Open-Closed Duality

in
 String Field Theory

Collaborators: A. Ruffino (Torino), J. Vosmera (ETH, now @ Saclay)

$$
\begin{aligned}
& \text { JHEP } 10 \text { (2022) 173, } \\
& \text { JHEP } 08 \text { (2023) 145, } \\
& \text { JHEP } 09 \text { (2023) } 119 \\
& \text { + work in progress }
\end{aligned}
$$

4th meeting of the PRIN Network
"String Theory as a bridge between Gauge Theories and Quantum Gravity"
Roma, La Sapienza, 20 October 2023

- String Theory gives important tools to better understand QFT and Gravity (This is the goal of our PRIN!)

Open strings: Gauge Theory

Closed strings: Gravity

- String Theory gives important tools to better understand QFT and Gravity (This is the goal of our PRIN!)

Open strings: Gauge Theory $\alpha^{\prime} \rightarrow 0$ Gravity

- Open-Closed duality is roughly the statement that the same physical process can be described from an open or a closed string perspective
- String Theory gives important tools to better understand QFT and Gravity (This is the goal of our PRIN!)

Open strings: Gauge Theory $\alpha^{\prime} \rightarrow 0$ Gravity

- Open-Closed duality is roughly the statement that the same physical process can be described from an open or a closed string perspective
- I have always found this statement a bit confusing and perhaps imprecise, so l tried to understand it in a different way... Use String Field Theory!

Skeleton Summary

Skeleton Summary

- Start with a ‘Master Theory’ containing both open and closed strings. Open-Closed SFT

Skeleton Summary

- Start with a ‘Master Theory’ containing both open and closed strings. Open-Closed SFT

- Integrate out the open string degrees of freedom. D-branes remain as sources. Unstable Closed SFT.

Skeleton Summary

- Start with a ‘Master Theory’ containing both open and closed strings. Open-Closed SFT

- Integrate out the open string degrees of freedom. D-branes remain as sources. Unstable Closed SFT.
- Absorb the sources with a vacuum shift in the closed strings: closed strings in a deformed background. Stable Closed SFT.

Skeleton Summary

- Start with a ‘Master Theory’ containing both open and closed strings. Open-Closed SFT

- Integrate out the open string degrees of freedom. D-branes remain as sources. Unstable Closed SFT.
- Absorb the sources with a vacuum shift in the closed strings: closed strings in a deformed background. Stable Closed SFT.

New closed string theory without D-branes!

- As we will see this two-step-process have potential obstructions and the idea is that these obstructions can help to better understand the nature of open-closed duality.
- As we will see this two-step-process have potential obstructions and the idea is that these obstructions can help to better understand the nature of open-closed duality.
- To describe this theoretical process we have to go through the definition of the various objects and steps
- As we will see this two-step-process have potential obstructions and the idea is that these obstructions can help to better understand the nature of open-closed duality.
- To describe this theoretical process we have to go through the definition of the various objects and steps
- What is Open-Closed SFT?
- As we will see this two-step-process have potential obstructions and the idea is that these obstructions can help to better understand the nature of open-closed duality.
- To describe this theoretical process we have to go through the definition of the various objects and steps
- What is Open-Closed SFT?
- What does it mean to integrate out (open strings) in (open-closed) SFT?
- As we will see this two-step-process have potential obstructions and the idea is that these obstructions can help to better understand the nature of open-closed duality.
- To describe this theoretical process we have to go through the definition of the various objects and steps
- What is Open-Closed SFT?
- What does it mean to integrate out (open strings) in (open-closed) SFT?
- What is an unstable Closed SFT?
- As we will see this two-step-process have potential obstructions and the idea is that these obstructions can help to better understand the nature of open-closed duality.
- To describe this theoretical process we have to go through the definition of the various objects and steps
- What is Open-Closed SFT?
- What does it mean to integrate out (open strings) in (open-closed) SFT?
- What is an unstable Closed SFT?
- What does it mean to absorb the sources to end up with a stable Closed SFT?
- As we will see this two-step-process have potential obstructions and the idea is that these obstructions can help to better understand the nature of open-closed duality.
- To describe this theoretical process we have to go through the definition of the various objects and steps
- What is Open-Closed SFT?
- What does it mean to integrate out (open strings) in (open-closed) SFT?
- What is an unstable Closed SFT?
- What does it mean to absorb the sources to end up with a stable Closed SFT?
- Can we provide examples where this program is succesful? (no obstructions)

What is Open-Closed SFT?

Open-Closed SFT

- Pick a starting closed string background $\left(\mathrm{CFT}_{0}, g_{s}^{(0)}\right)$ including coupling constant. Then pick a consistent set of D-branes, BCFT_{0}.

Open-Closed SFT

- Pick a starting closed string background $\left(\mathrm{CFT}_{0}, g_{s}^{(0)}\right)$ including coupling constant. Then pick a consistent set of D-branes, BCFT_{0}.
- Level-matched closed string vector space, graded (degree=ghost-2), endowed with a symplectic form

$$
\mathcal{H}^{\mathrm{c}}: \quad b_{0}^{-}|\Phi\rangle=L_{0}^{-}|\Phi\rangle=0, \quad \omega_{\mathrm{c}}\left(\Phi_{1}, \Phi_{2}\right)=(-1)^{d\left(\Phi_{1}\right)}\left\langle\Phi_{1}, c_{0}^{-} \Phi_{2}\right\rangle_{\mathrm{c}}
$$

Open-Closed SFT

- Pick a starting closed string background $\left(\mathrm{CFT}_{0}, g_{s}^{(0)}\right)$ including coupling constant. Then pick a consistent set of D-branes, BCFT_{0}.
- Level-matched closed string vector space, graded (degree=ghost-2), endowed with a symplectic form

$$
\mathcal{H}^{\mathrm{c}}: \quad b_{0}^{-}|\Phi\rangle=L_{0}^{-}|\Phi\rangle=0, \quad \omega_{\mathrm{c}}\left(\Phi_{1}, \Phi_{2}\right)=(-1)^{d\left(\Phi_{1}\right)}\left\langle\Phi_{1}, c_{0}^{-} \Phi_{2}\right\rangle_{\mathrm{c}} \quad \rightarrow \frac{1}{2} \omega_{c}\left(\Phi, Q_{c} \Phi\right)
$$

Open-Closed SFT

- Pick a starting closed string background $\left(\mathrm{CFT}_{0}, g_{s}^{(0)}\right)$ including coupling constant. Then pick a consistent set of D-branes, BCFT_{0}.
- Level-matched closed string vector space, graded (degree=ghost-2), endowed with a symplectic form

$$
\mathcal{H}^{\mathrm{c}}: \quad b_{0}^{-}|\Phi\rangle=L_{0}^{-}|\Phi\rangle=0, \quad \omega_{\mathrm{c}}\left(\Phi_{1}, \Phi_{2}\right)=(-1)^{d\left(\Phi_{1}\right)}\left\langle\Phi_{1}, c_{0}^{-} \Phi_{2}\right\rangle_{\mathrm{c}} \quad \rightarrow \frac{1}{2} \omega_{c}\left(\Phi, Q_{c} \Phi\right)
$$

- Open string vector space, graded (degree=ghost-1), endowed with a symplectic form

$$
\omega_{\mathrm{o}}\left(\Psi_{1}, \Psi_{2}\right)=(-1)^{d\left(\Psi_{1}\right)}\left\langle\Psi_{1}, \Psi_{2}\right\rangle_{\mathrm{o}}
$$

Open-Closed SFT

- Pick a starting closed string background $\left(\mathrm{CFT}_{0}, g_{s}^{(0)}\right)$ including coupling constant. Then pick a consistent set of D-branes, BCFT_{0}.
- Level-matched closed string vector space, graded (degree=ghost-2), endowed with a symplectic form

$$
\mathcal{H}^{\mathrm{c}}: \quad b_{0}^{-}|\Phi\rangle=L_{0}^{-}|\Phi\rangle=0, \quad \omega_{\mathrm{c}}\left(\Phi_{1}, \Phi_{2}\right)=(-1)^{d\left(\Phi_{1}\right)}\left\langle\Phi_{1}, c_{0}^{-} \Phi_{2}\right\rangle_{\mathrm{c}} \quad \rightarrow \frac{1}{2} \omega_{c}\left(\Phi, Q_{c} \Phi\right)
$$

- Open string vector space, graded (degree=ghost-1), endowed with a symplectic form

$$
\omega_{o}\left(\Psi_{1}, \Psi_{2}\right)=(-1)^{d\left(\Psi_{1}\right)}\left\langle\Psi_{1}, \Psi_{2}\right\rangle_{o} \quad \rightarrow \frac{1}{2} \omega_{o}\left(\Psi, Q_{o} \Psi\right)
$$

- Pick a starting closed string background $\left(\mathrm{CFT}_{0}, g_{s}^{(0)}\right)$ including coupling constant. Then pick a consistent set of D-branes, BCFT_{0}.
- Level-matched closed string vector space, graded (degree=ghost-2), endowed with a symplectic form

$$
\mathcal{H}^{\mathrm{c}}: \quad b_{0}^{-}|\Phi\rangle=L_{0}^{-}|\Phi\rangle=0, \quad \omega_{\mathrm{c}}\left(\Phi_{1}, \Phi_{2}\right)=(-1)^{d\left(\Phi_{1}\right)}\left\langle\Phi_{1}, c_{0}^{-} \Phi_{2}\right\rangle_{c} \quad \rightarrow \frac{1}{2} \omega_{c}\left(\Phi, Q_{c} \Phi\right)
$$

- Open string vector space, graded (degree=ghost-1), endowed with a symplectic form

$$
\omega_{o}\left(\Psi_{1}, \Psi_{2}\right)=(-1)^{d\left(\Psi_{1}\right)}\left\langle\Psi_{1}, \Psi_{2}\right\rangle_{o} \quad \rightarrow \frac{1}{2} \omega_{o}\left(\Psi, Q_{o} \Psi\right)
$$

- The full interacting action has a topological decomposition in genus + boundaries

$$
S(\Phi, \Psi)=\sum_{g=0}^{\infty} \sum_{b=0}^{\infty} S_{g, b}(\Phi, \Psi) . \quad S_{g, b}(\Phi, \Psi)=-g_{s}^{2 g-2+b} \sum_{k, l_{i}} \mathcal{V}_{g, b}^{k,\left\{l_{i}\right\}}\left(\Phi^{\wedge k} ; \Psi^{\otimes l_{1}}, \cdots, \Psi^{\otimes l_{b}}\right)
$$

- Pick a starting closed string background $\left(\mathrm{CFT}_{0}, g_{s}^{(0)}\right)$ including coupling constant. Then pick a consistent set of D-branes, BCFT_{0}.
- Level-matched closed string vector space, graded (degree=ghost-2), endowed with a symplectic form

$$
\mathcal{H}^{\mathrm{c}}: \quad b_{0}^{-}|\Phi\rangle=L_{0}^{-}|\Phi\rangle=0, \quad \omega_{\mathrm{c}}\left(\Phi_{1}, \Phi_{2}\right)=(-1)^{d\left(\Phi_{1}\right)}\left\langle\Phi_{1}, c_{0}^{-} \Phi_{2}\right\rangle_{\mathrm{c}} \quad \rightarrow \frac{1}{2} \omega_{c}\left(\Phi, Q_{c} \Phi\right)
$$

