

HELMHOLTZ RESEARCH FOR
GRAND CHALLENGES

Studying strong-interaction matter under extreme conditions with high-energy heavy-ion experiments

Joachim Stroth, Goethe University / GSI

JENAS Initiative: "Gravitational Wave Probes of Fundamental Physics"

Bottom-up Workshop at Sapienza University, Rome

February 12–16, 2024

The (U)RHIC "Standard Model"

GSI HFHF

Baryon stopping at moderate energies

Rapidity distribution of "stopped" protons

○ Full stopping at SIS18

rasa in HEHE

○ Net-baryon free mid-rapidity region at LHC

$$
y = \tanh^{-1}\left(\frac{p_z}{E}\right)
$$

$$
p_z = m_\perp \sinh(y) \qquad m_\perp^2 = \left(m^2 + p_\perp^2\right)
$$

- Open symbols are reflected data points to fill rapidity regions uncovered by detectors
- All measurements are central collisions of heavy (Au, Pb) symmetric collision systems

Manuel Lorenz, priv. communication

Exploration of the Strong-interaction Phase Diagram

From medium-effects to novel phases of QCD matter

Methods for **investigations at high-** $\mu_{\rm B}$ **:**

- o Search for signs of criticality (conjectured first-order phase transition and critical point, remnants of liquidgas critical point)
- o Collectivity in the debris of the fireball
- o Strangeness production
- o Study of meson/baryon/hyperon coupling

Spin-offs:

- o Interpretation of observables depend on models in many cases
- o No lattice QCD calculations possible at baryo-chemical potentials relevant for (merging) neutron stars
- o Progress in developments based on effective field theories: Chiral Perturbation theory (χCFT), Functional Renormalization Group theory (FRG) , Dyson-Schwinger Equation (DSE))

rass in HEHE

Similarities of RHIC and NS-merger simulations

GSI HEHE

Simulation of a binary neutron star encounter of two neutron stars with equal masses of 1.35 M_☉ finally merging into a single compact object

5

Time evolution of the energy density achieved in a non-central collision of two Au nuclei at an energy of 2.42 GeV per colliding nucleon pair

Detailed reconstruction of particle flow

The collective motion (flow) of protons, deuterons and tritons shows a distinct pattern which encodes properties of the fireball (e.g. equation-of-state).

rass in HEHE

The flow is encoded in the transverse mass spectra and in the angular variation of the yields.

Encodes the equation-of-state of the expanding matter

$$
\frac{\mathrm{d}N}{\mathrm{d}\phi} \propto 1 + 2 \sum_{n=1}^{\infty} v_n \cos(\phi - \Psi_{\rm EP})
$$

Production of Strangeness

GSI HFHF

Freeze-out conditions from SIS18 to LHC

rass in HEHE

ALICE $(\sqrt{s} = 2.76 \text{ ATeV})$: HADES (\sqrt{s} = 2.4 AGeV): $T_{ch} = 156.5 (1.5); \mu_B = 0.7 (3.8)$ $T_{ch} = 68.2 (1.5); \mu_B = 883 (25)$

◦ Factor ~1000 in beam energy / factor ~2 in temperature o Much different multiplicities for nuclear clusters

February 12–16, 2024 JENAS Bottom-up Workshop Sapienza University | Joachim Stroth

is súr HFHF

 \circ

Medium Radiation as "Standard Candle" for (U)RHIC

Thermal Dileptons from HADES Au + Au $\omega_{\sqrt{s_{NN}}} = 2.4 \text{ GeV}$

GSI HEHE

- o Microscopic transport(2):
	- $\;\cdot\;$ Vacuum $\scriptstyle\rho$ spectral function and $\scriptstyle\Delta$ regeneration
	- Explicit broadening and density dependent mass shift
- o Coarse-grained UrQMD(3)
	- thermal emissivity with⁽¹⁾
	- in-medium propagator (4)
	- ρa_1 chiral mixing(5) (not measured so far)

(1) Rapp, van Hees; arXiv:1411.4612v (2) E. Bratkovskaya; (3) CG FRA Endres, van Hees, Bleicher; arXiv:1505.06131 CG GSI-TAMU; Galatyuk, Seck, et al. arXiv:1512.08688 (4) Rapp, Wambach, van Hees; arXiv:0901.3289 (5) Rapp, Hohler; arXiv:1311.2921v

Prospects for higher densities CBM / NA60+

Planned high-rate fixed-target experiments will boost the precision in dilepton spectroscopy

 \circ Di-electrons provide reach down to $M_{\ell\ell} \to 0$ – important for electric conductivity measurement

◦ Dimuons have advantages at higher mass region *Mℓℓ* → *mJ*/*^ψ*

is súr HFHF

11

Patrick Huck, QM2014

also e-Print: [2402.01998](https://arxiv.org/abs/2402.01998) *[nucl-ex]*

12

GOETHE &

Dilepton Excitation Functions

G S it HFHF

All data from STAR (preliminary)

10

Collision Energy (Vs NN) [GeV]

50

Conjecture (very suggestive) for the case of a 1st order phase transition **■**

Future facilities for high μ_B physics

GSI HEHE

GEM

CPC-1.2

mRPC

PM SP41

STR DCH-1,2 mRPC-2

ZDC

Beam pipe

FAIR – Cosmic Matter in the Laboratory

GSI HFHF

APPA

Atomic processes in highly ionized isotopes

NUSTAR Experiments with rare (neutron-rich) isotopes

CBM

Investigation of compressed baryonic matter

GOETHE UNIVERS

The Compressed Baryonic Matter Experiment(s)

G S it HFHF

- 1: Time-Zero Detector & Beam Diagnostics
- 2: Silicon Tracking System / Micro Vertex Detector
- 3: Superconducting Dipole Magnet
- **4: Muon Chambers**
- 5: Ring Imaging Cherenkov Detector
- **6: Transition Radiation Detector**
- 7: Time of Flight Detector
- 8: Forward Spectator Detector

Conclusion

rass in HEHE

- \circ RHIC heavy-ion collisions at relativistic energies enable studies of dense baryonic matter in the laboratory
	- FAIR will contribute to with many different experiments also addressing nuclei synthesis and the kilonova signal (APPA, CBM, NUSTAR)
- \circ Information about the **Equation-of-State** of dense matter can be extracted from final state hadrons using observables but needs modelling – work on systematics ongoing
- o Dilepton emission probes the dense and hot phase directly
	- Reduced model dependence and direct access to microscopic properties
	- **standard candle** for the fireball evolution
- o Combined effort from experiment and theory see e.g. Nature 606 (2022) 276-280 e-Print: [2107.06229](https://arxiv.org/abs/2107.06229) [nucl-th]