Decoding the phase structure of QCD via particle production at high energy

- Hadron production in nucleus-nucleus collisions
- The statistical model and the thermal fits
- Thermal fits and the QCD phase diagram
- Summary (and a glimpse of the charm quarks)

Andronic, Braun-Munzinger, Redlich, Stachel, Nature 561 (2018) 321

• lots of particles, mostly newly created ($m = E/c^2$)

2

- a great variety of species:
- π^{\pm} ($u\bar{d}$, $d\bar{u}$), m=140 MeV K^{\pm} ($u\bar{s}$, $\bar{u}s$), m=494 MeV p (uud), m=938 MeV Λ (uds), m=1116 MeV also: $\Xi(dss)$, $\Omega(sss)$...
- mass hierarchy in production (u, d quarks: remnants from the incoming nuclei)

A.Andronic, arXiv:1407.5003

...natural to think of the thermal (statistical) model $(e^{-m/T})$

grand canonical partition function for specie (hadron) i:

$$\ln Z_{i} = \frac{Vg_{i}}{2\pi^{2}} \int_{0}^{\infty} \pm p^{2} \mathrm{d}p \ln[1 \pm \exp(-(E_{i} - \mu_{i})/T)]$$

3

 $g_i = (2J_i + 1)$ spin degeneracy factor; T temperature; $E_i = \sqrt{p^2 + m_i^2}$ total energy; (+) for fermions (–) for bosons $\mu_i = \mu_B B_i + \mu_{I_3} I_{3i} + \mu_S S_i + \mu_C C_i$ chemical potentials

 μ ensure conservation (on average) of quantum numbers, fixed by "initial conditions"

i) isospin: $\sum_{i} n_{i} I_{3i} / \sum_{i} n_{i} B_{i} = I_{3}^{tot} / N_{B}^{tot}$, $N_{B}^{tot} \sim \mu_{B}$ I_{3}^{tot} , N_{B}^{tot} isospin and baryon number of the system (=0 at high energies) ii) strangeness: $\sum_{i} n_{i} S_{i} = 0$ iii) charm: $\sum_{i} n_{i} C_{i} = 0$.

...embodies low-energy QCD ...*vacuum masses*

well-known for m < 2 GeV; many confirmed states above 2 GeV, still incomplete

for high m, BR not well known, but can be reasonably guessed

4

T found to be robust in fits with spectrum truncated above 1.8 ${\rm GeV}$

$$\rho(m) = c \cdot m^{-a} \exp\left(m/T_H\right)$$

 $T_H \simeq 180 \text{ MeV} (\text{max } T \text{ for hadrons})$

(almost all) hadrons are subject to strong and electromagnetic decays

$$\Delta \to p(n) + \pi$$
, $\rho \to \pi + \pi$
 $\Sigma^0 \to \Lambda + \gamma$

weak decays can be treated as well ...to account for the exact experimental situation

contribution of resonances is significant (and particle-dependent)

(plot for $\mu_B=0$)

- Canonical treatment (suppression): exact quantum-number conservation important whenever the abundance of hadrons with a given quantum number is very small
- Widths of resonances (Breit-Wigner)
- Interactions ...several ways tried:
 - hard-sphere
 - T-dependent Breit-Wigner resonance widths
 - S-matrix, based on scattering phase shifts (incl. non-resonant contrib.)

Hadron densities

A. Andronic

"hadron gas": a dense system (also nuclear matter is rather a liquid than a gas) (the usual case is $R_{baryon} = R_{meson} = 0.3$ fm ...hard-sphere repulsion) Air at NTP: intermolecule distance \simeq 50 \times molecule size

$$n_i = N_i/V = -\frac{T}{V}\frac{\partial \ln Z_i}{\partial \mu} = \frac{g_i}{2\pi^2} \int_0^\infty \frac{p^2 \mathrm{d}p}{\exp[(E_i - \mu_i)/T] \pm 1}$$

