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Introduction
Nowadays we accept the idea that GR is the classical limit of an effective quantum 
theory of gravity, in which the Einstein-Hilbert action is the leading order in a 
higher-derivative expansion.

lim
ℏ→0

= Gravity
It has been proven that a static metric in 
arbitrary dimensions is recovered from 3-
point amplitudes of massive scalars 
emitting gravitons. 

We extend this program in the case of spinning geometries at quadrupole order:
•No Birkhoff theorem for stationary objects.
•No black-hole uniqueness in .D > 4

[Donoghue, 2211.09902]
[Bjerrum-Bohr, Planté, Vanhove, 2212.08957]
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Metrics from scattering amplitudes

Consider a spin-  field coupled to gravitys S = ∫ dd+1x( −
2
κ2

−gR + ℒm(Φs, gμν))

gμν = ημν + κ hμν = ημν + κ
+∞

∑
n=1

h(n)
μν h(n)

μν (x) = −
κ
2 ∫

dd ⃗q
(2π)d

ei ⃗q⋅ ⃗x

⃗q 2 (T(n−1)
μν (q) −

1
d − 1

ημνT(n−1)(q))

κ2 = 32πG

graviton

nPM order

•  is the stress-energy tensor of the matter source.

•  for  contains gravitational self-interactions.

T(0)
μν

T(n)
μν n > 0

Imposing the harmonic gauge we can rewrite the Einstein equations as

We want to compute 
 through 

scattering amplitudes
T(n)

μν (q)
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Loop amplitudes are classical

Quantizing the theory we can define the interaction vertices and prove that

= −
i κ
2

T(n−1)
μν (q)δσσ′￼

= (τΦ2h)μν
a,b(q)

(p1; s,�)
`1

(p2; s,�0)
`n

q

··
··
··

µ⌫n

8
>>>><

>>>>:

tree

++ ⋯

The mantra of GR from scattering amplitudes is to consider the classical limit as 
soon as possible, in order to gain efficiency in the actual calculations.

We have to define a classical vertex!

[Donoghue, gr-qc/9310024]
[Mougiakakos, Vanhove, 2010.08882]
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⟨p2; s, σ′￼| (τΦ2h)μν |p1; s, σ⟩ = ⟨p1; s, σ′￼| (τΦ2h)μν |p1; s, σ⟩ + O(ℏ) = ̂τμν
Φ2h(q, S)δσσ′￼

+ O(ℏ)

|p1⟩ = |p2⟩ + O(ℏ)

⟨p2; s, σ′￼|Mμν |p1; s, σ⟩ = Sμν⟨p1; s, σ′￼|p1; s, σ⟩ + O(ℏ) = SμνC(s)δσσ′￼
+ O(ℏ0)

In the stationary and classical limit it is verified that 

Leading to the definition of the spin tensor  as the classical limit of the Lorentz 
generators 

Sμν

Mμν

normalization coefficient

Dressed vertex

In  the angular momentum is an 
anti-symmetric rank-2 tensor

D > 4

[Bern, Luna, Roiban, Shen, Zeng, 2005.03071]
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Spin-1

Smin = ∫ dd+1x −g (−
1
4

FμνFμν +
1
2

m2VμVμ)Consider a massive spin-1 field minimally 
coupled to gravity, i.e. Proca field

̂τμν
V2h,min(q, S) = −

i κ
2 (2m2δμ

0 δν
0 − i m qλ (Sμλδν

0 + Sνλδμ
0 ) − qλqσSμλSνσ)

We can compute the minimal dressed vertex associated to such field as

T(0)
μν,min =

2 i
κ ( ̂τV2h,min)μν

The “simplest” metric
(metric associated to a minimally coupled field)

6



̂τμν
V2h(q, S) = −

i κ
2 (2 m2 δμ

0 δν
0 − i m qλ(Sμλδν

0 + Sνλδμ
0 ) − H1 qρqσSμρSνσ + H2 δμ

0 δν
0qρqσSρλS σ

λ

+C1 SρσSρσqμqν + C2(ημνqρqσSρλSσ
λ − qλ(qμSλσSνσ + qνSλσSμσ)))

Snon−min = ∫ dDx −g(K1 R Vα (𝕊μν𝕊μν)αβ
Vβ + K2 Rμν Vα (𝕊μλ𝕊 ν

λ )αβ
Vβ + ⋯)

Non-minimal action

Defining a spin operator such that , we can build a non-minimal action as 𝕊μν
a,b = Sμνδab + O(κ)

Smin + Snon−min

Minimal Limit

H1 = 1 H2 = 0

C1 = 0 C2 = 0

We obtain the stress-energy tensor of the most generic stationary matter distribution at 
quadrupole order which is spherically symmetric in the non-rotating limit.
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h(1,0)
00 (r) = −

4(d − 2)
d − 1

Gm ρ(r)

h(1,0)
0i (r) = 0

h(1,0)
ij (r) = −

4δij

d − 1
Gm ρ(r)

h(1,1)
00 (r) = 0

h(1,1)
0i (r) = −

2(d − 2)xkSi
k

r2
G ρ(r)

h(1,1)
ij (r) = 0

h(n)
μν =

2s

∑
j=0

h(n,j)
μν = h(n,monopole)

μν + h(n,dipole)
μν + h(n,quadrupole)

μν + ⋯

ρ(r) =
Γ( d

2 − 1)π1−d/2

rd−2

Expanding the metric in a multipole series, guided by the spin universality idea, we get

The monopole and the 
dipole of any metric 

in asymptotically 
cartesian coordinates 

are unique!

