NMMA : nuclear-physics and multi-messenger astrophysics framework

Pang P. T. H., et al., 2023, Nature Communications., 14, 8352

NMMA : nuclear-physics and multi-messenger astrophysics framework

Pang P. T. H., et al., 2023, Nature Communications., 14, 8352

NMMA : nuclear-physics and multi-messenger astrophysics framework

Pang P. T. H., et al., 2023, Nature Communications., 14, 8352

NMMA | Functionalities

Github: https://github.com/nuclear-multimessenger-astronomy/nmma

Bayesian inference

- observational data & injections
- gravitational-wave signals
- electromagnetic signals
- joint inference of GW+ EM signals

Including nuclear physics

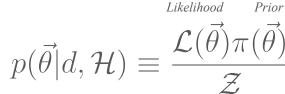
- neutron star equation of state (EOS)

Estimating binary source properties

- Binary neutron star (BNS)
- Neutron star black hole (NSBH)

Other

- estimating the Hubble Constant


Bayesian inference

Gravitational-wave inference | **Bilby**

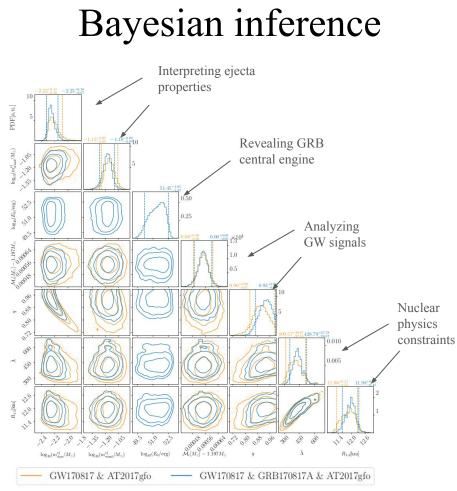
Ashton, et al. (2019)

$$\mathcal{L}_{GW} \propto \exp\left(-\frac{1}{2}\langle d - h(\vec{\theta})|d - h(\vec{\theta})\rangle\right)$$

Parameter estimation through **Bayes theorem**

Probability of the hypothesis given the data

Electromagnetic inference | NMMA


Pang et al. (2023)

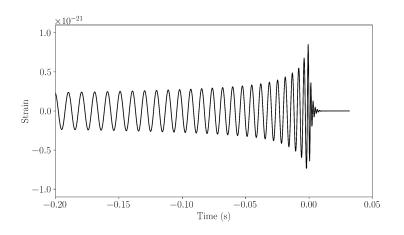
$$\mathcal{L}_{EM} \propto \exp\left(-\frac{1}{2}\sum_{ij}\frac{(m_i^j - m_i^{j,\text{est}}(\vec{\theta}))^2}{(\sigma_{i,\text{stat}}^j)^2 + \sigma_{\text{sys}}^2}\right)$$

Joint inference | NMMA

Pang et al. (2023)

$$\mathcal{L}(\vec{\theta}) = \mathcal{L}_{GW}(\vec{\theta}_{GW}) \times \mathcal{L}_{EM}(\vec{\theta}_{EM})$$

Science case: Pang et al. 2023 | NMMA


- GW170817 + GRB170817A + AT2017gfo $\mathcal{L}(\vec{\theta}) = \mathcal{L}_{GW}(\vec{\theta}_{GW}) \times \mathcal{L}_{EM}(\vec{\theta}_{EM})$
- including nuclear physics information | EOS

Models

Grational waveform models

• Gravitational waveform in time domain

$$h(t) = A(t)e^{-i\Psi(t) Phase}$$

BNS sources

Post-Newtonian models

• TaylorF2

Effective-One-Body models

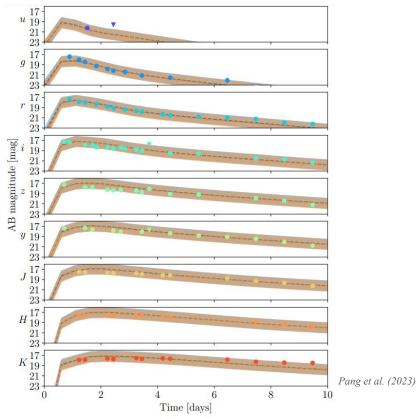
• SEOBNRv4_ROM_NRTidal

Phenomenological models

- PhenomD_NRTidal,
- PhenomPv2_NRTidal(v2, v3 | Abac at al. 2023)

NSBH sources

Phenomenological models


- IMRPhenomNSBH
- SEOBNRv4 ROM NRTidalv2_NSBH

All GW models are enabled with: LALsimulation

(LIGO Scientific Collaboration, Algorithm Library LALsuite)

Models

Best-fit light curves | GW170817+GRB170817A+AT2017gfo

Electromagnetic (EM) transient models

Gamma-ray burst afterglow

- **afterglowpy** | Van Eerten et al. (2010), Ryan et al. (2020)
- soon: **Pyblastafterglow** | Nedora et al. (2021)

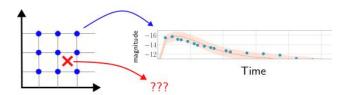
Kilonovae

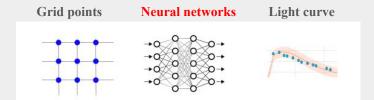
- analytic models
- models based on radiative transfer simulations (POSSIS, Kasen et al.)

