT	Same as SciBERT	Extended version of the cite_prediction dataset from [31]
\mathbf{BERT}_{large}	Wiki+Books	From-scratch	Derived from corpus	800M + 2.5B words, 1M steps
$\mathbf{BioBERT}_{large}$	PubMed abstracts	$BERT_{Large}$	Derived from corpus	Updated 2019. 4.5B Words, 1M steps
$\mathbf{PubMedBERT}_{large}$	PubMed abstracts	From-scratch	Derived from corpus	Updated Feb. 2020. 3.2B Words, $100\mathrm{K}$ steps
BioCovidBERT	CORD-19 dataset	$Bio BERT_{large}$	Same as $Bio BERT_{large}$	Full-Texts updated June 2020, 200K steps

BERTbase example 2 Methodology

- Each title + abstract pair gets concatenated.
- Any BERT_{base} model encodes each pair in 768-dimensional latent space.
- The first token is a special classification token [CLS].
- The separator token [SEP] marks its end and separates titles from abstracts.
- The context window is fixed at 512 tokens (almost 300-400 words), causing a truncation for longer inputs.
 - Our dataset adheres this constraint of the context window.
 - Few records required truncation.

Extraction Strategies 2 Methodology

- Our goal is to obtain a singular vector representation for each Text + Abstract, no one for each token.
- Three extraction strategies considered:
 - the first two involve extracting the final hidden state representation of the [CLS] token and the trailing [SEP] token
 - the third uses the mean-pooling strategy based on the second-to-last hidden states.

Performance Metrics 2 Methodology

- Accuracy is computed for a k-Nearest Neighbors (kNN) classifier to provide an evaluation of embedding quality.
- All kNN-based metrics involved k=6 or k=13 exact nearest neighbors.
 - 'KneihborsClassifier' class from Scikit-Learn 1.2.2
 - All parameters were chosen performing a cross-validated grid search:
 - algorithm='auto', weights='distance', distance='cosine'
- To predict each test paper's label, kNN takes a weighted majority vote among the paper's NNs'labels in the training set.
- Neibhbors are weighted by the inverse of their cosine distance.

- For the accuracy, cross-validated values were averaged over the same 10-fold split.
- Additionally, a balanced version of accuracy was computed.
- The chance-level accuracy was calculated by using 'DummyClassifier' with strategy='stratified' to ignore the input features.

Table of Contents 3 Results

Introduction

Methodology

► Results

Conclusions and Future Work

Quality metrics for the embeddings (Imaging Modality Prediction)

3 Results

10-fold kNN classification accuracy and balanced accuracy. Hyperparameters: k = 13, weights = distance, distance = cosine.

Model	Accuracy (%)			Balanced Accuracy (%)		
	[CLS]	[SEP]	AVG	[CLS]	[SEP]	AVG
BERT _{base}	54.3	57.7	61.3	38.6	43.3	49.9
SciBERT	58.2	56.4	63.6	43.9	41	48.2
$Bio BERT_{base}$	53.2	65.2	61.1	36	52.6	46.2
$\mathbf{PubMedBERT}_{base}$	57.7	74.5	64.3	42.9	58.6	50.1
CORD-19 BERT	56.4	52.9	60.2	43.0	37.6	44.9
CovidSciBERT	64.5	60.5	62.7	49.9	47.9	50.6
ClinicalCovidBERT	65.4	64.5	63.4	53.2	50.8	49.6
RadBERT	57.9	57.9	58.2	38	38	39.7
SPECTER 2	82.5	83.8	68.8	75.3	76.7	57.8
BERT _{large}	50	58.8	60.2	34.7	43.4	44.8
BioBERT _{large}	54.4	62.1	65.5	39.8	47.2	51.3
$PubMedBERT_{large}$	57	61.3	60.4	40.3	44.2	45.3
BioCovidBERT	69.5	64.8	69.6	53.8	49	58.3
Chance Level		35.5 ± 13			24.8 ± 9	

SPECTER employs the [CLS] token, but we also applied the others for consistency.

BioCovidBERT_{large} slightly outperformed with AVG pooling strategy due to its continual pre-trained on a COVID-19-based corpus. 19/23

Quality metrics for the embeddings (Task Prediction) 3 Results

10-fold kNN classification accuracy and balanced accuracy. Hyperparameters: k = 6, weights = distance, distance = cosine.

Model	Accuracy (%)			Balanced Accuracy (%)		
	[CLS]	[SEP]	AVG	[CLS]	[SEP]	AVG
BERT _{base}	59.6	58.2	64.8	27	28.4	33.9
SciBERT	62.7	63	68.6	33.3	31.5	38.3
$\mathbf{BioBERT}_{base}$	63.9	70.2	69.6	28.6	40.5	40.2
$\mathbf{PubMedBERT}_{base}$	66.8	70.7	67.5	34.7	42.3	36.9
CORD-19 BERT	65.0	60.7	65.9	33.7	25.9	34.4
CovidSciBERT	70.2	70.2	71.8	42.3	42.4	45.1
ClinicalCovid BERT	70.9	71.3	70	43.6	46.7	40.9
RadBERT	60.9	60.9	61.2	26.5	26.5	26.4
SPECTER 2	75.4	74.5	74.1	56.6	55.9	51.5
\mathbf{BERT}_{large}	60	64.1	66.6	26.2	34	38.5
BioBERT _{large}	62	68.6	67.3	28.7	37.7	36
$PubMedBERT_{large}$	63	67.7	68.9	30	36.1	38.4
BioCovidBERT	66.6	68.2	70.9	37	39.5	42.5
Chance Level		36.1 ± 6			14.8 ± 9	

The Balanced accuracy scores decreased due to the presence of stronger class imbalance and lower recall values for 'post-hoc' and 'risk identification' classes.

Table of Contents4 Conclusions and Future Work

Introduction

Methodology

Results

► Conclusions and Future Work

Conclusions 4 Conclusions and Future Work

- A first version of a medical imaging dataset for the COVID-19 infection has been defined by following the PRISMA procedure in order to evaluate embeddings quality for abstracts texts.
 - Extrinsic evaluation fails if the embeddings are trained to serve in a wide range of different tasks.
- We have labelized entries according to the primary task and the imaging modality.
- The SPECTER model emerges as the best model with respect to accuracy and balanced accuracy in task prediction diverse across diverse extraction strategies.
- Data and code of the paper are available at https://github.com/zurlog/abs-embeddings-eval.

Future Work 4 Conclusions and Future Work

- To improve the annotation process of our original dataset
 - using a combination of automated tools and manual assessment.
- To collect more labeled entries in order to improve the training set sample size.
- To keep it updated.

Abstracts Embeddings Evaluation A Case Study of Artificial Intelligence and Medical Imaging for the COVID-19 Infection

Thank you for listening! Any questions?