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Problem

Detection of the
anomalies in the INFN
CNAF Data Center a.

An anomaly is an
event that deviates
from what is standard,
normal, or expected.

aSotware used: Pandas
[1], Matplotlib [2], Seaborn
[3], Plotly [4], SciPy [5],
scikit-learn [6][7], PyTorch [8].

Figure 1: Example of anomalies on the values of a
sensor.
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Composition of the Data Center
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Composition of the data center

There are 4 main different components:
▶ the electrical implant
▶ the UPS

▶ the cooling system
▶ the IT equipment

Figure 2: Components of the data center.
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Electrical Implant
There are three transformers.
They works in couples, so two work and one is off.

In total there are 19 sensors
▶ 6 sensors for each transformer
▶ 1 is global.

Figure 3: Apparent Power of the transformers.
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Electrical Implant

Figure 4: Correlation matrix of the transformer 1 sensors.
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UPS

There is only one sensor for this part of the system.

Figure 5: Values of the sensor over the time.

7/56



Cooling system
There are six refrigerator units.
In total there are 51 sensors
▶ 7 sensors for each refrigerator unit
▶ 9 are global.

Figure 6: Outgoing temperature (first group of pumps). The red line marks the
threshold of 15°C, because alarms are sent if this temperature is exceeded.
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Cooling system

Figure 7: Correlation matrix of the sensors of the refrigerator unit 1.
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Statistical approaches
to detect the anomalies:

▶ Z-score
▶ Interquartile range
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Z-score

It measures the number of standard deviations by which a data point is above
or below the mean value.

𝑍𝑠𝑐𝑜𝑟𝑒 = 𝑥 − 𝜇
𝜎

𝜇 is the mean of the population, 𝜎 is the standard deviation.

Every point that has a Z-score bigger than 4 (in absolute value) is considered
as anomalous.
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Interquartile range

The IQR is a measure of
statistical dispersion.

Every value that is smaller
than the 0.2-percentile
or bigger than the 99.8-
percentile is detected as
anomalous.

This type of measurement
is more robust against the
outliers because we are not
considering values at the
borders [9].

Figure 8: Boxplot of the sum of the transformers
apparent powers. In the image it is possible to see
the quartiles (25th-percentile and 75th-precentile)
and the median.
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Results on the cooling system sensors

Figure 9: Anomalies detected by the
Z-score method on the refrigerator unit 2
Power Consumption values [kW].

Figure 10: Anomalies detected by the
IQR method on the refrigerator unit 2
Power Consumption values [kW].
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Results on the cooling system sensors

Figure 11: Anomalies detected by the
Z-score method on the sensor that
measures the incoming temperature to
the refrigerator unit 4 [°C].

Figure 12: Anomalies detected by the
Z-score method on the sensor that
measures the incoming temperature to
the refrigerator unit 4 [°C].
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Result on the electrical implant sensors

Figure 13: Anomalies detected by the Z-score
method on the transformer 3 current phase 1
values [A].

Figure 14: Anomalies detected by
the IQR method on the transformer
3 current phase 1 values [A].
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Result on the UPS system sensor

Figure 15: Anomalies detected by the
Z-score method on the ups sensor
values [kW].

Figure 16: Anomalies detected by the IQR
method on the ups sensor value [kW].
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Machine Learning approach
to detect the anomalies:

DBSCAN
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DBSCAN

DBSCAN [10] is an algorithm that creates clusters of datapoints and the points
that do not belog to any cluster are detected as anomalous.

Figure 17: In this diagram, 𝑚𝑖𝑛𝑃𝑡𝑠 = 4. Point A and the other red points are core
points, because the area surrounding these points in an ε radius contain at least 4
points (including the point itself). Because they are all reachable from one another,
they form a single cluster. Points B and C are not core points, but are reachable from A
(via other core points) and thus belong to the cluster as well. Point N is a noise point
that is neither a core point nor directly-reachable. [11]
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DBSCAN on the sensors values of the cooling system

The values in the dataframes are normalized over both the axes (the time
and the values), such that it is easier for the algorithm to create the clusters.
To capture the rapid evolution of some sensors the timestamps values have
been scaled up by a factor of 15, such that the values of the time could be
represented in a larger space and have less importance in the creation of the
clusters.