&

Spin-1 Quadrupole

Where
The first non-trivial multipole order to look 

for to resolve the structure of different matter 
configurations is the quadrupole 

[Bjerrum-Bohr, Donoghue, Holstein, hep-th/0211071]
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h(1,2)
00 (r) =

2(d − 2)(H2(d − 2) + H1)
d − 1

r2Sk1k2
Sk1k2 − d xk1xk2Sk1

k3Sk2k3

mr4
Gρ(r)

h(1,2)
0i (r) = 0

h(1,2)
ij (r) = −

2(d − 2)
(d − 1)mr4 ( − C1(d − 1)d xixjSk1k2

Sk1k2 − r2(d − 1)(2C2 + H1)SikSj
k

+r2(C1(d − 1) + H1 − H2)Sk1k2
Sk1k2δij + d C2(d − 1)xk1Sk1k2(xjSi

k2 + xiSj
k2)

+d xk1xk2((d − 1)H1Sik1
Sjk2

+ (H2 − H1)Sk1
k3Sk2k3

δij))Gρ(r)

Metric of a generic source at quadrupole order

This metric depends on four different arbitrary parameters. Are they all physical?
Spoiler, no!
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Eliminating gauge parameters

□ ρ(r) = 0

Consider an infinitesimal coordinate transformation as  such that the 
metric transforms like .

x′￼ = x + ξ(x)
h′￼μν = hμν − (∂μξν + ∂νξμ)

□ x′￼
μ = 0 → □ ξμ = 0

By definition in the harmonic gauge , we can define a coordinate 
transformation inside the gauge if

□ xμ = 0

harmonic function in 
arbitrary dimensions

ξi =
G
m (2C2 SikSk

j + C1 SlmSlmδij)∂jρ(r) & ξ0 = 0

With this coordinate transformation we can cancel the ’s from the metricCi

 and  are physical 
parameters

H1 H2 In  there are two independent 
quadrupole moments

D > 4
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h(1,2)
00 =

2(d − 2)(H2(d − 2) + H1)
d − 1

r2Sk1k2
Sk1k2 − d xk1xk2Sk1

k3Sk2k3

mr4
Gρ(r)

h(1,2)
ij = −

2(d − 2)
(d − 1)mr4 ( − r2(d − 1)H1SikSj

k + r2(H1 − H2)Sk1k2
Sk1k2δij

+d xk1xk2((d − 1)H1Sik1
Sjk2

+ (H2 − H1)Sk1
k3Sk2k3

δij))Gρ(r)

 is a special case since we can rewrite  and then 
through a coordinate transformation we can show that the metric 
depends on  and  only by the combination .

D = 4 Sij = ϵijkSk

H1 H2 H1 + H2

Two different 
quadrupole tensors 
enter in the metric, 

both in  and in h00 hij

In  there are two independent 
quadrupole moments

D > 4 In  there is only one 
quadrupole moment
D = 4but
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ACMC coordinates
The “asymptotically Cartesian mass-centered” coordinates were introduced by Thorne 
and allow us to define gauge-invariant multipole moments for asymptotically flat 
stationary and vacuum solutions.

g00 = 1 −
2mG

r
+

2m2G2

r2
+

1
r

+∞

∑
ℓ=1

1
rℓ

ℳa1⋯aℓ

xa1
⋯xaℓ

rℓ
+ ⋯

gij ∼ mass multipoles

In D = 4

g0i ∼ current multipoles

Any angular 
dependence

The statement is that in  there exists only a mass quadrupole  and we only 
need  to read it. 

D = 4 ℳa1a2
g00

Our claim is that in  there exist two independent quadrupole tensors 
and to read them one needs both  and 

D > 4
g00 gij

[Thorne, Rev.Mod.Phys. 52 (1980) 299-339]
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Mass quadrupole in D > 4
From the generic 1PM metric at quadrupole order we can extrapolate the following structure 

g00 = 1 −
4(d − 2)

d − 1
Gm ρ(r) +

2(d − 2)
d − 1

1
m2r2

𝒬(1)
a1a2

xa1
xa2

r2
Gm ρ(r) + ⋯

gij = − δij −
4

d − 1
δijGm ρ(r) +

2(d − 2)
d − 1

1
m2r2

𝒬(2)
ij,a1a2

xa1
xa2

r2
Gm ρ(r) + ⋯

𝒬(1)
a1a2

= (H2(d − 2) + H1)(δa1a2
Sk1k2

Sk1k2 − d Sa1
kSa2k)