- Open string vector space, graded (degree=ghost-1), endowed with a symplectic form

$$
\omega_{0}\left(\Psi_{1}, \Psi_{2}\right)=(-1)^{d\left(\Psi_{1}\right)}\left\langle\Psi_{1}, \Psi_{2}\right\rangle_{o} \quad \rightarrow \frac{1}{2} \omega_{o}\left(\Psi, Q_{o} \Psi\right)
$$

- The full interacting action has a topological decomposition in genus + boundaries
- The consistency of the construction is encoded in the quantum BV master equation (path integral is well defined, good QFT)

$$
(S, S)+2 \Delta S=0
$$

$$
S(\Phi, \Psi)=\sum_{g=0}^{\infty} \sum_{b=0}^{\infty} S_{g, b}(\Phi, \Psi)
$$

- The consistency of the construction is encoded in the quantum BV master equation (path integral is well defined, good QFT)

$$
(S, S)+2 \Delta S=0
$$

$$
S(\Phi, \Psi)=\sum_{g=0}^{\infty} \sum_{b=0}^{\infty} S_{g, b}(\Phi, \Psi)
$$

$$
(\cdot, \cdot)=(\cdot, \cdot)_{\mathrm{c}}+(\cdot, \cdot)_{\mathrm{o}} \quad(\cdot,)_{\mathrm{c}}=g_{\mathrm{s}}^{2} \frac{\overleftarrow{~}}{\partial \phi^{i}} \omega_{\mathrm{c}}^{i j} \frac{\vec{\partial}}{\partial \phi^{j}},
$$

- The consistency of the construction is encoded in the quantum BV master equation (path integral is well defined, good QFT)

$$
(S, S)+2 \Delta S=0
$$

$$
S(\Phi, \Psi)=\sum_{g=0}^{\infty} \sum_{b=0}^{\infty} S_{g, b}(\Phi, \Psi)
$$

$$
\begin{aligned}
& \Delta=\Delta_{\mathrm{c}}+\Delta_{\mathrm{o}} \\
& \begin{array}{l}
\Delta_{\mathrm{c}}=\frac{1}{2} g_{s}^{2}(-1)^{d\left(\phi^{i}\right)} \omega_{\mathrm{c}}^{i j} \frac{\vec{\partial}}{\partial \phi^{i}} \frac{\vec{\partial}}{\partial \phi^{j}} \\
\Delta_{\mathrm{o}}=\frac{1}{2} g_{s}(-1)^{d\left(\psi^{i}\right)} \omega_{\mathrm{o}}^{i j} \frac{\vec{\partial}}{\partial \psi^{i}} \frac{\vec{\partial}}{\partial \psi^{j}}
\end{array}
\end{aligned}
$$

- The consistency of the construction is encoded in the quantum BV master equation (path integral is well defined, good QFT)

$$
S(\Phi, \Psi)=\sum_{g=0}^{\infty} \sum_{b=0}^{\infty} S_{g, b}(\Phi, \Psi)
$$

$$
(\cdot, \cdot)=(\cdot, \cdot)_{\mathrm{c}}+(\cdot, \cdot)_{\mathrm{o}} \begin{array}{lll}
(\cdot, \cdot)_{\mathrm{c}}=g_{\mathrm{s}}^{2} \frac{\overleftarrow{\partial}}{\partial \phi^{i}} \omega_{\mathrm{c}}^{i j} \\
& (\cdot, \cdot)_{\mathrm{o}}=g_{\mathrm{s}} \frac{\vec{\partial}}{\frac{\overleftarrow{\partial}}{\partial \psi^{i}}} \omega_{\mathrm{o}}^{i j} & \vec{\partial} \\
\partial \psi^{j} & \Delta_{\mathrm{c}}=\frac{1}{2} g_{s}^{2}(-1)^{d\left(\phi^{i}\right)} \omega_{\mathrm{c}}^{i j} \frac{\vec{\partial}}{\partial \phi^{i}} \frac{\vec{\partial}}{\partial \phi^{j}} \\
& \Delta_{\mathrm{o}}=\frac{1}{2} g_{s}(-1)^{d\left(\psi^{i}\right)} \omega_{\mathrm{o}}^{i j} \frac{\vec{\partial}}{\partial \psi^{i}} \frac{\vec{\partial}}{\partial \psi^{j}}
\end{array}
$$

- Geometrically

$$
\begin{aligned}
\left(S_{g_{1}, b_{1}}, S_{g_{2}, b_{2}}\right)_{\mathrm{c}} & \in \Sigma_{g_{1}+g_{2}, b_{1}+b_{2}} \\
\left(S_{g_{1}, b_{1}}, S_{g_{2}, b_{2}}\right)_{\mathrm{o}} & \in \Sigma_{g_{1}+g_{2}, b_{1}+b_{2}-1}, \\
\Delta_{\mathrm{c}} S_{g, b} & \in \Sigma_{g+1, b}, \\
\Delta_{\mathrm{o}}^{(1)} S_{g, b} & \in \Sigma_{g, b+1}, \\
\Delta_{\mathrm{o}}^{(2)} S_{g, b} & \in \Sigma_{g+1, b-1}, \quad b \geq 2
\end{aligned}
$$

- The consistency of the construction is encoded in the quantum BV master equation (path integral is well defined, good QFT)

$$
S(\Phi, \Psi)=\sum_{g=0}^{\infty} \sum_{b=0}^{\infty} S_{g, b}(\Phi, \Psi)
$$

- Geometrically

$$
\begin{aligned}
\left(S_{g_{1}, b_{1}}, S_{g_{2}, b_{2}}\right)_{\mathrm{c}} & \in \Sigma_{g_{1}+g_{2}, b_{1}+b_{2}} \\
\left(S_{g_{1}, b_{1}}, S_{g_{2}, b_{2}}\right)_{\mathrm{o}} & \in \Sigma_{g_{1}+g_{2}, b_{1}+b_{2}-1}, \\
\Delta_{\mathrm{c}} S_{g, b} & \in \Sigma_{g+1, b}, \\
\Delta_{o}^{(1)} S_{g, b} & \in \Sigma_{g, b+1}, \\
\Delta_{\mathrm{o}}^{(2)} S_{g, b} & \in \Sigma_{g+1, b-1}, \quad b \geq 2
\end{aligned}
$$

- Notice that $S_{0,0}(\Phi)$ and $S_{0,1}(0, \Psi)$ satisfy classical master equations. They are classical closed SFT and classical open SFT respectively. Other classical limits??
- We can isolate the genus zero sector (classical closed strings) which obeys the master equation

$$
\left(S_{0}, S_{0}\right)_{\mathrm{c}}+\left(S_{0}, S_{0}\right)_{\mathrm{o}}+2 \Delta_{\mathrm{o}}^{(1)} S_{0}=0 . \quad S_{0} \equiv \sum_{b=0}^{\infty} S_{0, b}
$$

- We can isolate the genus zero sector (classical closed strings) which obeys the master equation

$$
\left(S_{0}, S_{0}\right)_{\mathrm{c}}+\left(S_{0}, S_{0}\right)_{\mathrm{o}}+2 \Delta_{\mathrm{o}}^{(1)} S_{0}=0 . \quad S_{0} \equiv \sum_{b=0}^{\infty} S_{0, b}
$$

- But it is not possible to also constrain the open strings to be classical $(b=1)$

$$
\begin{aligned}
b=0: & \left(S_{0,0}, S_{0,0}\right)_{\mathrm{c}}=0, \\
b=1: & 2\left(S_{0,0}, S_{0,1}\right)_{\mathrm{c}}+\left(S_{0,1}, S_{0,1}\right)_{\mathrm{o}}=0, \\
b=2: & \left(S_{0,1}, S_{0,1}\right)_{\mathrm{c}}+2\left(S_{0,0}, S_{0,2}\right)_{\mathrm{c}}+2\left(S_{0,1}, S_{0,2}\right)_{\mathrm{o}}+2 \Delta_{\mathrm{o}}^{(1)} S_{0,1}=0 .
\end{aligned}
$$

- We can isolate the genus zero sector (classical closed strings) which obeys the master equation

$$
\left(S_{0}, S_{0}\right)_{\mathrm{c}}+\left(S_{0}, S_{0}\right)_{\mathrm{o}}+2 \Delta_{\mathrm{o}}^{(1)} S_{0}=0 . \quad S_{0} \equiv \sum_{b=0}^{\infty} S_{0, b}
$$

- But it is not possible to also constrain the open strings to be classical $(b=1)$

$$
\begin{array}{ll}
b=0: & \left(S_{0,0}, S_{0,0}\right)_{\mathrm{c}}=0, \\
b=1: & 2\left(S_{0,0}, S_{0,1}\right)_{\mathrm{c}}+\left(S_{0,1}, S_{0,1}\right)_{\mathrm{o}}=0, \\
b=2: & \left(S_{0,1}, S_{0,1}\right)_{\mathrm{c}}+2\left(S_{0,0}, S_{0,2}\right)_{\mathrm{c}}+2\left(S_{0,1}, S_{0,2}\right)_{\mathrm{o}}+2 \Delta_{\mathrm{o}}^{(1)} S_{0,1}=0 .
\end{array}
$$

- We can isolate the genus zero sector (classical closed strings) which obeys the master equation

$$
\left(S_{0}, S_{0}\right)_{\mathrm{c}}+\left(S_{0}, S_{0}\right)_{\mathrm{o}}+2 \Delta_{\mathrm{o}}^{(1)} S_{0}=0 . \quad S_{0} \equiv \sum_{b=0}^{\infty} S_{0, b}
$$

- But it is not possible to also constrain the open strings to be classical $(b=1)$

$$
\begin{array}{ll}
b=0: & \left(S_{0,0}, S_{0,0}\right)_{\mathrm{c}}=0, \\
b=1: & 2\left(S_{0,0}, S_{0,1}\right)_{\mathrm{c}}+\left(S_{0,1}, S_{0,1}\right)_{\mathrm{o}}=0, \\
b=2: & \left(S_{0,1}, S_{0,1}\right)_{\mathrm{c}}+2\left(S_{0,0}, S_{0,2}\right)_{\mathrm{c}}+2\left(S_{0,1}, S_{0,2}\right)_{\mathrm{o}}+2 \Delta_{\mathrm{o}}^{(1)} S_{0,1}=0 .
\end{array}
$$

- So, at best, we can have a theory with classical closed strings coupled to quantum open strings (consistent with annulus=cylinder)
- We can isolate the genus zero sector (classical closed strings) which obeys the master equation

$$
\left(S_{0}, S_{0}\right)_{\mathrm{c}}+\left(S_{0}, S_{0}\right)_{\mathrm{o}}+2 \Delta_{\mathrm{o}}^{(1)} S_{0}=0 . \quad S_{0} \equiv \sum_{b=0}^{\infty} S_{0, b}
$$

- But it is not possible to also constrain the open strings to be classical $(b=1)$

$$
\begin{array}{ll}
b=0: & \left(S_{0,0}, S_{0,0}\right)_{\mathrm{c}}=0, \\
b=1: & 2\left(S_{0,0}, S_{0,1}\right)_{\mathrm{c}}+\left(S_{0,1}, S_{0,1}\right)_{\mathrm{o}}=0, \\
b=2: & \left(S_{0,1}, S_{0,1}\right)_{\mathrm{C}}+2\left(S_{0,0}, S_{0,2}\right)_{\mathrm{c}}+2\left(S_{0,1}, S_{0,2}\right)_{\mathrm{o}}+2 \Delta_{\mathrm{o}}^{(1)} S_{0,1}=0 .
\end{array}
$$

- So, at best, we can have a theory with classical closed strings coupled to quantum open strings (consistent with annulus=cylinder)
- How to focus on this simplified sector? Take a Large \boldsymbol{N} number of initial D-branes!