The dbscan parameters are 𝜖 = 0.8 and 𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒 = 250, moreover all the
clusters that do not respect equation 2 are considered as anomalous.

𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒_𝑖𝑛_𝑐𝑙𝑢𝑠𝑡𝑒𝑟 > 𝑙𝑒𝑛(𝑑𝑓)
30 (1)
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DBSCAN on the sensors values of the cooling system

Figure 18: Anomalies detected by
DBSCAN on the refrigerator unit 2 Power
Consumption values [kW].

Figure 19: Anomalies detected by
DBSCAN on the sensor that measures
the incoming temperature to the
refrigerator unit 4 [°C].
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DBSCAN on the electrical implant and the UPS system

The values in the dataframes are normalized over both the axes (the time
and the values), such that it is easier for the algorithm to create the clusters.
Here the timestamps values are been scaled up by a factor of 6.

The dbscan parameters are 𝜖 = 0.5 and 𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒 = 5, moreover all the
clusters that do not respect equation 2 are considered as anomalous.

𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒_𝑖𝑛_𝑐𝑙𝑢𝑠𝑡𝑒𝑟 > 𝑙𝑒𝑛(𝑑𝑓)
100 (2)
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DBSCAN on the sensors values of the electrical implant

Figure 20: Anomalies detected by
DBSCAN on the transformer 3 current
phase 1 values [A].

Figure 21: Anomalies detected by
DBSCAN on the transformer 2 apparent
power values [kW].
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DBSCAN on the sensor values of the UPS system

Figure 22: Anomalies detected by DBSCAN on the ups system sensor values [kW].
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Deep Learning approach
to detect the anomalies
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What is Deep Learning?

Deep learning is a method that uses artificial neural networks with many layers
to learn from data. A layer is a collection of neurons that process input data
and produce output data. It enables computers to learn from large amounts of
data and make predictions or decisions based on that data.
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Figure 23: Example of neural network.
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What a layer do?

𝑓(𝑥; 𝜃) = Φ(𝑊1𝑥 + 𝑏1)

Φ is a non-linear function, called activation function, the most used is the
ReLU.

Figure 24: Rectified linear unit activation function.
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Supervised and Unsupervised learning

To make the network learn usually two different approaches are used (depend-
ing on the available data and on the task):
▶ supervised learning
▶ unsupervised learning

Figure 25: Example of binary
classification.

Figure 26: Example of linear regression
[12].
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Construction Dataset

To construct the dataset to train a deep network, we need tomerge the values
of all the sensors together.
Moreover we need to know if each row is anomalous or not.

The data are not labelled, so the results given by dbscan (+ the results of the
Z-score method for certain sensors) are used to assign a label to each sensor.

A row is considered anomalous if at least one sensor in each block has anoma-
lous values or at least three sensors overall have anomalous values.

In this phase only the cooling system sensors and the electrical implant
sensors are considered.
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Dataset

All the sensors values are merged together in a unique dataframe.

Index Timestamp TR3_curr_1 … Temp_OUT_RU1 anomaly

0 2022-01-06
21:41:03 6410 ... 18 0

1 2022-01-06
21:56:03 6360 ... 18 0

2 2022-01-06
21:56:03 5820 ... 20 1

... ... ... ... ... ...
52455 2023-07-07

10:11:03 0 ... 18 0

52456 2023-07-07
10:26:03 0 ... 18 0

Table 1: Final dataframe built. There are 52457 rows and 69 columns. 50568 rows are
not anomalous and 1889 are anomalous. The sensors used are 66.
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Graph Neural Network
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What is a graph?

The graph is an ordered binary group
𝐺 = (𝑉, 𝐸), 𝑉 denotes the set of feature
nodes and 𝐸 denotes the set of edges.
▶ Definition

(Neighborhood Node)
Let 𝑣 ∈ 𝑉 and 𝑤 ∈ 𝑉 denote two
feature nodes, and 𝑒 = (𝑣, 𝑤) ∈ 𝐸
denotes an edge pointing from v to
w. The neighbor nodes of the fea-
ture node v is defined as 𝑁(𝑣) = {𝑤 ∈
𝑉|(𝑣, 𝑤) ∈ 𝐸}.

