QUANTUM GRAVITY EFFECTS ON DARK MATTER AND GRAVITATIONAL WAVES

Rishav Roshan

School of Physics and Astronomy, University of Southampton

Based on: Phys.Rev.D 109 (2024) 2, 024057

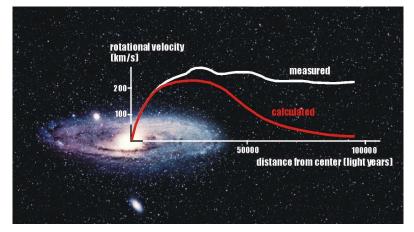
In collaboration with:

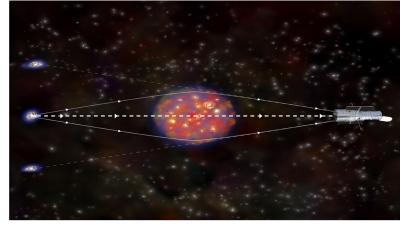
Stephen F. King, Graham White, Xin Wang, and Masahito Yamazaki

13/02/2024

Cosmological Puzzles

- 1. Dark Matter
- 2. Neutrino masses
- 3. Matter-Antimatter asymmetry

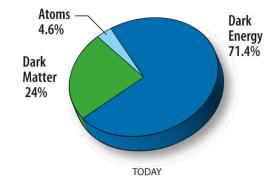

Cosmological Observations: a powerful investigative tool


BACKGROUND


DM Quantum Gravity Probing Early Universe

BACKGROUND

Dark matter

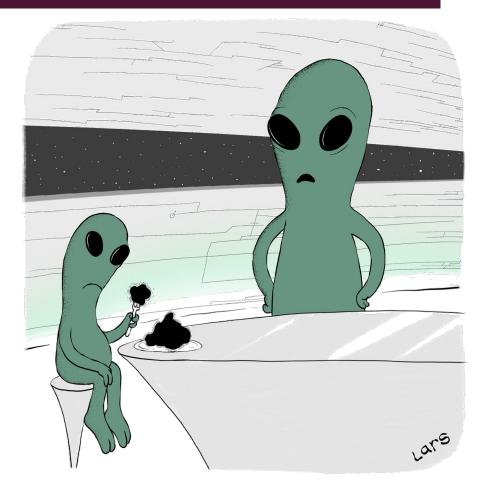


Evidence of DM I: Galaxy Rotation Curve Evidence of DM II: Gravitational Lensing

Evidence of DM III: Bullet Cluster

We have felt the gravitational presence of Dark Matter!

BACKGROUND


Dark matter

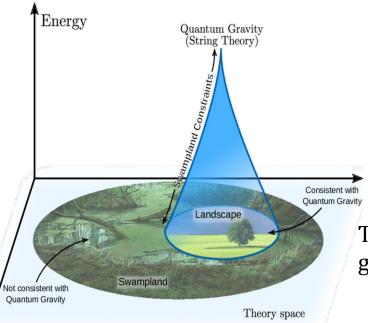
What we know :

- \Box Relic density (~24 % of the Universe)
- □ Massive
- □ Stable object
- □ No or very weak interaction

What we **don't** know:

- □ Nature of DM
- □ Interaction
- □ Production mechanism in the early Universe

"No dessert until you finish your dark matter."


BACKGROUND

Quantum gravity as a UV completion?

□ For decades **EFT has played a vital role** in Particle physics

Vafa, hep-th/0509212 Ooguri & Vafa, NPB 766, 21 (2007)

- □ It has **guided physicists** looking for the signatures of new physics
- However, it has limitations: The situation becomes different once we include gravity and demand that the EFT in question is valid at all energies in suitable QG theory

Swampland

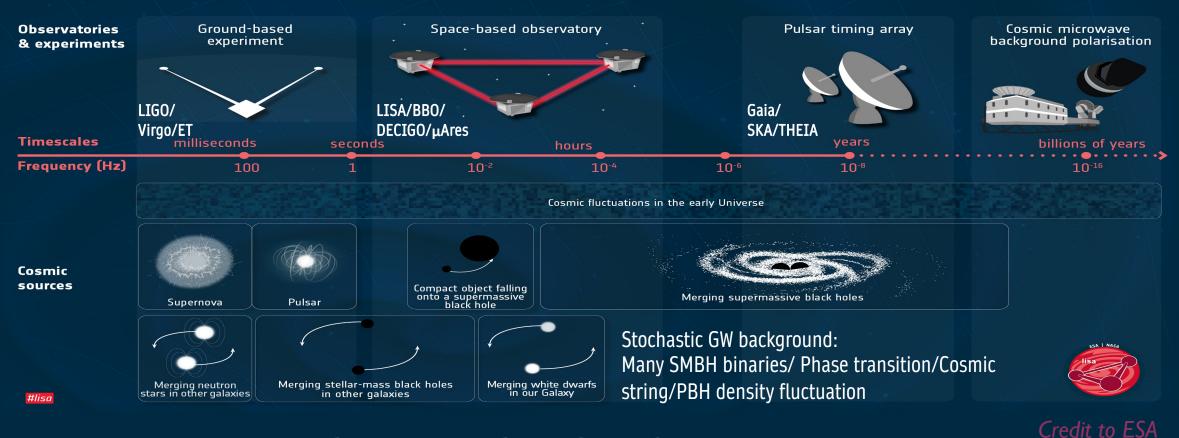
Refers to low-energy EFTs which are not compatible with quantum gravity.