Open-Closed SFT in the Large \mathbf{N} limit

Open-Closed SFT in the Large \mathbf{N} limit

- Open string fields are $\mathrm{N} \times \mathrm{N}$ matrices and the inner product has an understood trace. Use a normalized trace (finite in the large N limit)

$$
\begin{gathered}
\Psi=\psi_{i j}^{a} t^{i j} o_{a}, \quad\left(t^{i j}\right)_{p q}=\delta_{p}^{i} \delta_{q}^{j} \\
\operatorname{Tr}^{\prime}[M]:=\frac{1}{N} \operatorname{Tr}[M]
\end{gathered}
$$

Open-Closed SFT in the Large \mathbf{N} limit

- Open string fields are $\mathrm{N} \times \mathrm{N}$ matrices and the inner product has an understood trace. Use a normalized trace (finite in the large N limit)

$$
\begin{gathered}
\Psi=\psi_{i j}^{a} t^{i j} o_{a}, \quad\left(t^{i j}\right)_{p q}=\delta_{p}^{i} \delta_{q}^{j} \\
\operatorname{Tr}^{\prime}[M]:=\frac{1}{N} \operatorname{Tr}[M]
\end{gathered}
$$

- As well as normalized amplitudes

$$
\mathcal{A}^{\prime g, b}:=\frac{1}{N^{b}} \mathcal{A}^{g, b}
$$

Open-Closed SFT in the Large \mathbf{N} limit

- Open string fields are $\mathrm{N} \times \mathrm{N}$ matrices and the inner product has an understood trace. Use a normalized trace (finite in the large N limit)

$$
\begin{gathered}
\Psi=\psi_{i j}^{a} t^{i j} o_{a}, \quad\left(t^{i j}\right)_{p q}=\delta_{p}^{i} \delta_{q}^{j} \\
\operatorname{Tr}^{\prime}[M]:=\frac{1}{N} \operatorname{Tr}[M]
\end{gathered}
$$

- As well as normalized amplitudes

$$
\mathcal{A}^{\prime g, b}:=\frac{1}{N^{b}} \mathcal{A}^{g, b}
$$

- The O-C SFT action rearranges in a double expansion

Open-Closed SFT in the Large \mathbf{N} limit

- Open string fields are $\mathrm{N} \times \mathrm{N}$ matrices and the inner product has an understood trace. Use a normalized trace (finite in the large N limit)

$$
\begin{gathered}
\Psi=\psi_{i j}^{a} t^{i j} o_{a}, \quad\left(t^{i j}\right)_{p q}=\delta_{p}^{i} \delta_{q}^{j} \\
\operatorname{Tr}^{\prime}[M]:=\frac{1}{N} \operatorname{Tr}[M]
\end{gathered}
$$

- As well as normalized amplitudes

$$
\mathcal{A}^{\prime g, b}:=\frac{1}{N^{b}} \mathcal{A}^{g, b}:
$$

- The O-C SFT action rearranges in a double expansion
- 't Hooft coupling obviously emerges

$$
\lambda:=\kappa N . \quad \kappa^{2 g-2} \lambda^{b}=\frac{1}{N^{2 g-2}} \lambda^{2 g+b-2}
$$

Open-Closed SFT in the Large \mathbf{N} limit

Open-Closed SFT in the Large \mathbf{N} limit

- In the large N limit (at fixed 't Hooft coupling) only the genus zero part of the action contributes, spheres with many holes, counted by λ.

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \frac{1}{N^{2}} S_{\mathrm{oc}}[\Phi, \Psi] & =\sum_{b=0}^{\infty} \lambda^{b-2} \sum_{k=0}^{\infty} \sum_{\left\{l_{1}, \ldots, l_{b}\right\}=0}^{\infty} \frac{1}{b!k!\left(l_{1}\right) \cdots\left(l_{b}\right)} \mathcal{A}_{k ;\left\{l_{1}, \ldots, l_{b}\right\}}^{g=0, b}\left(\Phi^{\wedge k} \otimes^{\prime} \Psi^{\odot l_{1}} \wedge^{\prime} \ldots \wedge^{\prime} \Psi^{\odot l_{b}}\right) \\
& :=S_{\mathrm{pl}}[\Phi, \Psi]
\end{aligned}
$$

Open-Closed SFT in the Large \mathbf{N} limit

- In the large N limit (at fixed 't Hooft coupling) only the genus zero part of the action contributes, spheres with many holes, counted by λ.

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \frac{1}{N^{2}} S_{\mathrm{oc}}[\Phi, \Psi] & =\sum_{b=0}^{\infty} \lambda^{b-2} \sum_{k=0}^{\infty} \sum_{\left\{l_{1}, \ldots, l_{b}\right\}=0}^{\infty} \frac{1}{b!k!\left(l_{1}\right) \cdots\left(l_{b}\right)} \mathcal{A}_{k ;\left\{l_{1}, \ldots, l_{b}\right\}}^{g=0, b}\left(\Phi^{\wedge k} \otimes^{\prime} \Psi^{\odot l_{1}} \wedge^{\prime} \ldots \wedge^{\prime} \Psi^{\odot l_{b}}\right), \\
& :=S_{\mathrm{pl}}[\Phi, \Psi],
\end{aligned}
$$

- At the same time the basic (quantum) BV structures get rescaled

$$
\left.\Delta_{\mathrm{c}} \sim \frac{\lambda^{2}}{N^{2}} \quad \quad \Delta_{\mathrm{o}}\right|_{\text {different boundaries }}:=\left.\Delta_{o}^{(2)} \sim \frac{\lambda}{N^{2}} \quad \Delta_{\mathrm{o}}\right|_{\text {same boundary }}:=\Delta_{\mathrm{o}}^{(1)} \sim \lambda,
$$

Open-Closed SFT in the Large \mathbf{N} limit

- In the large N limit (at fixed 't Hooft coupling) only the genus zero part of the action contributes, spheres with many holes, counted by λ.

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \frac{1}{N^{2}} S_{\mathrm{oc}}[\Phi, \Psi] & =\sum_{b=0}^{\infty} \lambda^{b-2} \sum_{k=0}^{\infty} \sum_{\left\{l_{1}, \ldots, l_{b}\right\}=0}^{\infty} \frac{1}{b!k!\left(l_{1}\right) \cdots\left(l_{b}\right)} \mathcal{A}_{\left.k ; ; l_{1}, \ldots, l_{b}\right\}}^{g=0, b}\left(\Phi^{\wedge k} \otimes^{\prime} \Psi^{\odot l_{1}} \wedge^{\prime} \ldots \wedge^{\prime} \Psi^{\odot l_{b}}\right), \\
& :=S_{\mathrm{pl}}[\Phi, \Psi],
\end{aligned}
$$

- At the same time the basic (quantum) BV structures get rescaled

$$
\left.\Delta_{\mathrm{c}} \sim \frac{\lambda^{2}}{N^{2}} \quad \quad \Delta_{\mathrm{o}}\right|_{\text {different boundaries }}:=\left.\Delta_{\mathrm{o}}^{(2)} \sim \frac{\lambda}{N^{2}} \quad \Delta_{\mathrm{o}}\right|_{\text {same boundary }}:=\Delta_{\mathrm{o}}^{(1)} \sim \lambda,
$$

- So in the planar limit the BV master equation is just

$$
(S, S)_{\mathrm{c}}+(S, S)_{\mathrm{o}}+2 \Delta_{\mathrm{o}}^{(1)} S=0
$$

Open-Closed SFT in the Large \mathbf{N} limit

- In the large N limit (at fixed 't Hooft coupling) only the genus zero part of the action contributes, spheres with many holes, counted by λ.

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \frac{1}{N^{2}} S_{\mathrm{oc}}[\Phi, \Psi] & =\sum_{b=0}^{\infty} \lambda^{b-2} \sum_{k=0}^{\infty} \sum_{\left\{l_{1}, \ldots, l_{b}\right\}=0}^{\infty} \frac{1}{b!k!\left(l_{1}\right) \cdots\left(l_{b}\right)} \mathcal{A}_{\left.k ; ; l_{1}, \ldots, l_{b}\right\}}^{g=0, b}\left(\Phi^{\wedge k} \otimes^{\prime} \Psi^{\odot l_{1}} \wedge^{\prime} \ldots \wedge^{\prime} \Psi^{\odot l_{b}}\right), \\
& :=S_{\mathrm{pl}}[\Phi, \Psi],
\end{aligned}
$$

- At the same time the basic (quantum) BV structures get rescaled

$$
\left.\Delta_{\mathrm{c}} \sim \frac{\lambda^{2}}{N^{2}} \quad \quad \Delta_{\mathrm{o}}\right|_{\text {different boundaries }}:=\left.\Delta_{o}^{(2)} \sim \frac{\lambda}{N^{2}} \quad \Delta_{\mathrm{o}}\right|_{\text {same boundary }}:=\Delta_{o}^{(1)} \sim \lambda,
$$

- So in the planar limit the BV master equation is just

$$
(S, S)_{\mathrm{c}}+(S, S)_{\mathrm{o}}+2 \Delta_{\mathrm{o}}^{(1)} S=0
$$

- Classical closed strings + quantum (but planar) open strings.

What does it mean to INTEGRATE OUT open strings?

Integrating out open strings

Integrating out open strings

- Perform the perturbative (BV) path integral on open strings with a gauge fixing

$$
\left.\int \mathcal{D} \Psi e^{-S_{\mathrm{pl}}(\Phi, \Psi)}\right|_{h_{\mathrm{o}} \Psi=0}=e^{-S_{\mathrm{eff}}(\Phi)} \quad\left[Q_{o}, h_{o}\right]=1_{o}
$$

Integrating out open strings

- Perform the perturbative (BV) path integral on open strings with a gauge fixing

$$
\left.\int \mathcal{D} \Psi e^{-S_{\mathrm{pl}}(\Phi, \Psi)}\right|_{h_{\circ} \Psi=0}=e^{-S_{\mathrm{eff}}(\Phi)} \quad\left[Q_{o}, h_{o}\right]=1_{o}
$$

- This can be done by expanding the open string field in a basis and then doing the gaussian (saddle point) integration. Remarkable all-order result!