𝒬(2)
ij,a1a2

= δa1a2
(d − 1)H1SikSj

k − δa1a2(H1 − H2)Sk1k2
Sk1k2δij − d ((d − 1)H1Sia1

Sja2
+ (H2 − H1)Sa1

kSa2kδij)

New mass 
quadrupole! Thorne’s 

quadrupole in D > 4
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Matching the Hartle-Thorne metric in D = 4

g(HT)
tt = − 1 +

2GM
r

−
a2GMκ(3 cos(2θ) + 1)

2r3
+ ⋯

g(HT)
tϕ = −

2aGM sin2(θ)
r

+ ⋯

g(HT)
rr = 1 +

2GM
r

−
(a2GMκ(3 cos(2θ) + 1))

2r3
+

4G2M2

r2
+ ⋯

g(HT)
θθ = r2 −

a2GMκ(3 cos(2θ) + 1)
2r

+ ⋯

g(HT)
ϕϕ = r2 sin2(θ) − (a2GMκ(3 cos(2θ) + 1)sin2(θ))

2r
+ ⋯

To test our formalism we match the amplitude-based metric with the one associated with the most 
generic rotating solution at quadrupole order (HT) in harmonic gauge.

This metric has only one quadrupole 
moment, parametrized by , and we 

are able to reproduce it by fixing
κ

H1 + H2 = κ

Sij =
0 J 0

−J 0 0
0 0 0

a = J/m

We do not need to fix  and  
independently!

H1 H2

[Hartle, Thorne, Astrophys.J. 153 (1968) 807]
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Kerr Limit
κ = 1

Kerr limit of the Hartle-Thorne metric

For a specific value of the quadrupole we can recover the Kerr metric.

H1 = 1 − H2

(H1 = 1) + (H2 = 0) = 1

corresponds to

The Kerr metric, the only black hole solution in , is reproduced by an 
infinite number of non-minimal actions and by the minimally coupled theory.

D = 4

“Simplest” metric 
in D = 4 Kerr black hole=

Minimal limit
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h(1,2)
00 =

2(d − 2)
d − 1

r2Sk1k2
Sk1k2 − d xk1xk2Sk1

k3Sk2k3

mr4
Gρ(r)

h(1,2)
ij = −

2(d − 2)
(d − 1)mr4 ( − r2(d − 1)SikSj

k + r2Sk1k2
Sk1k2δij

+d xk1xk2((d − 1)Sik1
Sjk2

− Sk1
k3Sk2k3

δij))Gρ(r)

If the simplest metric in  is the Kerr black hole, to what it does correspond in 
higher dimensions?

D = 4

Simplest metric in higher dimension

The simplest 
metric in arbitrary 

dimension
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Myers-Perry black holes in D = 5

ds2 = − dt2+
μ
Σ (dt + a sin2 θ dϕ1 + b cos2 θ dϕ2)2 +

r2Σ
Π − μr2

dr2

+Σdθ2 + (r2 + a2)sin2 θ dϕ2
1 + (r2 + b2)cos2 θ dϕ2

2

Σ = r2 + a2 cos2 θ + b2 sin2 θ

Π = (r2 + a2)(r2 + b2)

1
m

Sij =
2
3

0 a 0 0
−a 0 0 0
0 0 0 b
0 0 −b 0

H1 =
3
8

H2 =
15
16

Myers-Perry solutions are a class of black holes defined in arbitrary dimensions 
constructed in such a way that the limit  corresponds to Kerr. D = 4

The solution now has two independent angular momenta 
since the group of the rotation  has two CasimirSO(4)

We need to fix  and  
independently!

H1 H2 The Myers-Perry solution 
is not the “simplest” one

[Myers, Perry, Annals Phys. 172 (1986) 304]
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Conclusions
• It is possible to recover stationary rotating metrics at -pole order from the 

classical limit of massive spin-  particles.

• The most generic stationary spherically-symmetric stress-energy tensor can be 
related to a non-minimally coupled theory, and the “simplest” solution can be 
defined.

• At quadrupole order the metric depends on two physical parameters, meaning 
that in higher dimensions there exist two independent quadrupole moments.

•  We have shown that in  there is only one quadrupole moment and that 
the “simplest” metric corresponds to the Kerr black hole.

• In  to match exact solutions we need to independent quadrupole 
moments, and we have seen that Myers-Perry black holes are not associated to 
the “simplest” metric. 

2s
s

D = 4

D > 4
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Further directions & open questions
• Repeat the argument for  to see current multipoles in higher 

dimensions and to extend the definition of the “simplest” metric for higher 
multipoles. 

• What is the mass multipole structure beyond the quadrupole?

• What are the phenomenological implications of having independent 
quadrupole moments in ?

• Does the fact that the “simplest” metric corresponds to a Kerr black hole hold 
for higher multipoles?

• What is the interpretation of the “simplest” metric? Do exact solutions exist in 
 that satisfy this requirement?

s = 3/2,2,...

D > 4

D = 5
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