Swampland conjectures

- □ No global symmetry conjecture
- □ Weak gravity conjecture
- □ Distance conjecture

No global symmetry conjecture re exists no exact (continuous or discrete

There exists no exact (continuous or discrete) global symmetry in quantum gravity theories.


Global symmetries in lowenergy EFTs are broken by

Any observational effects that can constrain Λ_{QG} ?

Background

Gravitational Waves: a probe to the early Universe

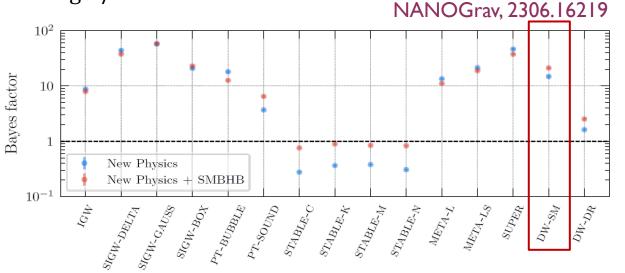
THE SPECTRUM OF GRAVITATIONAL WAVES

Gravitational Waves: a probe to the early Universe!

7

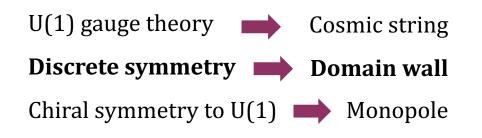
· e esa

RECENT GW DISCOVERIES


Discovery of GW by LIGO-VIRGO Col. Hanford, Washington (H1) Livingston, Louisiana (L1) 1.0 0.5 0.0 -0.5 Strain (10⁻²¹) -1.0 L1 observed H1 observed H1 observed (shifted, inverted) 1.0 0.5 0.0 -0.5 -1.0 Reconstructed (wavelet) Reconstructed (wavelet Reconstructed (template) Reconstructed (template 0.5 mmmm 0.0 -0.5 Residua Residua 512 Frequency (Hz) 256 128 64 32 0.45 0.30 0.30 0.35 0.40 0.35 0.40 0.45 Time (s) Time (s) PRL 116,061102 (2016)

Source of GW: Merging of pair of BHs at z = 0.09

Recent results reported by PTA projects

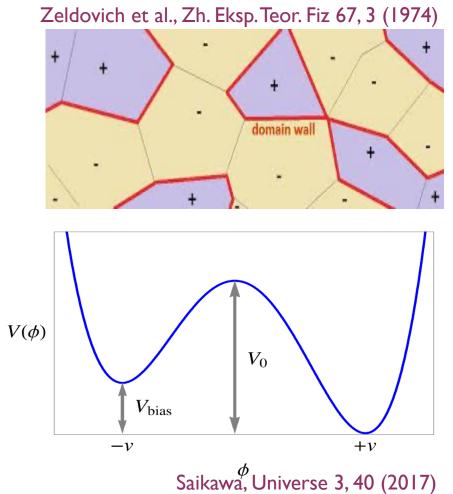

Several PTA projects have reported positive evidence of a stochastic gravitational wave background.

Source of SGWB: Merging of SMBH Binaries/Cosmological origin/combination of Both.

Cosmological domain wall

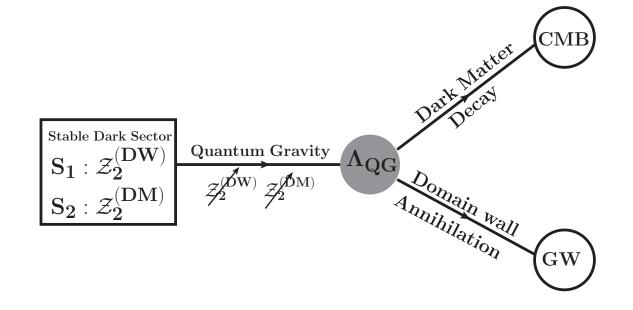
Spontaneous Symmetry breaking and topological defects

Domain wall problem


The energy density of domain walls soon dominates the total energy density of the universe, which conflicts with the present observational results.