Integrating out open strings

- Perform the perturbative (BV) path integral on open strings with a gauge fixing

$$
\left.\int \mathcal{D} \Psi e^{-S_{\mathrm{pl}}(\Phi, \Psi)}\right|_{h_{\mathrm{o}} \Psi=0}=e^{-S_{\mathrm{eff}}(\Phi)} \quad\left[Q_{o}, h_{o}\right]=1_{o}
$$

- This can be done by expanding the open string field in a basis and then doing the gaussian (saddle point) integration. Remarkable all-order result!
- Rewrite in compact form the original UV action (use co-algebras)

$$
S_{\mathrm{pl}}(\Phi, \Psi)=\lim _{N \rightarrow \infty} \frac{1}{N^{2}} S_{\mathrm{oc}}(\Phi, \Psi)=\int_{0}^{1} d t\left(\frac{\omega_{\mathrm{c}}}{\lambda^{2}}\left(\dot{\Phi}, \pi_{10} \boldsymbol{l}^{(p)} \mathcal{G}\right)+\frac{\omega_{\mathrm{o}}^{\prime}}{\lambda}\left(\dot{\Psi}, \pi_{01} \boldsymbol{m}^{(p)} \mathcal{G}\right)\right)
$$

Integrating out open strings

- Perform the perturbative (BV) path integral on open strings with a gauge fixing

$$
\left.\int \mathcal{D} \Psi e^{-S_{\mathrm{pl}}(\Phi, \Psi)}\right|_{h_{\mathrm{o}} \Psi=0}=e^{-S_{\mathrm{eff}}(\Phi)} \quad\left[Q_{o}, h_{o}\right]=1_{o}
$$

- This can be done by expanding the open string field in a basis and then doing the gaussian (saddle point) integration. Remarkable all-order result!
- Rewrite in compact form the original UV action (use co-algebras)

$$
\left.\begin{array}{l}
S_{\mathrm{pl}}(\Phi, \Psi)=\lim _{N \rightarrow \infty} \frac{1}{N^{2}} S_{\mathrm{oc}}(\Phi, \Psi)=\int_{0}^{1} d t\left(\frac{\omega_{\mathrm{c}}}{\lambda^{2}}\left(\dot{\Phi}, \pi_{10} \boldsymbol{l}^{(p)} \mathcal{G}\right)+\frac{\omega_{\mathrm{o}}^{\prime}}{\lambda}\left(\dot{\Psi}, \pi_{01} \boldsymbol{m}^{(p)} \mathcal{G}\right)\right) \\
\boldsymbol{l}^{(p)}:=\sum_{b} \lambda^{b} \boldsymbol{l}^{\prime(0, b)}, \\
\boldsymbol{m}^{(p)}:=\sum_{b} \lambda^{b-1} \boldsymbol{m}^{\prime(0, b)},
\end{array} \quad \text { CODERIVATIONS (encode interactions+kinetic) }\right)
$$

Integrating out open strings

- Perform the perturbative (BV) path integral on open strings with a gauge fixing

$$
\left.\int \mathcal{D} \Psi e^{-S_{\mathrm{pl}}(\Phi, \Psi)}\right|_{h_{\mathrm{o}} \Psi=0}=e^{-S_{\mathrm{eff}}(\Phi)} \quad\left[Q_{o}, h_{o}\right]=1_{o}
$$

- This can be done by expanding the open string field in a basis and then doing the gaussian (saddle point) integration. Remarkable all-order result!
- Rewrite in compact form the original UV action (use co-algebras)

$$
\begin{aligned}
& S_{\mathrm{pl}}(\Phi, \Psi)=\lim _{N \rightarrow \infty} \frac{1}{N^{2}} S_{\mathrm{oc}}(\Phi, \Psi)=\int_{0}^{1} d t\left(\frac{\omega_{\mathrm{c}}}{\lambda^{2}}\left(\dot{\Phi}, \pi_{10} \boldsymbol{l}^{(p)} \mathcal{G}\right)+\frac{\omega_{\mathrm{o}}^{\prime}}{\lambda}\left(\dot{\Psi}, \pi_{01} \boldsymbol{m}^{(p)} \mathcal{G}\right)\right) \\
& \boldsymbol{l}^{(p)}:=\sum_{b} \lambda^{b} \boldsymbol{l}^{\boldsymbol{l}^{(0, b)},} \quad \text { CODERIVATIONS (encode interactions+kinetic) } \\
& \boldsymbol{m}^{(p)}:=\sum_{b} \lambda^{b-1} \boldsymbol{m}^{\prime(0, b)} . \quad \\
& \mathcal{G}:=e^{\wedge \Phi} \otimes^{\prime} e^{\wedge^{\prime} \mathcal{C}(\Psi)} \\
&= {\left[\sum_{k \geq 0} \frac{1}{k!} \Phi^{\wedge k}\right] \otimes^{\prime}\left[\sum_{b \geq 0} \frac{1}{b!}\left(\sum_{l_{1} \geq 0} \frac{1}{\left(l_{1}\right)} \Psi^{\odot l_{1}}\right) \wedge^{\prime} \cdots \wedge^{\prime}\left(\sum_{l_{b} \geq 0} \frac{1}{\left(l_{b}\right)} \Psi^{\odot l_{b}}\right)\right] \quad \text { GROUP ELEMENT } }
\end{aligned}
$$

- The open-closed action can be nicely packaged

$$
S_{\mathrm{pl}}(\Phi, \Psi)=\int_{0}^{1} \hat{\omega}^{\prime}\left(\dot{\chi}, \pi_{1} \boldsymbol{n}^{(p)} \mathcal{G}\right)
$$

- The open-closed action can be nicely packaged

$$
\begin{aligned}
& S_{\mathrm{pl}}(\Phi, \Psi)=\int_{0}^{1} \hat{\omega}^{\prime}\left(\dot{\chi}, \pi_{1} \boldsymbol{n}^{(p)} \mathcal{G}\right), \\
& \chi:=\Phi+\Psi=\left(\pi_{10}+\pi_{01}\right) \mathcal{G}=\pi_{1} \mathcal{G} \\
& \hat{\omega}^{\prime}\left(\chi_{1}, \chi_{2}\right):=\frac{\omega_{\mathrm{c}}}{\lambda^{2}}\left(\Phi_{1}, \Phi_{2}\right)+\frac{\omega_{\mathrm{o}}^{\prime}}{\lambda}\left(\Psi_{1}, \Psi_{2}\right) \\
& \boldsymbol{n}^{(p)}:=\boldsymbol{l}^{(p)}+\boldsymbol{m}^{(p)}
\end{aligned}
$$

- The open-closed action can be nicely packaged

$$
\begin{aligned}
& S_{\mathrm{pl}}(\Phi, \Psi)=\int_{0}^{1} \hat{\omega}^{\prime}\left(\dot{\chi}, \pi_{1} \boldsymbol{n}^{(p)} \mathcal{G}\right) \\
& \chi:=\Phi+\Psi=\left(\pi_{10}+\pi_{01}\right) \mathcal{G}=\pi_{1} \mathcal{G} \\
& \hat{\omega}^{\prime}\left(\chi_{1}, \chi_{2}\right):=\frac{\omega_{\mathrm{c}}}{\lambda^{2}}\left(\Phi_{1}, \Phi_{2}\right)+\frac{\omega_{\mathrm{o}}^{\prime}}{\lambda}\left(\Psi_{1}, \Psi_{2}\right) \\
& \boldsymbol{n}^{(p)}:=\boldsymbol{l}^{(p)}+\boldsymbol{m}^{(p)}
\end{aligned}
$$

- The full BV master equation reflects on the (full) coderivation \mathbf{n}

$$
\frac{1}{2}\left(S_{\mathrm{oc}}, S_{\mathrm{oc}}\right)+\Delta S_{\mathrm{oc}}=\int_{0}^{1} d t \hat{\omega}\left(\dot{\chi}, \pi_{1}(\boldsymbol{n}+\boldsymbol{U})^{2} \mathcal{G}(t)\right)
$$

- The open-closed action can be nicely packaged

$$
\begin{aligned}
& S_{\mathrm{pl}}(\Phi, \Psi)=\int_{0}^{1} \hat{\omega}^{\prime}\left(\dot{\chi}, \pi_{1} \boldsymbol{n}^{(p)} \mathcal{G}\right) \\
& \chi:=\Phi+\Psi=\left(\pi_{10}+\pi_{01}\right) \mathcal{G}=\pi_{1} \mathcal{G} \\
& \hat{\omega}^{\prime}\left(\chi_{1}, \chi_{2}\right):=\frac{\omega_{\mathrm{c}}}{\lambda^{2}}\left(\Phi_{1}, \Phi_{2}\right)+\frac{\omega_{\mathrm{o}}^{\prime}}{\lambda}\left(\Psi_{1}, \Psi_{2}\right) \\
& \boldsymbol{n}^{(p)}:=\boldsymbol{l}^{(p)}+\boldsymbol{m}^{(p)}
\end{aligned}
$$

- The full BV master equation reflects on the (full) coderivation \mathbf{n}

$$
\frac{1}{2}\left(S_{\mathrm{oc}}, S_{\mathrm{oc}}\right)+\Delta S_{\mathrm{oc}}=\int_{0}^{1} d t \hat{\omega}\left(\dot{\chi}, \pi_{1}(\boldsymbol{n}+\boldsymbol{U})^{2} \mathcal{G}(t)\right)
$$

- U is the so-called Poisson bi-vector, it creates (open or closed string) loops. It is the counterpart of the BV Δ.
- The open-closed action can be nicely packaged

$$
\begin{aligned}
& S_{\mathrm{pl}}(\Phi, \Psi)=\int_{0}^{1} \hat{\omega}^{\prime}\left(\dot{\chi}, \pi_{1} \boldsymbol{n}^{(p)} \mathcal{G}\right) \\
& \chi:=\Phi+\Psi=\left(\pi_{10}+\pi_{01}\right) \mathcal{G}=\pi_{1} \mathcal{G} \\
& \hat{\omega}^{\prime}\left(\chi_{1}, \chi_{2}\right):=\frac{\omega_{\mathrm{c}}}{\lambda^{2}}\left(\Phi_{1}, \Phi_{2}\right)+\frac{\omega_{\mathrm{o}}^{\prime}}{\lambda}\left(\Psi_{1}, \Psi_{2}\right) \\
& \boldsymbol{n}^{(p)}:=\boldsymbol{l}^{(p)}+\boldsymbol{m}^{(p)}
\end{aligned}
$$

- The full BV master equation reflects on the (full) coderivation \mathbf{n}

$$
\frac{1}{2}\left(S_{\mathrm{oc}}, S_{\mathrm{oc}}\right)+\Delta S_{\mathrm{oc}}=\int_{0}^{1} d t \hat{\omega}\left(\dot{\chi}, \pi_{1}(\boldsymbol{n}+\boldsymbol{U})^{2} \mathcal{G}(t)\right)
$$