Figure 27: Example of directed graph
[13].
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What is a Graph Neural Network?

It is a particular type of neural network that tries to merge together the infor-
mation of the nodes in the neighborhood to obtain a new representation of the
node itself.
This method is called message passing:

𝑧𝑖 = Φ⒧𝑊𝑥𝑖 + 
𝑗∈𝑁(𝑖)

𝑊𝑥𝑗⒭

But how could it be used in our task?
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Graph neural network-based
anomaly detection in multivariate

time series
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The network
This is a Graph Neural Network designed to handle time series [14].

Figure 28: Overview of the framework (the code is available here).
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1. Sensor Embedding

The first component produces an embedding vector 𝑣𝑖 ∈ ℝ𝑑 for each sensor,
representing the characteristics of the sensor itself.

Figure 29: Sensor Embedding module.
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2. Graph Structure Learning

The second component constructs a directed graph, whose nodes represent
sensors, to model the relationship between them.

Figure 30: Graph Structure Learning module.
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3. Graph Attention-Based Forecasting

The expected behavior of each sensor, at time 𝑡, is forecasted using a sliding
window, of size 𝑤, over the historical time series data 𝑥(𝑡) ∈ ℝ𝑁𝑥𝑤 .

Moreover the graph computed in the previous component is used to merge
the information of the nodes in the neighborhood, using the message passing
mechanism.

𝑧(𝑡)𝑖 = Φ⒧𝛼𝑖,𝑖𝑊𝑥(𝑡)𝑖 + 
𝑗∈𝑁(𝑖)

𝛼𝑖,𝑗𝑊𝑥(𝑡)𝑗 ⒭

Figure 31: Graph Attention-Based
Forecasting module.
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4. Graph Deviation Scoring

Then the expected and the observed behaviors at time 𝑡 are compared.

𝐸𝑟𝑟𝑖(𝑡) = |𝑠(𝑡)𝑖 − ̂𝑠(𝑡)𝑖 |

To compute the overall anomalousness at time tick 𝑡, these values are aggre-
gated using the max function.

Figure 32: Graph Deviation Scoring module.
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Test on GDN architecture

To use this network the dataset is divided in two different dataframes, one used
for training and another one used for testing.

At the end of the training process it is possible to evaluate the results.

The dataset is unbalanced, so the metric used for evaluation is the F1-Score:
▶ Precision (Prec)

𝑇𝑃
𝑇𝑃 + 𝐹𝑃

▶ Recall (Rec)

𝑇𝑃
𝑇𝑃 + 𝐹𝑁

▶ F1-Score (F1)

2 ⋅ 𝑃𝑟𝑒𝑐 ⋅ 𝑅𝑒𝑐
𝑃𝑟𝑒𝑐 ⋅ 𝑅𝑒𝑐

At the end of the tests done trying to tune the parameters of this network, I
obtained a score of 0.57 (the minimum is 0 and the maximum is 1).
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Problems of this architecture

▶ After the calculation of the error for each sensor, it retrieve the maximum
and uses a fixed threshold

▶ This architecture use a layer called GAT, and in the work called How
Attentive are Graph Attention Networks? [15] it is shown that it has some
problem during the learning phase.
They propose a new formulation (GATv2):

𝑧′𝑖 = 𝛼𝑖,𝑖𝑊𝑥𝑖 + 
𝑗∈𝑁(𝑖)

𝛼𝑖,𝑗𝑊𝑥𝑗

𝛼𝑖,𝑗 =
𝑒𝑥𝑝(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑊[𝑥𝑖||𝑥𝑗 ]))

∑𝑘∈𝑁(𝑖)∪𝑖 𝑒𝑥𝑝(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑊[𝑥𝑖||𝑥𝑘))
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New Architecture
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New Architecture

I tried to define a new architecture that could overcame these problems.

I build two networks:
▶ a regression network that must learn the behavior of the sensors, to

predict the next future values
▶ a classification network that given the predicted and the observed

behaviors, could output if the actual timestamp is anomalous or not
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Regression network
A bit inspired by the work of Xie et al. [16], I define this architecture with two
main blocks:
▶ one able to capture the relations with other sensors (spatial operation)
▶ one able to capture the trend of the sensor itself, considering the time

series (temporal operation)

To do it I used the GATv2 layer and the Long-Short term memory layer [17].