Solution: metastable domain walls

Discrete symmetry is explicitly broken



Bias term

Gravitational waves can be produced during the process of collisions and annihilations of domain walls.

THE FRAMEWORKS

THE SCALE OF QUANTUM GRAVITY

Global symmetry can be broken by non-perturbative instanton effects. Quantum gravity effect becomes relevant at Planck length

Non-perturbative instanton effects $\mathcal{O}_5/\Lambda_{\rm QG}$ is suppressed by $e^{-\mathcal{S}}$

Effective quantum gravity scale

Giddings & Strominger, NPB 306, 890 (1988) Blumenhagen et al., NPB 771, 113 (2007) Florea et al., JHEP 05, 024 (2007)

In general, the scale of a global symmetry breaking can be much higher than the Planck scale.

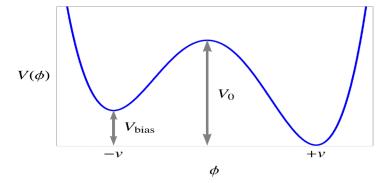
- U(1) Peccei-Quinn symmetry breaking: $S \gtrsim 190 \implies \Lambda_{QG} \sim 10^{100} \,\text{GeV}$ Extremely large!
- ★ Discrete Z₂ symmetry we are considering: $S \sim O(M_{\rm Pl}^2/\Lambda_{\rm UV}^2) \implies S \sim O(10)$ Weak gravity conjecture requires $\Lambda_{\rm UV} \leq M_{\rm Pl}$ More realistic! The range of the scale we are considering is $\Lambda_{\rm QG} \sim (10^{20} \cdots 10^{35})$ GeV Corresponding to $S \sim (4 \cdots 38)$

A MINIMALISTIC MODEL WITH TWO SINGLET SCALARS

Two scalars S_1 : associated with Z_2^{DW} ;

 S_2 : associated with Z_2^{DM} ;

The renormalizable potential (*Z*₂-conserving)

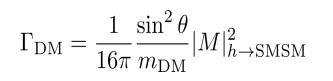

 $V = \mu^2 H^{\dagger} H + \lambda (H^{\dagger} H)^2 + H^{\dagger} H (\lambda_{hs1} S_1^2 + \lambda_{hs2} S_2^2)$ $+ \lambda_{s12} S_1^2 S_2^2 + \mu_2^2 S_2^2 + \frac{\lambda_2}{4} S_2^4 + \frac{\lambda_1}{4} (S_1^2 - v_1^2)^2$

Dimension-five potential (*Z*₂-breaking)

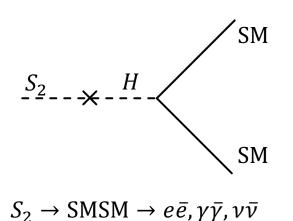
$$\Delta V = \frac{1}{\Lambda_{\rm QG}} \sum_{i=1}^{2} (\alpha_{1i} S_i^5 + \alpha_{2i} S_i^3 H^2 + \alpha_{3i} S_i H^4) + \frac{1}{\Lambda_{\rm QG}} \sum_{j=1}^{4} c_j S_1^j S_2^{5-j}$$
$$\blacktriangleright V_{\rm bias} \simeq \frac{1}{\Lambda_{\rm QG}} \left(v_1^5 + \frac{v_1^3 v_h^2}{2} + \frac{v_1 v_h^4}{4} \right)$$

The number of SM-singlet moduli fields is ~ 100 . The two-singlet model here is simplified but can still capture the qualitative features

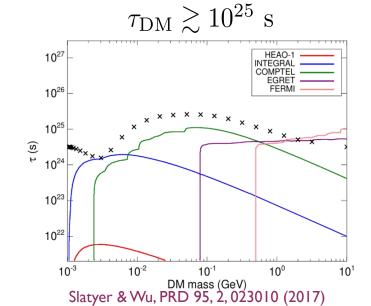
- S_1 acquires its vev v_1 , S_2 doesn't
- λ_{hs1} is sufficiently small
- Bounded from below

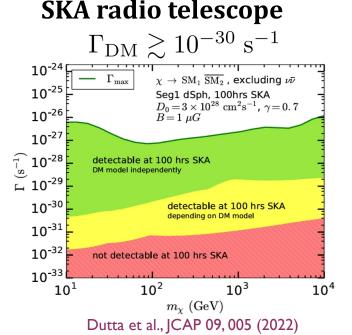


DECAY OF SCALAR DM


 $\Delta V \supset S_2 H^4 / \Lambda_{\rm QG}$

Electroweak symmetry breaking


Mixing between S_2 and H: $\sin \theta = \frac{v_h^3}{(m_h^2 - m_{\rm DM}^2)\Lambda_{\rm QG}}$