- U is the so-called Poisson bi-vector, it creates (open or closed string) loops. It is the counterpart of the BV Δ.
- In the genus zero (planar sector) this implies

$$
\left(\boldsymbol{n}^{(p)}+\boldsymbol{U}^{(p)}\right)^{2}=0
$$

- The open-closed action can be nicely packaged

$$
\begin{aligned}
& S_{\mathrm{pl}}(\Phi, \Psi)=\int_{0}^{1} \hat{\omega}^{\prime}\left(\dot{\chi}, \pi_{1} \boldsymbol{n}^{(p)} \mathcal{G}\right) \\
& \chi:=\Phi+\Psi=\left(\pi_{10}+\pi_{01}\right) \mathcal{G}=\pi_{1} \mathcal{G} \\
& \hat{\omega}^{\prime}\left(\chi_{1}, \chi_{2}\right):=\frac{\omega_{\mathrm{c}}}{\lambda^{2}}\left(\Phi_{1}, \Phi_{2}\right)+\frac{\omega_{\mathrm{o}}^{\prime}}{\lambda}\left(\Psi_{1}, \Psi_{2}\right) \\
& \boldsymbol{n}^{(p)}:=\boldsymbol{l}^{(p)}+\boldsymbol{m}^{(p)}
\end{aligned}
$$

- The full BV master equation reflects on the (full) coderivation \mathbf{n}

$$
\frac{1}{2}\left(S_{\mathrm{oc}}, S_{\mathrm{oc}}\right)+\Delta S_{\mathrm{oc}}=\int_{0}^{1} d t \hat{\omega}\left(\dot{\chi}, \pi_{1}(\boldsymbol{n}+\boldsymbol{U})^{2} \mathcal{G}(t)\right)
$$

- U is the so-called Poisson bi-vector, it creates (open or closed string) loops. It is the counterpart of the BV Δ.
- In the genus zero (planar sector) this implies

This only creates planar open string loops!

- With this preparation, the path integral gives

$$
S_{\mathrm{eff}}(\Phi)=\int_{0}^{1} d t \frac{\omega_{\mathrm{c}}}{\lambda^{2}}\left(\dot{\Phi}, \pi_{1} \tilde{\boldsymbol{l}} e^{\wedge \Phi}\right)+\Lambda_{\mathrm{open}}
$$

- With this preparation, the path integral gives

$$
\begin{gathered}
S_{\mathrm{eff}}(\Phi)=\int_{0}^{1} d t \frac{\omega_{\mathrm{c}}}{\lambda^{2}}\left(\dot{\Phi}, \pi_{1} \tilde{\boldsymbol{l}} e^{\wedge \Phi}\right)+\Lambda_{\mathrm{open}} \\
\tilde{\boldsymbol{l}}=\boldsymbol{\Pi}_{\mathrm{c}} \boldsymbol{l}^{(p)} \frac{1}{1+\boldsymbol{h}_{\mathrm{o}}\left(\delta \boldsymbol{n}^{(p)}+\boldsymbol{U}^{(p)}\right)} \mathbf{I}_{\mathrm{c}}
\end{gathered}
$$

- With this preparation, the path integral gives

$$
\begin{gathered}
S_{\mathrm{eff}}(\Phi)=\int_{0}^{1} d t \frac{\omega_{\mathrm{c}}}{\lambda^{2}}\left(\dot{\Phi}, \pi_{1} \tilde{\boldsymbol{l}} e^{\wedge \Phi}\right)+\Lambda_{\mathrm{open}} \\
\tilde{\boldsymbol{l}}=\boldsymbol{\Pi}_{\mathrm{c}} \boldsymbol{l}^{(p)} \frac{1}{1+\boldsymbol{h}_{\mathrm{o}}\left(\delta \boldsymbol{n}^{(p)}+\boldsymbol{U}^{(p)}\right)} \mathbf{I}_{\mathrm{c}} \quad \text { Homotopy Transfer }
\end{gathered}
$$

- With this preparation, the path integral gives

$$
\begin{gathered}
S_{\mathrm{eff}}(\Phi)=\int_{0}^{1} d t \frac{\omega_{\mathrm{c}}}{\lambda^{2}}\left(\dot{\Phi}, \pi_{1} \tilde{\boldsymbol{l}} e^{\wedge \Phi}\right)+\Lambda_{\mathrm{open}} \\
\tilde{\boldsymbol{l}}=\boldsymbol{\Pi}_{\mathrm{c}} \boldsymbol{l}^{(p)} \frac{1}{1+\boldsymbol{h}_{\mathrm{o}}\left(\delta \boldsymbol{n}^{(p)}+\boldsymbol{U}^{(p)}\right)} \mathbf{I}_{\mathrm{c}} \quad \text { Homotopy Transfer } \\
\tilde{l}^{2}=0 \quad \rightarrow \quad\left(S_{\mathrm{eff}}(\Phi), S_{\mathrm{eff}}(\Phi)\right)=0
\end{gathered}
$$

- With this preparation, the path integral gives

$$
\begin{gathered}
S_{\mathrm{eff}}(\Phi)=\int_{0}^{1} d t \frac{\omega_{\mathrm{c}}}{\lambda^{2}}\left(\dot{\Phi}, \pi_{1} \tilde{\boldsymbol{l}} e^{\wedge \Phi}\right)+\Lambda_{\mathrm{open}} \\
\tilde{\boldsymbol{l}}=\boldsymbol{\Pi}_{\mathrm{c}} \boldsymbol{l}^{(p)} \frac{1}{1+\boldsymbol{h}_{\mathrm{o}}\left(\delta \boldsymbol{n}^{(p)}+\boldsymbol{U}^{(p)}\right)} \mathbf{I}_{\mathrm{c}} \quad \text { Homotopy Transfer } \\
\tilde{l}^{2}=0 \quad \rightarrow \quad\left(S_{\mathrm{eff}}(\Phi), S_{\mathrm{eff}}(\Phi)\right)=0
\end{gathered}
$$

- Essentially this is resumming all amplitudes with external closed strings with arbitrary intermediate open strings.

$$
\begin{aligned}
S_{\text {eff }}(\Phi) & =\sum_{b=0}^{\infty} \lambda^{b-2} \sum_{k=0}^{\infty} \frac{1}{b!k!} \mathcal{A}_{k}^{\prime \prime g=0, b}\left(\Phi^{\wedge k}\right), \\
\mathcal{A}^{\prime \prime g=0, b}\left(\Phi_{1} \wedge \cdots \wedge \Phi_{k+1}\right) & =\omega_{\mathrm{c}}\left(\Phi_{1}, \tilde{l}_{k}^{(b)}\left(\Phi_{2} \wedge \cdots \wedge \Phi_{k+1}\right)\right), \\
\tilde{l}_{k} & =\pi_{1} \tilde{l}_{k}=\sum_{b=0}^{\infty} \lambda^{b} \tilde{l}_{k}^{(b)} .
\end{aligned}
$$

- With this preparation, the path integral gives

$$
\begin{gathered}
S_{\mathrm{eff}}(\Phi)=\int_{0}^{1} d t \frac{\omega_{\mathrm{c}}}{\lambda^{2}}\left(\dot{\Phi}, \pi_{1} \tilde{\boldsymbol{l}} e^{\wedge \Phi}\right)+\Lambda_{\mathrm{open}} \\
\tilde{\boldsymbol{l}}=\boldsymbol{\Pi}_{\mathrm{c}} \boldsymbol{l}^{(p)} \frac{1}{1+\boldsymbol{h}_{\mathrm{o}}\left(\delta \boldsymbol{n}^{(p)}+\boldsymbol{U}^{(p)}\right)} \mathbf{I}_{\mathrm{c}} \quad \text { Homotopy Transfer } \\
\tilde{l}^{2}=0 \quad \rightarrow \quad\left(S_{\mathrm{eff}}(\Phi), S_{\mathrm{eff}}(\Phi)\right)=0
\end{gathered}
$$

- Essentially this is resumming all amplitudes with external closed strings with arbitrary intermediate open strings.

$$
\begin{aligned}
S_{\text {eff }}(\Phi) & =\sum_{b=0}^{\infty} \lambda^{b-2} \sum_{k=0}^{\infty} \frac{1}{b!k!} \mathcal{A}^{\prime \prime g} g_{k}^{k, b}\left(\Phi^{\wedge k}\right), \\
\mathcal{A}^{\prime \prime g=0, b}\left(\Phi_{1} \wedge \cdots \wedge \Phi_{k+1}\right) & =\omega_{c}\left(\Phi_{1}, \tilde{i}_{k}^{(b)}\left(\Phi_{2} \wedge \cdots \wedge \Phi_{k+1}\right)\right), \\
\tilde{l}_{k} & =\pi_{1} \tilde{l}_{k}=\sum_{b=0}^{\infty} \lambda^{b} \hat{l}_{k}^{(b)} .
\end{aligned}
$$

- Closed string off-shell amplitudes on $\mathrm{g}=0$ Riemann surfaces with boundaries, with moduli-space integration carried over all the way down to open string degeneration, but still cut-off at closed string degeneration.

Obstructions to Integrating out open strings

Obstructions to Integrating out open strings

- To perform the full integration-out we had to assume that the open string propagator fully inverts the BRST operator

$$
\left[Q_{o}, h_{o}\right] \sim\left[Q_{o}, \frac{b_{0}}{L_{0}}\right]=1
$$

Obstructions to Integrating out open strings

- To perform the full integration-out we had to assume that the open string propagator fully inverts the BRST operator

$$
\left[Q_{o}, h_{o}\right] \sim\left[Q_{o}, \frac{b_{0}}{L_{0}}\right]=1
$$

- However that is not fully correct! Open string cohomology cannot be integrated out!

Obstructions to Integrating out open strings

- To perform the full integration-out we had to assume that the open string propagator fully inverts the BRST operator

$$
\left[Q_{o}, h_{o}\right] \sim\left[Q_{o}, \frac{b_{0}}{L_{0}}\right]=1
$$

- However that is not fully correct! Open string cohomology cannot be integrated out!
- This physically means that the obtained closed string action can produce open string intermediate poles.

Obstructions to Integrating out open strings

- To perform the full integration-out we had to assume that the open string propagator fully inverts the BRST operator

$$
\left[Q_{o}, h_{o}\right] \sim\left[Q_{o}, \frac{b_{0}}{L_{0}}\right]=1
$$

- However that is not fully correct! Open string cohomology cannot be integrated out!
- This physically means that the obtained closed string action can produce open string intermediate poles.
- But then unitarity forces to introduce back these resonating open strings as external states.

Obstructions to Integrating out open strings

- To perform the full integration-out we had to assume that the open string propagator fully inverts the BRST operator

$$
\left[Q_{o}, h_{o}\right] \sim\left[Q_{o}, \frac{b_{0}}{L_{0}}\right]=1
$$

- However that is not fully correct! Open string cohomology cannot be integrated out!
- This physically means that the obtained closed string action can produce open string intermediate poles.
- But then unitarity forces to introduce back these resonating open strings as external states.
- Way out? ASSUME that the open string cohomology does not propagate. Strong constraint on the chosen string background!