Figure 33: Long-Short term memory layer [18].
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Regression network

Before passing the values of the sliding window to this part of the network, we
need to define an embedding to obtain a new representation of the sensors
in a larger space. This is done by a Linear Layer.

During the performing of the spatial operations, to avoid that information com-
ing from different timestamps are merged together, 𝑛 different GATv2 are used,
one for each timestamp in the sliding window.

For the same reason, when computing the temporal operation, 66 different
LSTM layers are used, such that each one could be easily learn to the behav-
ior of one single sensor.

At the end the activation of the LSTM layers is processed by a last Linear
Layer that will output the results.
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Regression network

As introduced in the paper of Ioffe and Szegedy [19], an important component
of a neural network is the normalization, such that the training is faster and
less influenced from the initial random initialization of the parameters.

Here it is used a Batch Normalization after each GATv2 layer and after each
LSTM layer.

Figure 34: Batch Normalization [19].
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Classification network

Once that the regression network has output the expected behavior of the sen-
sors, we could compare it with the observed one.

To do it i defined a simple neural network with only two Linear layers.
After the first one there is a Batch Normalization and a ReLU.

The network outputs two numbers between 0 and 1, representing the probabil-
ity that the timestamp is anomalous and the probability that it is not anomalous.

Figure 35: Example of binary classification.
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Dataset
To train the first network we must use only the not anomalous timestamps, in-
stead to train the classifier we will use both.

To avoid that there could be holes between timestamps, we cannot random
sample the dataset to create the train, validation and test sets. Moreover it is
better if the ratio between not anomalous and anomalous timestamps is pre-
served in all the sets.

Figure 36: The whole dataframe is divided in 6 equally long parts. Then each part is
divided in three parts: the first 70% is for the training set, the second 10% is for the
validation set and the last 20% is for the test set. Then these parts are merged with the
respective parts of the other division to create the three sets.
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Training

The first network has been trained using as loss function the Mean Squared
Error.

𝑀𝑆𝐸 = 1
𝑛

|𝑛|−1


𝑖=0

(𝑌𝑖 − �̂�𝑖)2

For the second one the Cross Entropy is used.

𝑙𝑛 = −𝑤𝑛 log
exp(𝑥𝑛,𝑦𝑛 )

∑𝐶
𝑐=1 exp(𝑥𝑛,𝑐)

where 𝑤𝑛 is the weight given to the class 𝑛.
Such that the network is able to properly learn from this unbalanced dataset,
the minority class is weighted 10 times more than the majority class
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Results
The regression network is able to predict the behavior of the sensor with a
mean squared error of 0.025.

The classifier reaches an F1-Score of 0.997 on the test set.

Figure 37: Confusion matrix of the classifier testing part. The F1-Score is 0.997.
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Ablation Studies
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Do we really need this complex architecture?
What if we use only the embedding layer and only one GATv2 layer
(processing the time series as if it is part of the features of the node itself)?

The regression network is able to predict the behavior of the sensor with a
mean squared error of 0.029 (+0.004).

Figure 38: Confusion matrix of the classifier testing part. The F1-Score is 0.997.
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Do we really need to use a graph neural network?
What if we use only the embedding layer, a single LSTM layer and an output
layer?
The regression network is able to predict the behavior of the sensor with a
mean squared error of 0.025 (+0.000).

Figure 39: Confusion matrix of the classifier testing part. The F1-Score is 0.996.
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Do we really need something more than Linear Layers?

What if we use only the embedding layer and an output layer?
The regression network is able to predict the behavior of the sensor with a
mean squared error of 0.008 (-0.021).

Figure 40: Confusion matrix of the classifier testing part. The F1-Score is 0.997.
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Conclusions
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Conclusions

We don’t need a so complex network to achieve good results in this task, prob-
ably because the behavior of the sensors do not change frequently during time,
so it is simple to predict them.
Moreover the label are assigned algorithmically, so the task is simplified.

The results of all these networks are near to the perfection.

Moreover with the weights used in the Cross Entropy function it is able to learn
also from an unbalanced dataset like this one (only the 3.6% of the rows are
considered as anomalous!).
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Thanks for the attention!
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