Indirect detection of dark matter

CMB power spectrum

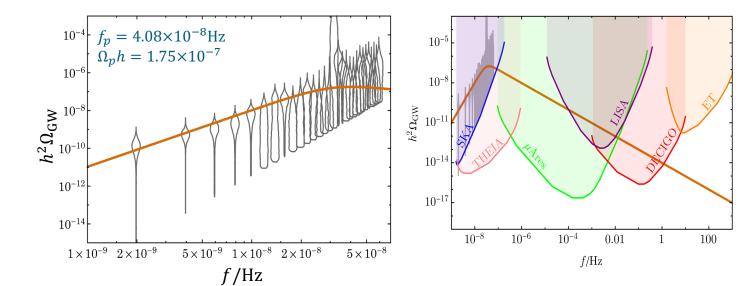
GW FROM DOMAIN WALL ANNIHILATION

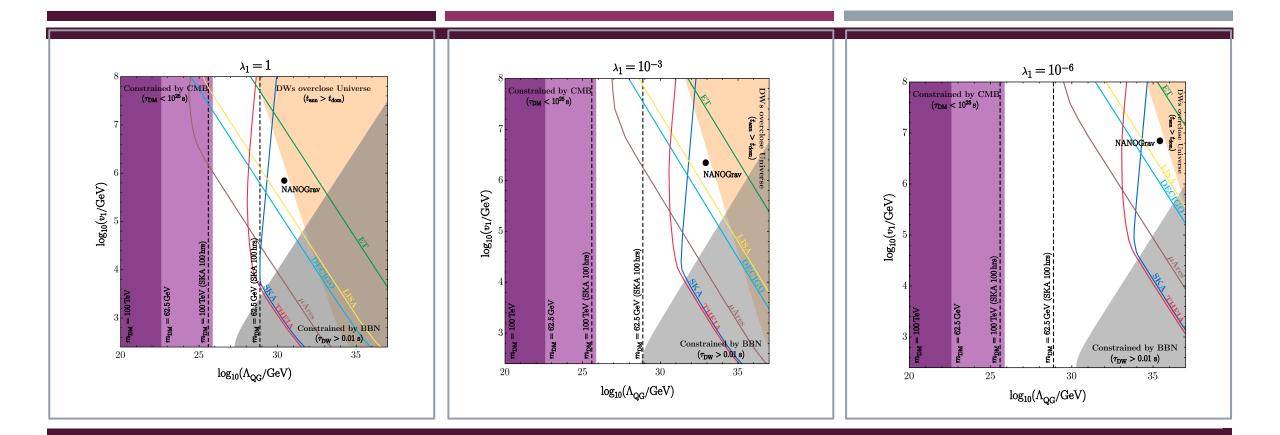
GWs can be produced during the collapsing of domain walls $ho_{\rm GW} \sim G {\cal A}^2 \sigma^2$

The spectrum of GWs is given by

$$\Omega_{\rm GW}(t,f) = \frac{1}{\rho_c(t)} \frac{\mathrm{d}\rho_{\rm GW}(t)}{\mathrm{d}\ln f}$$

The peak amplitude appears when $t \sim t_{ann}$


$$\Omega_p h^2 \simeq 5.3 \times 10^{-20} \ \widetilde{\epsilon} \mathcal{A}^4 C_{\rm ann}^2 \widehat{\sigma}^4 \widehat{V}_{\rm bias}^{-2}$$


The corresponding peak frequency $f_p \simeq 3.75 \times 10^{-9} \text{ Hz } C_{\rm ann}^{-1/2} \mathcal{A}^{-1/2} \hat{\sigma}^{-1/2} \hat{V}_{\rm bias}^{1/2}$

Broken power law

$$h^{2}\Omega_{\rm GW} = h^{2}\Omega_{p} \frac{(a+b)^{c}}{\left(bx^{-a/c} + ax^{b/c}\right)^{c}}$$
$$x = f/f_{p}$$
$$a = 3 \text{ by causality}$$

 $b\simeq c\simeq 1~$ by numerical simulation

COMBINED CONSTRAINTS

Summary

- □ We showed that our models have phenomenology that can plausibly lead us to measure the effective scale of QG.
- □ We have considered the low energy consequences of the swampland conjecture that global symmetries are broken by QG -- DM and DW can both become metastable as a result.

□ If the phenomenology mentioned in these works is seen, it provides evidence for the paradigm of non-perturbative QG instantons breaking global symmetries.

□ We show that the recent observations of a GW spectrum by PTA might have been produced by primordial metastable domain walls, and perhaps the GW spectrum is our first empirical information about QG.

Thank you!