Supernovae

• SN models in **sncosmo** | (Levan et al. 2005)

Models


Methods | EM transient models

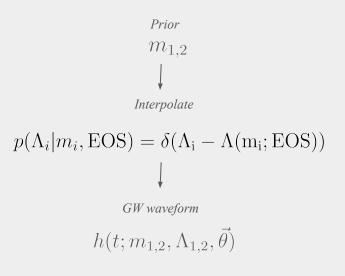

Kilonovae

• radiative transfer simulation models

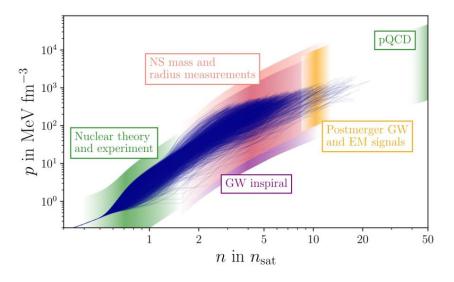
e.g. POSSIS

- \rightarrow simulation at grid points provide light curves
- → light curve at arbitrary parameter values arise from surrogate models

Including nuclear physics


• use nuclear physics models to obtain

Equation-of-state


- mass *m*,
- radius *R*,
- tidal deformability $\boldsymbol{\Lambda}$

• sample on EOS during parameter estimation

Including nuclear physics

Constraints on the EOS from different research fields

Koehn et. al. (2024)

arXiv:2402.04172v1

Science case: Study of Koehn et al. 2024

Employed constraints

Nuclear

- Chiral EFT
- pQCD
- PREX-II
- CREX
- Heavy ion collisions

Isolated neutron stars

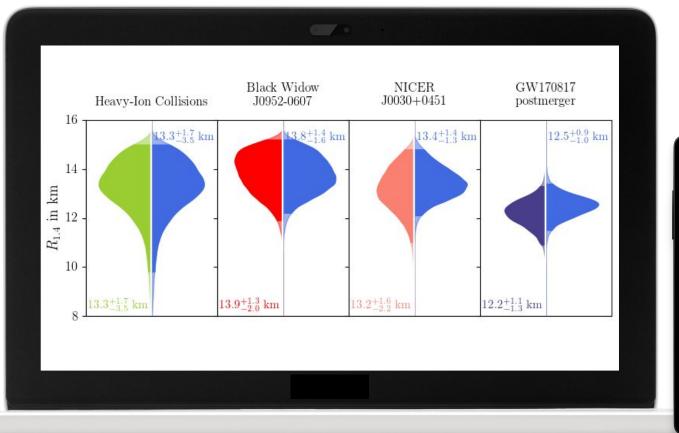
- Heavy pulsars

-

- NICER
- HESS object
- qLMXBs
 - Thermo-nuclear accretion bursts

Binary neutron stars

- GW170817 + AT2017gfo + GRB170817A
- GW190425


-

- GRB211211A
 - Post-merger constraint from GW170817

Combining different constraints on the EOS from different research fields

Combining different constraints on the EOS from different research fields

Science case: Koehn et al. 2024 arXiv:2402.04172v1

Nuclear constraint App!

Bayesian inference

Hypothesis testing using **Bayes theorem**

Application: model selection

Interpreting: Bayes Factors

 $\begin{aligned} \ln[\mathcal{B}_{ref}^{1}] < -4.61 & | \text{ decisive evidence} \\ -4.61 \leq \ln[\mathcal{B}_{ref}^{1}] \leq -2.30 & | \text{ strong evidence} \\ -2.30 \leq \ln[\mathcal{B}_{ref}^{1}] \leq -1.10 & | \text{ substantial evidence} \\ -1.10 \leq \ln[\mathcal{B}_{ref}^{1}] \leq 0 & | \text{ no strong evidence} \end{aligned}$