Obstructions to Integrating out open strings

- To perform the full integration-out we had to assume that the open string propagator fully inverts the BRST operator

$$
\left[Q_{o}, h_{o}\right] \sim\left[Q_{o}, \frac{b_{0}}{L_{0}}\right]=1
$$

- However that is not fully correct! Open string cohomology cannot be integrated out!
- This physically means that the obtained closed string action can produce open string intermediate poles.
- But then unitarity forces to introduce back these resonating open strings as external states.
- Way out? ASSUME that the open string cohomology does not propagate. Strong constraint on the chosen string background!
- Amazingly this precisely happens in minimal string theory and in the topological string, perhaps in other scenarios as well.

What is an UNSTABLE Closed SFT?

The unstable closed string theory

The unstable closed string theory

- Assuming we safely survived the open string integration-out, let's then have a closer look at the obtained closed SFT

$$
\begin{aligned}
S_{\mathrm{eff}}(\Phi) & =\sum_{b=0}^{\infty} \lambda^{b-2} \sum_{k=0}^{\infty} \frac{1}{b!k!} \mathcal{A}_{k}^{\prime \prime g=0, b}\left(\Phi^{\wedge k}\right), \\
\mathcal{A}_{k+1}^{\prime \prime g=0, b}\left(\Phi_{1} \wedge \cdots \wedge \Phi_{k+1}\right) & =\omega_{\mathrm{c}}\left(\Phi_{1}, \tilde{l}_{k}^{(b)}\left(\Phi_{2} \wedge \cdots \wedge \Phi_{k+1}\right)\right) \\
\tilde{l}_{k} & =\pi_{1} \tilde{\boldsymbol{l}}_{1} \pi_{k}=\sum_{b=0}^{\infty} \lambda^{b} \tilde{l}_{k}^{(b)} .
\end{aligned}
$$

The unstable closed string theory

- Assuming we safely survived the open string integration-out, let's then have a closer look at the obtained closed SFT

$$
\begin{aligned}
S_{\mathrm{eff}}(\Phi) & =\sum_{b=0}^{\infty} \lambda^{b-2} \sum_{k=0}^{\infty} \frac{1}{b!k!} \mathcal{A}_{k}^{\prime \prime g=0, b}\left(\Phi^{\wedge k}\right), \\
\mathcal{A}_{k+1}^{\prime \prime g=0, b}\left(\Phi_{1} \wedge \cdots \wedge \Phi_{k+1}\right) & =\omega_{\mathrm{c}}\left(\Phi_{1}, \tilde{l}_{k}^{(b)}\left(\Phi_{2} \wedge \cdots \wedge \Phi_{k+1}\right)\right) \\
\tilde{l}_{k} & =\pi_{1} \tilde{\boldsymbol{l}}_{k}=\sum_{b=0}^{\infty} \lambda^{b} \tilde{l}_{k}^{(b)} .
\end{aligned}
$$

- There is a tadpole!

$$
\tilde{\tau}_{0}=\sum_{b=1}^{\infty} \lambda^{\boldsymbol{b}} \tilde{l}_{0}^{(b)}
$$

The unstable closed string theory

- Assuming we safely survived the open string integration-out, let's then have a closer look at the obtained closed SFT

$$
\begin{aligned}
S_{\text {eff }}(\Phi) & =\sum_{b=0}^{\infty} \lambda^{b-2} \sum_{k=0}^{\infty} \frac{1}{b!k!} \mathcal{A}_{k}^{\prime \prime g=0, b}\left(\Phi^{\wedge k}\right), \\
\mathcal{A}_{k+1}^{\prime \prime g=0, b}\left(\Phi_{1} \wedge \cdots \wedge \Phi_{k+1}\right) & =\omega_{c}\left(\Phi_{1} \tilde{i}_{k}^{(b)}\left(\Phi_{2} \wedge \cdots \wedge \Phi_{k+1}\right)\right), \\
\tilde{l}_{k} & =\pi_{1} \tilde{l}_{k}=\sum_{b=0}^{\infty} \lambda^{b} \hat{l}_{k}^{(b)} .
\end{aligned}
$$

- There is a tadpole!

$$
\tilde{l}_{0}=\sum_{b=1}^{\infty} \lambda^{h_{0}^{(b)}}
$$

- Closed string emission from surfaces with boundaries (disk, annulus etc...) controlled by the 't Hooft coupling!

What does it mean to absorb the sources to end up with a STABLE Closed SFT?

Canceling the tadpole

Canceling the tadpole

- As usual in (quantum) field theory we have to search for a new vacuum with stable fluctuations. The tadpole is a source term, solve the sourced equation of motion!

$$
\sum_{k=1}^{\infty} \frac{1}{k!} \tilde{l}_{k}\left(\Phi^{\wedge k}\right)=-\tilde{l}_{0}
$$

Canceling the tadpole

- As usual in (quantum) field theory we have to search for a new vacuum with stable fluctuations. The tadpole is a source term, solve the sourced equation of motion!

$$
\sum_{k=1}^{\infty} \frac{1}{k!} \tilde{l}_{k}\left(\Phi^{\wedge k}\right)=-\tilde{l}_{0}
$$

- This seems daunting, but we can work perturbatively in the 't Hooft coupling

$$
\begin{aligned}
\Phi & =\sum_{n=1}^{\infty} \lambda^{n} \Phi_{n}, \\
O(\lambda): & Q_{\mathrm{c}} \Phi_{1}=-\tilde{l}_{0}^{(1)} \\
O\left(\lambda^{2}\right): & Q_{\mathrm{c}} \Phi_{2}=-\frac{1}{2} \tilde{l}_{2}^{(0)}\left(\Phi_{1}^{\wedge 2}\right)-\tilde{l}_{1}^{(1)}\left(\Phi_{1}\right)-\tilde{l}_{0}^{(2)} \\
O\left(\lambda^{3}\right) & : Q_{\mathrm{c}} \Phi_{3}=-\frac{1}{6} \tilde{\tilde{l}}_{3}^{(0)}\left(\Phi_{1}^{\wedge 3}\right)-\tilde{l}_{2}^{(0)}\left(\Phi_{1} \wedge \Phi_{2}\right)-\frac{1}{2} \tilde{l}_{2}^{(1)}\left(\Phi_{1}^{\wedge 2}\right)-\tilde{l}_{1}^{(1)}\left(\Phi_{2}\right)-\tilde{l}_{1}^{(2)}\left(\Phi_{1}\right)-\tilde{l}_{0}^{(3)}
\end{aligned}
$$

Canceling the tadpole

- As usual in (quantum) field theory we have to search for a new vacuum with stable fluctuations. The tadpole is a source term, solve the sourced equation of motion!

$$
\sum_{k=1}^{\infty} \frac{1}{k!} \tilde{l}_{k}\left(\Phi^{\wedge k}\right)=-\tilde{l}_{0}
$$

- This seems daunting, but we can work perturbatively in the 't Hooft coupling

$$
\begin{aligned}
\Phi & =\sum_{n=1}^{\infty} \lambda^{n} \Phi_{n}, \\
O(\lambda): & Q_{\mathrm{c}} \Phi_{1}=-\tilde{l}_{0}^{(1)} \\
O\left(\lambda^{2}\right): & Q_{\mathrm{c}} \Phi_{2}=-\frac{1}{2} \tilde{l}_{2}^{(0)}\left(\Phi_{1}^{\wedge 2}\right)-\tilde{l}_{1}^{(1)}\left(\Phi_{1}\right)-\tilde{l}_{0}^{(2)} \\
O\left(\lambda^{3}\right) & : Q_{\mathrm{c}} \Phi_{3}=-\frac{1}{6} \tilde{\tau}_{3}^{(0)}\left(\Phi_{1}^{\wedge 3}\right)-\tilde{l}_{2}^{(0)}\left(\Phi_{1} \wedge \Phi_{2}\right)-\frac{1}{2} \tilde{l}_{2}^{(1)}\left(\Phi_{1}^{\wedge 2}\right)-\tilde{l}_{1}^{(1)}\left(\Phi_{2}\right)-\tilde{l}_{1}^{(2)}\left(\Phi_{1}\right)-\tilde{l}_{0}^{(3)}
\end{aligned}
$$

- Notice in particular that $\tilde{l}_{0}^{(1)}$ is essentially the boundary state.

$$
\Phi_{1}=-\frac{b_{0}^{+}}{L_{0}^{+}} \tilde{l}_{0}^{(1)}
$$

The stable theory

The stable theory

- Expand the action around the vacuum shift solution $\Phi_{*}(\lambda)$

$$
S(\varphi):=S_{\mathrm{eff}}\left(\Phi_{*}(\lambda)+\varphi\right)=\int_{0}^{1} d t \frac{\omega_{\mathrm{c}}}{\lambda^{2}}\left(\dot{\varphi}, \pi_{1} \tilde{\boldsymbol{l}}_{*} e^{\wedge \varphi}\right)+\Lambda_{\mathrm{open}}+\Lambda_{0}+\Lambda_{\mathrm{closed}}
$$

The stable theory

- Expand the action around the vacuum shift solution $\Phi_{*}(\lambda)$

$$
S(\varphi):=S_{\mathrm{eff}}\left(\Phi_{*}(\lambda)+\varphi\right)=\int_{0}^{1} d t \frac{\omega_{\mathrm{c}}}{\lambda^{2}}\left(\dot{\varphi}, \pi_{1} \tilde{l}_{*} e^{\wedge \varphi}\right)+\Lambda_{\mathrm{open}}+\Lambda_{0}+\Lambda_{\mathrm{closed}}
$$

- The tadpole has disappeared and produced extra vacuum energy (genus zero string theory partition function)

$$
\Lambda_{\text {tot }}=\Lambda_{\text {open }}+\Lambda_{0}+\Lambda_{\text {closed }}=\sum_{b=1}^{\infty} \lambda^{b-2} \Lambda_{b}
$$

The stable theory

- Expand the action around the vacuum shift solution $\Phi_{*}(\lambda)$

$$
S(\varphi):=S_{\mathrm{eff}}\left(\Phi_{*}(\lambda)+\varphi\right)=\int_{0}^{1} d t \frac{\omega_{\mathrm{c}}}{\lambda^{2}}\left(\dot{\varphi}, \pi_{1} \tilde{l}_{*} e^{\wedge \varphi}\right)+\Lambda_{\mathrm{open}}+\Lambda_{0}+\Lambda_{\mathrm{closed}}
$$

- The tadpole has disappeared and produced extra vacuum energy (genus zero string theory partition function)

$$
\Lambda_{\text {tot }}=\Lambda_{\text {open }}+\Lambda_{0}+\Lambda_{\text {closed }}=\sum_{b=1}^{\infty} \lambda^{b-2} \Lambda_{b}
$$

- Spectrum on this stable background can be studied looking at the quadratic term

$$
\begin{gathered}
S_{2}(\varphi)=\frac{1}{2 \lambda^{2}} \omega_{\mathrm{c}}\left(\varphi, \tilde{l}_{1}^{*} \varphi\right) \\
\tilde{l}_{1}^{*}=\pi_{1} \tilde{\boldsymbol{l}}_{*} \pi_{1}=Q_{\mathrm{c}}+\sum_{b=1}^{\infty} \lambda^{b} \tilde{l}_{1}^{*(b)}
\end{gathered}
$$