Latest PDG hadron mass spectrum ...quasi-complete up to m=2 GeV; our code: 555 species (including fragments, charm and bottom hadrons) for resonances, the width is considered in calculations canonical treatment whenever needed (small abundances)

$$\begin{array}{ll} \text{Minimize: } \chi^2 = \sum_i \frac{(N_i^{exp} - N_i^{therm})^2}{\sigma_i^2} \\ N_i \text{ hadron yield, } \sigma_i \text{ experimental uncertainty (stat.+syst.)} \\ \Rightarrow (T, \mu_B, V) & \underline{\dots tests \ chemical \ freeze-out} \ (\text{chemical equilibrium}) \end{array}$$

11

omn

Thermal fit - LHC, Pb-Pb, 0-10%

A. Andronic

Model uncertainties: hadron spectrum

A. Andronic

3-4 MeV upper bound of systematic uncertainty due to hadron spectrum

thermal fits exhibit a limiting temperature:

11

 $T_{lim} = 158.4 \pm 1.4 \; {\rm MeV}$

$$T_{CF} = T_{lim} \frac{1}{1 + \exp(2.60 - \ln(\sqrt{s_{NN}}(\text{GeV}))/0.45)}$$

$$\mu_B[\text{MeV}] = \frac{1307.5}{1+0.288\sqrt{s_{NN}}(\text{GeV})}$$

NPA 772 (2006) 167, PLB 673 (2009) 142

 μ_B is a measure of the net-baryon density, or matter-antimatter asymmetry

determined by the "stopping" of the colliding nuclei

The grand (albeit partial) view

Data: AGS: E895, E864, E866, E917, E877 SPS: NA49, NA44 RHIC: STAR, BRAHMS LHC: ALICE NB: no contribution from weak decays

d/p ratio is well described for all energies

"structures" described by SHM ...determined by strangeness conservation

 Λ/π peak reflects increasing T and decreasing μ_B

at LHC, remarkable "coincidence" with Lattice QCD results

13

at LHC ($\mu_B \simeq 0$): purely-produced (anti)matter ($m = E/c^2$), as in the Early Universe

 $\mu_B > 0$: more matter, from "remnants" of the colliding nuclei

 $\mu_B \gtrsim 400$ MeV: the critical point awaiting discovery (RHIC BES / FAIR)

see refs. in Nature 561 (2018) 321

points: independent analyses of same data \rightarrow "model/code uncert." are small

Summary

A. Andronic

- Hadronization: rapid process in which all quark flavors take part concurrently
- Abundance of hadrons with light quarks consistent with chemical equilibration
- There is a variety of approaches ... *a personal bias: the "minimal model"* a minimal set of parameters, means a well-constrained model
- The thermal model provides a simple way to access the QCD phase boundary *...at high energies* (at low energies canonical suppression needs more care)
 ...but is it more than a 1st order description (of loosely-bound objects)?
 ...and what fundamental point does it make about hadronization?
 (statistical features dominate, but understanding still missing as a dynamical process)
- More insights from higher moments and from heavier (charm) quarks ...(at the LHC) a handle for hadronization T with a mass scale $(m_{c\bar{c}})$ well above T $(T > T_{ch}$ measured with (virtual) photons and through flow via hydrodynamics)

pQCD production, "throw in": $N_{c\bar{c}} = 9.6 \rightarrow g_c = 30.1 \ (I_1/I_0 = 0.974)$

LHC, central collisions

assume:

- full thermalization of c, \bar{c} ("mobility" in V \simeq 4000 fm³)
- full color screening (Matsui-Satz)

Braun-Munzinger, Stachel, PLB 490 (2000) 196

Model predicts all charm chemistry ($\psi(2S)$, X(3872))

Yield per spin d.o.f Pb-Pb $\sqrt{s_{NN}}$ =2.76 TeV 10³ central collisions 10^{2} 10 10⁻¹ J/ψ 10^{-2} Data (|y|<0.5), ALICE 10^{-3} particles 10^{-4} antiparticles 10^{-5} Statistical Hadronization (T=156.5 MeV) total (+decays; +initial charm) 10⁻⁶ primordial (thermal) 10^{-7} 1.5 0.5 2 2.5 3 3.5 Mass (GeV)

 π , K^{\pm} , K^0 from charm included in the thermal fit (0.7%, 2.9%, 3.1% for T=156.5 MeV)