 \rightarrow investigate the plausibility of competing models

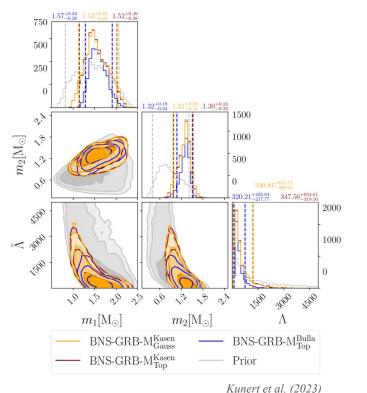
Bayesian inference

Science case: Study of Kunert et al. 2023

Studying the origin of GRB211211A

Results: Bayes factors

Name	Astrophysical	GRB Jet	Model	Bayes factor
	Processes	Structure	dimension	$\ln[\mathcal{B}_{ ext{ref}}^1]$
$BNS-GRB-M_{top}^{Kasen}$	Kilonova + GRB	Tophat	11	ref.
$BNS-GRB-M_{Gauss}^{Kasen}$	Kilonova + GRB	Gaussian	12	-1.21 ± 0.12
$BNS-GRB-M_{top}^{Bulla}$	Kilonova + GRB	Tophat	11	-4.51 ± 0.12
$BNS-GRB-M_{Gauss}^{Bulla}$	Kilonova + GRB	Gaussian	12	-6.26 ± 0.12
$NSBH$ - GRB - M_{top}	Kilonova + GRB	Tophat	11	-8.41 ± 0.12
$\rm NSBH\text{-}GRB\text{-}M_{\rm Gauss}$	Kilonova + GRB	Gaussian	12	-10.56 ± 0.12
$SNCol-GRB-M_{top}$	rCCSNe + GRB	Tophat	14	-15.24 ± 0.13
$\rm SNCol\text{-}GRB\text{-}M_{\rm Gauss}$	rCCSNe + GRB	Gaussian	15	-16.97 ± 0.13
$SN98bw-GRB-M_{top}$	CCSNe + GRB	Tophat	8	-12.66 ± 0.12
$\rm SN98bw\text{-}GRB\text{-}M_{Gauss}$	CCSNe + GRB	Gaussian	9	-12.59 ± 0.12
$GRB-M_{top}$	GRB	Tophat	8	-12.47 ± 0.12
$\mathrm{GRB}\text{-}\mathrm{M}_{\mathrm{Gauss}}$	GRB	Gaussian	9	-12.65 ± 0.12


possible GRB jet types

Kunert et al. (2023)

Connecting electromagnetic signals to binary properties

BNS properties of GRB211211A

BNS sources | phenomenological relations

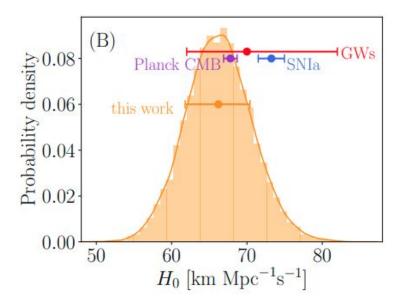
- relation of **dynamical ejecta mass** | [Krueger & Foucart, (2020)] $\frac{m_{\rm dyn, fit}^{\rm ej}}{10^{-3}M_{\odot}} = \left(\frac{a}{C_1} + b\left(\frac{m_2}{m_1}\right)^n + cC_1\right) + (1 \leftrightarrow 2)$
- relation of **disk mass** | [Dietrich et al., (2020)]

$$\operatorname{og}_{10}\left(\frac{m_{\text{disk}}}{M_{\odot}}\right) = \max\left(-3, a\left(1 + b \tanh\left(\frac{c - (m_1 + m_2)M_{\text{threshold}}^{-1}}{d}\right)\right)\right)$$

16

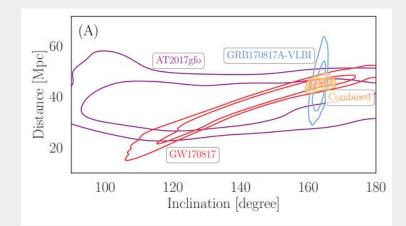
Estimate the Hubble Constant

• evaluate linear Hubble relation


$$c \cdot z = v_H = H_0 \cdot D$$

Applications:

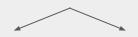
- Gravitational-wave standard sirens
- Kilonovae standard candels
- Joint estimates (GW + EM)


Estimate the Hubble Constant

Dietrich et. al, (2020)

Science case: Study of Dietrich et al. 2020

 use joint estimate of distance from GW170817+GRB170817A+AT2017gfo data


Dietrich et. al, (2020)


Current code developments

- Implementing new GRB model | pyblastafterglow
- Accelerating GW inference
- Sampling on nuclear parameters directly
- Sampling on dark matter parameters
 - > dark matter mass, m_{χ}
 - > dark matter fraction, f_{χ}
 - \rightarrow requires constructing DM EOS set

Dark matter | Theory

- \rightarrow Introduction by Violetta Sagun
 - simple case: fermionic dark matter
 - baryonic and dark matter only interact gravitationally
- \rightarrow there are 2 possible configurations

Core configuration

Halo configuration

NMMA: worldwide contributions

UNIVERSITY

OF MINNESOTA

Observatoire

Utrecht University University Potsdam and Max Planck Institute for Gravitational Physics

- computational astrophysics
- gravitational-wave modelling
- multi-messenger data analysis

University of Minnesota

- optical and near-infrared observations
- multi-messenger data analysis

Observatory of Côte d'Azur

- optical and near-infrared observations
- multi-messenger data analysis

Utrecht University

- gravitational-wave data analysis
- multi-messenger data analysis

University of Ferrara

- modelling of electromagnetic signals

Los Alamos National Lab - nuclear physics

The **NMMA** collaboration thanks for your attention!

Nina Kunert | University Potsdam | 13th February 2023