The stable theory

- Expand the action around the vacuum shift solution $\Phi_{*}(\lambda)$

$$
S(\varphi):=S_{\mathrm{eff}}\left(\Phi_{*}(\lambda)+\varphi\right)=\int_{0}^{1} d t \frac{\omega_{\mathrm{c}}}{\lambda^{2}}\left(\dot{\varphi}, \pi_{1} \tilde{l}_{*} e^{\wedge \varphi}\right)+\Lambda_{\mathrm{open}}+\Lambda_{0}+\Lambda_{\mathrm{closed}}
$$

- The tadpole has disappeared and produced extra vacuum energy (genus zero string theory partition function)

$$
\Lambda_{\text {tot }}=\Lambda_{\text {open }}+\Lambda_{0}+\Lambda_{\text {closed }}=\sum_{b=1}^{\infty} \lambda^{b-2} \Lambda_{b}
$$

- Spectrum on this stable background can be studied looking at the quadratic term

$$
\begin{gathered}
S_{2}(\varphi)=\frac{1}{2 \lambda^{2}} \omega_{\mathrm{c}}\left(\varphi, \tilde{l}_{1}^{*} \varphi\right) \\
\tilde{l}_{1}^{*}=\pi_{1} \tilde{l}_{*} \pi_{1}=Q_{\mathrm{c}}+\sum_{b=1}^{\infty} \lambda^{\lambda} \tilde{l}_{1}^{*(b)}
\end{gathered}
$$

- Everything is doable by working perturbatively in the 't Hooft coupling

Obstructions to the closed string vacuum shift

Obstructions to the closed string vacuum shift

- Looking at the perturbative equations

$$
\begin{aligned}
\Phi & =\sum_{n=1}^{\infty} \lambda^{n} \Phi_{n}, \\
O(\lambda): & Q_{\mathrm{c}} \Phi_{1}=-\tilde{l}_{0}^{(1)} \\
O\left(\lambda^{2}\right): & Q_{\mathrm{c}} \Phi_{2}=-\frac{1}{2} \tilde{l}_{2}^{(0)}\left(\Phi_{1}^{\wedge 2}\right)-\tilde{\imath}_{1}^{(1)}\left(\Phi_{1}\right)-\tilde{l}_{0}^{(2)} \\
O\left(\lambda^{3}\right): & Q_{\mathrm{c}} \Phi_{3}=-\frac{1}{6} \tilde{f}_{3}^{(0)}\left(\Phi_{1}^{\wedge 3}\right)-\tilde{\tau}_{2}^{(0)}\left(\Phi_{1} \wedge \Phi_{2}\right)-\frac{1}{2} \tilde{l}_{2}^{(1)}\left(\Phi_{1}^{\wedge 2}\right)-\tilde{l}_{1}^{(1)}\left(\Phi_{2}\right)-\tilde{\imath}_{1}^{(2)}\left(\Phi_{1}\right)-\tilde{l}_{0}^{(3)}
\end{aligned}
$$

Obstructions to the closed string vacuum shift

- Looking at the perturbative equations

$$
\begin{aligned}
\Phi & =\sum_{n=1}^{\infty} \lambda^{n} \Phi_{n}, \\
O(\lambda) & : Q_{\mathrm{c}} \Phi_{1}=-\tilde{l}_{0}^{(1)} \\
O\left(\lambda^{2}\right): & Q_{\mathrm{c}} \Phi_{2}=-\frac{1}{2} \tilde{l}_{2}^{(0)}\left(\Phi_{1}^{\wedge 2}\right)-\tilde{l}_{1}^{(1)}\left(\Phi_{1}\right)-\tilde{l}_{0}^{(2)} \\
O\left(\lambda^{3}\right): & Q_{\mathrm{c}} \Phi_{3}=-\frac{1}{6} \tilde{l}_{3}^{(0)}\left(\Phi_{1}^{\wedge 3}\right)-\tilde{l}_{2}^{(0)}\left(\Phi_{1} \wedge \Phi_{2}\right)-\frac{1}{2} \tilde{l}_{2}^{(1)}\left(\Phi_{1}^{\wedge 2}\right)-\tilde{l}_{1}^{(1)}\left(\Phi_{2}\right)-\tilde{l}_{1}^{(2)}\left(\Phi_{1}\right)-\tilde{l}_{0}^{(3)}
\end{aligned}
$$

- This time the possible obstructions are associated to the closed string cohomology.

Obstructions to the closed string vacuum shift

- Looking at the perturbative equations

$$
\begin{aligned}
\Phi= & \sum_{n=1}^{\infty} \lambda^{n} \Phi_{n} \\
O(\lambda): & Q_{\mathrm{c}} \Phi_{1}=-\tilde{l}_{0}^{(1)} \\
O\left(\lambda^{2}\right): & Q_{\mathrm{c}} \Phi_{2}=-\frac{1}{2} \tilde{l}_{2}^{(0)}\left(\Phi_{1}^{\wedge 2}\right)-\tilde{l}_{1}^{(1)}\left(\Phi_{1}\right)-\tilde{l}_{0}^{(2)} \\
O\left(\lambda^{3}\right): & Q_{\mathrm{c}} \Phi_{3}=-\frac{1}{6} \tilde{l}_{3}^{(0)}\left(\Phi_{1}^{\wedge 3}\right)-\tilde{l}_{2}^{(0)}\left(\Phi_{1} \wedge \Phi_{2}\right)-\frac{1}{2} \tilde{l}_{2}^{(1)}\left(\Phi_{1}^{\wedge 2}\right)-\tilde{l}_{1}^{(1)}\left(\Phi_{2}\right)-\tilde{l}_{1}^{(2)}\left(\Phi_{1}\right)-\tilde{l}_{0}^{(3)}
\end{aligned}
$$

- This time the possible obstructions are associated to the closed string cohomology.
- At $O(\lambda)$ this is fully analogous to the formation of the Newton/Coulomb potential out of a point like charge (which is obstructed if the transverse space is compact)

Obstructions to the closed string vacuum shift

- Looking at the perturbative equations

$$
\begin{aligned}
\Phi= & \sum_{n=1}^{\infty} \lambda^{n} \Phi_{n} \\
O(\lambda): & Q_{\mathrm{c}} \Phi_{1}=-\tilde{l}_{0}^{(1)} \\
O\left(\lambda^{2}\right): & Q_{\mathrm{c}} \Phi_{2}=-\frac{1}{2} \tilde{l}_{2}^{(0)}\left(\Phi_{1}^{\wedge 2}\right)-\tilde{l}_{1}^{(1)}\left(\Phi_{1}\right)-\tilde{l}_{0}^{(2)} \\
O\left(\lambda^{3}\right): & Q_{\mathrm{c}} \Phi_{3}=-\frac{1}{6} \tilde{l}_{3}^{(0)}\left(\Phi_{1}^{\wedge 3}\right)-\tilde{l}_{2}^{(0)}\left(\Phi_{1} \wedge \Phi_{2}\right)-\frac{1}{2} \tilde{l}_{2}^{(1)}\left(\Phi_{1}^{\wedge 2}\right)-\tilde{l}_{1}^{(1)}\left(\Phi_{2}\right)-\tilde{l}_{1}^{(2)}\left(\Phi_{1}\right)-\tilde{l}_{0}^{(3)}
\end{aligned}
$$

- This time the possible obstructions are associated to the closed string cohomology.
- At $O(\lambda)$ this is fully analogous to the formation of the Newton/Coulomb potential out of a point like charge (which is obstructed if the transverse space is compact)
- At higher order I don't know precisely, but it is clear that this has to do with large distance effects (IR structure).

Example: FZZT branes in the $(2,1)$ Minimal String Theory

MINIMAL STRING THEORY

MINIMAL STRING THEORY

- It is a peculiar bosonic non-critical string. (p, q) minimal model + Liouville + bc ghosts

$$
c_{p, q}=1-6 \frac{(p-q)^{2}}{p q}, \quad c_{\text {Liouv }}=26-c_{p, q}, \quad c_{b c}=-26
$$

MINIMAL STRING THEORY

- It is a peculiar bosonic non-critical string. (p, q) minimal model + Liouville + bc ghosts

$$
c_{p, q}=1-6 \frac{(p-q)^{2}}{p q}, \quad c_{\text {Liouv }}=26-c_{p, q}, \quad c_{b c}=-26
$$

- Consider the series $(2,2 k+1)$ and in particular sit at the special point $\mathbf{k}=\mathbf{0}$ $c=-2$ (Gaiotto-Rastelli '03)

MINIMAL STRING THEORY

- It is a peculiar bosonic non-critical string. (p, q) minimal model + Liouville + bc ghosts

$$
c_{p, q}=1-6 \frac{(p-q)^{2}}{p q}, \quad c_{\text {Liouv }}=26-c_{p, q}, \quad c_{b c}=-26
$$

- Consider the series $(2,2 k+1)$ and in particular sit at the special point $\mathbf{k}=\mathbf{0}$ $c=-2$ (Gaiotto-Rastelli '03)
- This bulk CFT can be deformed by physical closed string states

$$
\begin{gathered}
\left\{\mathcal{O}_{2 m+1}\right\}, m=0,1,2, \cdot \\
\log \mathcal{Z}^{\text {closed }}\left(g_{s}, t_{n}\right)=\sum_{g=0}^{\infty} g_{s}^{2 g-2}\left\langle\exp \left(\sum_{n \text { odd }} t_{n} \mathcal{O}_{n}\right)\right\rangle_{g}
\end{gathered}
$$

MINIMAL STRING THEORY

- It is a peculiar bosonic non-critical string. (p, q) minimal model + Liouville + bc ghosts

$$
c_{p, q}=1-6 \frac{(p-q)^{2}}{p q}, \quad c_{\text {Liouv }}=26-c_{p, q}, \quad c_{b c}=-26
$$

- Consider the series $(2,2 k+1)$ and in particular sit at the special point $\mathbf{k}=\mathbf{0}$ $c=-2$ (Gaiotto-Rastelli '03)
- This bulk CFT can be deformed by physical closed string states

$$
\begin{gathered}
\left\{\mathcal{O}_{2 m+1}\right\}, m=0,1,2, \cdot \\
\log \mathcal{Z}^{\text {closed }}\left(g_{s}, t_{n}\right)=\sum_{g=0}^{\infty} g_{s}^{2 g-2}\left\langle\exp \left(\sum_{n \text { odd }} t_{n} \mathcal{O}_{n}\right)\right\rangle_{g}
\end{gathered}
$$

- In this way we can move in $(2, p)$ bulk moduli space. (SFT:continuous solutions of pure closed SFT initially formulated at the $(2,1)$ point).