PLB 797 (2019) 134836

16

17

Braun-Munzinger, Stachel, PLB 490 (2000) 196, NPA 690 (2001) 119

- Thermal model calculation (grand canonical) $T, \mu_B: \rightarrow n_X^{th}$
- $N_{c\bar{c}}^{dir} = \frac{1}{2}g_c V(\sum_i n_{D_i}^{th} + n_{\Lambda_i}^{th}) + g_c^2 V(\sum_i n_{\psi_i}^{th} + n_{\chi_i}^{th})$
- $N_{c\bar{c}} << 1 \rightarrow \underline{\text{Canonical}}$ (Cleymans, Redlich, Suhonen, Z. Phys. C51 (1991) 137):

Gorenstein, Kostyuk, Stöcker, Greiner, PLB 509 (2001) 277

$$N_{c\bar{c}}^{dir} = \frac{1}{2}g_c N_{oc}^{th} \frac{I_1(g_c N_{oc}^{th})}{I_0(g_c N_{oc}^{th})} + g_c^2 N_{c\bar{c}}^{th} \longrightarrow g_c(N_{part}) \text{ (charm fugacity)}$$

Outcome: $N_D = g_c V n_D^{th} I_1 / I_0 + N_D^{corona}$, $N_{J/\psi} = g_c^2 V n_{J/\psi}^{th} + N_{J/\psi}^{corona}$

Inputs: T, μ_B , $V_{\Delta y=1} (= (dN_{ch}^{exp}/dy)/n_{ch}^{th})$, $N_{c\bar{c}}^{dir}$ (exp. or pQCD)

Assumed minimal volume for QGP: V_{QGP}^{min} =200 fm³

full thermalization of c quarks in QGP, hadronization at chemical freeze-out

 $d\sigma_{c\bar{c}}/dy$ via normalization to D^0 in Pb–Pb 0-10%, ALICE, arXiv:2110.09420 $dN/dy = 6.82\pm1.03$ (|y| < 0.5; FONLL for y=2.5-4; assuming hadronization fractions in data as in SHMc)

SHMc: the full charm zoo

A. Andronic

The power of the model: predicting the full suite of charmed hadrons

Charm data and SHMc model

A. Andronic

20

Enh. c-baryons: tripled the excited charm-baryon states, and $d\sigma_{c\bar{c}}/dy$: +19% RQM: He,Rapp, PLB 795 (2019) 117; LQCD, Bazavov et al., PLB 737 (2014) 210 leaves the mesonic sector unaffected, for the commensurately larger $\sigma_{c\bar{c}}$

In the (our) statistical hadronization model:

- The hadronization is a rapid process in which all quark flavors take part concurrently
- All charmonium and open charm states are generated exclusively at hadronization (chemical freeze-out) ...full color screening The model is very successful in reproducting the J/ ψ and open charm data A handle for hadronization T with a mass scale well above T

"The competition":

the kinetic model, continuous J/ψ destruction and (re)generation in QGP (only up to 2/3 of the J/ψ yield (LHC, central collisions) originates from deconfined c and \bar{c} quarks) Discriminating the two pictures implies providing an answer to fundamental questions related to the fate of hadrons in a hot deconfined medium.

A precision (±10%) measurement of $d\sigma_{c\bar{c}}/dy$ in Pb-Pb (Au-Au) collisions needed for a stringent test (within reach with the upgraded detectors at the LHC and RHIC)

Full charm predictions for the LHC

A. Andronic

Charm-hadron spectrum as in PDG: 55 c-mesons, 74 c-baryons (part.+antipart.) ...large, but may not be complete (LQCD)

Open charm data vs. models at the LHC

A. Andronic

23

ALICE, arXiv:2212.04384

The limiting case: full beauty thermalization

A. Andronic

Blue: Υ data (CMS, ALICE): calc. based on R_{AA} and pp (would be nice to include in publications dN/dy)

R_{AA} , 50% bb thermalized

A. Andronic

CMS, PRL 120 (2018) 142301

ALICE, PLB 822 (2021) 136579

25

What does non-thermalized beauty produce? (no room for it in SHMb)