MINIMAL STRING THEORY

- It is a peculiar bosonic non-critical string. (p, q) minimal model + Liouville + bc ghosts

$$
c_{p, q}=1-6 \frac{(p-q)^{2}}{p q}, \quad c_{\text {Liouv }}=26-c_{p, q}, \quad c_{b c}=-26
$$

- Consider the series $(2,2 k+1)$ and in particular sit at the special point $\mathbf{k}=\mathbf{0}$ $c=-2$ (Gaiotto-Rastelli '03)
- This bulk CFT can be deformed by physical closed string states

$$
\begin{gathered}
\left\{\mathcal{O}_{2 m+1}\right\}, m=0,1,2, \cdots \\
\log \mathcal{Z}^{\text {cosed }}\left(g_{s}, t_{n}\right)=\sum_{g=0}^{\infty} g_{s}^{2 g-2}\left\langle\exp \left(\sum_{n \text { odd }} t_{n} \mathcal{O}_{n}\right)\right\rangle_{g}
\end{gathered}
$$

- In this way we can move in $(2, p)$ bulk moduli space. (SFT:continuous solutions of pure closed SFT initially formulated at the $(2,1)$ point).
- This is the closed string side of the story.

BACKREACTION OF FZZT BRANES

BACKREACTION OF FZZT BRANES

- Instead of deforming the bulk with the $\left\{O_{2 k+1}\right\}$, we can add special D-branes: FZZT branes

$$
\begin{gathered}
\left.|\mathcal{B}(z)\rangle=\left|\mathcal{B}_{\Theta}^{\text {Dirichlet }}\right\rangle \otimes\left|\operatorname{FZZT}\left(\mu_{B}=z\right) \otimes\right| \mathcal{B}_{\text {ghost }}\right\rangle \\
\left|\operatorname{FZZT}\left(\mu_{B}\right)\right\rangle=\int_{0}^{\infty} d P \Psi\left(\mu_{B}, P\right)\left|\frac{Q}{2}+i P\right\rangle
\end{gathered}
$$

BACKREACTION OF FZZT BRANES

- Instead of deforming the bulk with the $\left\{O_{2 k+1}\right\}$, we can add special D-branes:

FZZT branes

$$
\begin{gathered}
\left.|\mathcal{B}(z)\rangle=\left|\mathcal{B}_{\Theta}^{\text {Dirichlet }}\right\rangle \otimes\left|\operatorname{FZZT}\left(\mu_{B}=z\right) \otimes\right| \mathcal{B}_{\text {ghost }}\right\rangle \\
\left|\operatorname{FZZT}\left(\mu_{B}\right)\right\rangle=\int_{0}^{\infty} d P \Psi\left(\mu_{B}, P\right)\left|\frac{Q}{2}+i P\right\rangle
\end{gathered}
$$

- Gaiotto Rastelli: placing a large N number of FZZT branes with open string moduli $\left\{z_{i}\right\}$ is the same as deforming the pure $(2,1)$ closed string background

$$
\mathcal{Z}^{\text {open }}\left(g_{s},\left\{z_{i}\right\}\right)=\mathcal{Z}^{\text {closed }}\left(g_{s},\left\{t_{k}=g_{s} \sum_{i} \frac{1}{k z_{i}^{k}}\right\}\right)
$$

BACKREACTION OF FZZT BRANES

- Instead of deforming the bulk with the $\left\{O_{2 k+1}\right\}$, we can add special D-branes:

FZZT branes

$$
\begin{gathered}
\left.|\mathcal{B}(z)\rangle=\left|\mathcal{B}_{\Theta}^{\text {Dirichlet }}\right\rangle \otimes\left|\operatorname{FZZT}\left(\mu_{B}=z\right) \otimes\right| \mathcal{B}_{\text {ghost }}\right\rangle \\
\left|\operatorname{FZZT}\left(\mu_{B}\right)\right\rangle=\int_{0}^{\infty} d P \Psi\left(\mu_{B}, P\right)\left|\frac{Q}{2}+i P\right\rangle
\end{gathered}
$$

- Gaiotto Rastelli: placing a large N number of FZZT branes with open string moduli $\left\{z_{i}\right\}$ is the same as deforming the pure $(2,1)$ closed string background

$$
\mathcal{Z}^{\text {open }}\left(g_{s},\left\{z_{i}\right\}\right)=\mathcal{Z}^{\text {closed }}\left(g_{s},\left\{t_{k}=g_{s} \sum_{i} \frac{1}{k z_{i}^{k}}\right\}\right)
$$

- So this looks like a perfect playground for testing our picture. Are the open and closed obstructions avoided??

Obstructions in turning FZZT's into pure `geometry'?

Obstructions in turning FZZT's into pure `geometry'?

- On the FZZT there are `physical' open string states

$$
\left|T_{i j}\right\rangle \equiv e^{b \phi} c_{1}|0\rangle_{i j}
$$

Obstructions in turning FZZT's into pure `geometry’?

- On the FZZT there are `physical' open string states

$$
\left|T_{i j}\right\rangle \equiv e^{b \phi} c_{1}|0\rangle_{i j}
$$

- Although these are formally in the open string cohomology, the structure of the theory (DOZZ formula) is such that they are never produced as internal states! They only exists as `external’ states! NO OPEN STRING OBSTRUCTIONS

Obstructions in turning FZZT's into pure `geometry’?

- On the FZZT there are `physical' open string states

$$
\left|T_{i j}\right\rangle \equiv e^{b \phi} c_{1}|0\rangle_{i j}
$$

- Although these are formally in the open string cohomology, the structure of the theory (DOZZ formula) is such that they are never produced as internal states! They only exists as `external’ states! NO OPEN STRING OBSTRUCTIONS
- In fact there is more: in the pure OSFT action only gets contributions from such states $\longrightarrow>$ localisation to Kontsevich matrix integral

Obstructions in turning FZZT's into pure `geometry’?

- On the FZZT there are `physical' open string states

$$
\left|T_{i j}\right\rangle \equiv e^{b \phi} c_{1}|0\rangle_{i j}
$$

- Although these are formally in the open string cohomology, the structure of the theory (DOZZ formula) is such that they are never produced as internal states! They only exists as `external’ states! NO OPEN STRING OBSTRUCTIONS
- In fact there is more: in the pure OSFT action only gets contributions from such states $\longrightarrow>$ localisation to Kontsevich matrix integral
- Indeed this is an example in which open strings can be integrated out completely (path integral —> matrix integral)

Obstructions in turning FZZT's into pure `geometry’?

- On the FZZT there are `physical' open string states

$$
\left|T_{i j}\right\rangle \equiv e^{b \phi} c_{1}|0\rangle_{i j}
$$

- Although these are formally in the open string cohomology, the structure of the theory (DOZZ formula) is such that they are never produced as internal states! They only exists as `external’ states! NO OPEN STRING OBSTRUCTIONS
- In fact there is more: in the pure OSFT action only gets contributions from such states $\longrightarrow>$ localisation to Kontsevich matrix integral
- Indeed this is an example in which open strings can be integrated out completely (path integral —> matrix integral)
- Also the physical closed string states are `external’. They cannot propagate inside a diagram. $->$ NO CLOSED STRING OBSTRUCTIONS

Obstructions in turning FZZT's into pure `geometry’?

- On the FZZT there are `physical' open string states

$$
\left|T_{i j}\right\rangle \equiv e^{b \phi} c_{1}|0\rangle_{i j}
$$

- Although these are formally in the open string cohomology, the structure of the theory (DOZZ formula) is such that they are never produced as internal states! They only exists as `external’ states! NO OPEN STRING OBSTRUCTIONS
- In fact there is more: in the pure OSFT action only gets contributions from such states $\longrightarrow>$ localisation to Kontsevich matrix integral
- Indeed this is an example in which open strings can be integrated out completely (path integral —> matrix integral)
- Also the physical closed string states are `external'. They cannot propagate inside a diagram. —->NO CLOSED STRING OBSTRUCTIONS
- Indeed we find (work in progress!) that the vacuum shift solution gives rise to the same partition function that the marginal solution
- All in all we thus expect

$$
\begin{aligned}
& \Lambda_{\text {tot }}=\Lambda_{\text {open }}+\Lambda_{0}+\Lambda_{\text {closed }}=\sum_{b=1}^{\infty} \lambda^{b-2} \Lambda_{b} \\
& \mathcal{Z}^{\text {open }}\left(g_{s},\left\{z_{i}\right\}\right)=\mathcal{Z}^{\text {closed }}\left(g_{s},\left\{t_{k}=g_{s} \sum_{i} \frac{1}{k z_{i}^{k}}\right\}\right)
\end{aligned}
$$

- All in all we thus expect

$$
\begin{aligned}
& \Lambda_{\mathrm{tot}}=\Lambda_{\mathrm{open}}+\Lambda_{0}+\Lambda_{\text {closed }}=\sum_{b=1}^{\infty} \lambda^{b-2} \Lambda_{b} \\
& \text { Open-Closed SFT VACUUM ENERGY } \\
& \mathcal{Z}^{\text {open }}\left(g_{s},\left\{z_{i}\right\}\right)=\mathcal{Z}^{\text {closed }}\left(g_{s},\left\{\begin{array}{r}
\left.t_{k}=g_{s} \sum_{i} \frac{1}{k z_{i}^{k}}\right\}
\end{array}\right)\right. \\
& \begin{array}{r}
\text { SPHERE PARTITION FUNCTION } \\
\text { (GAIOTTO RASTELLI) }
\end{array}
\end{aligned}
$$

CONCLUSIONS

CONCLUSIONS

- Time for computations: FZZT branes, A-model conifold transition, other examples?

CONCLUSIONS

- Time for computations: FZZT branes, A-model conifold transition, other examples?
- We should also try to integrate out closed strings to end up with a quantum open string theory (TO DO!)

CONCLUSIONS

- Time for computations: FZZT branes, A-model conifold transition, other examples?
- We should also try to integrate out closed strings to end up with a quantum open string theory (TO DO!)

- These are examples of EXACT open closed duality (no open or closed string obstructions).

CONCLUSIONS

- Time for computations: FZZT branes, A-model conifold transition, other examples?
- We should also try to integrate out closed strings to end up with a quantum open string theory (TO DO!)

- These are examples of EXACT open closed duality (no open or closed string obstructions).
- For D3 branes in Type IIB this is not going to work. Indeed the AdS/CFT correspondence is derived in the $\alpha^{\prime} \rightarrow 0$ which acts as a decoupling limit. How does this saves the day in our SFT picture?

CONCLUSIONS

- Time for computations: FZZT branes, A-model conifold transition, other examples?
- We should also try to integrate out closed strings to end up with a quantum open string theory (TO DO!)

- These are examples of EXACT open closed duality (no open or closed string obstructions).
- For D3 branes in Type IIB this is not going to work. Indeed the AdS/CFT correspondence is derived in the $\alpha^{\prime} \rightarrow 0$ which acts as a decoupling limit. How does this saves the day in our SFT picture?
- We have just started this exploration... comments and suggestions are welcome!

CONCLUSIONS

- Time for computations: FZZT branes, A-model conifold transition, other examples?
- We should also try to integrate out closed strings to end up with a quantum open string theory (TO DO!)

- These are examples of EXACT open closed duality (no open or closed string obstructions).
- For D3 branes in Type IIB this is not going to work. Indeed the AdS/CFT correspondence is derived in the $\alpha^{\prime} \rightarrow 0$ which acts as a decoupling limit. How does this saves the day in our SFT picture?
- We have just started this exploration... comments and suggestions are welcome!

