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scope: WG3 vs the world?

● title of the overall initiative and “workshop:

“Gravitational Wave Probes of Fundamental Physics”

● WG3: “Fundamental problems in high energy and gravitational physics”

● Obviously this does not mean that any of the problems discussed in

the other 4 WGs are any less “fundamental”! :-)

● We’ll treat this a bit as the “misc” section of the workshop.

● But mainly guided by the 29 WG3 submissions in "key questions" spreadsheet

→  let’s try to get these sorted a bit…
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https://docs.google.com/spreadsheets/d/167gk4CWlj0pqL86HYO41sABqgU2RwnnaBjrtqxZQ6jY/


“key questions” from the JENAS initiative spreadsheet

black holes
as probes of 

gravity
systematics 

and 
degeneracies dark matter 

and
cosmic relics

quantum 
gravity 3G, LISA, 

PTAs, multi-
messenger

GW detector 
instrumentation

→ WG5

EMRIS!
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“key questions”: BHs as probes of gravity 

● Tests of BH thermodynamics  by GW-BBH observations
● What is the event horizon of a black hole like

and how to probe it with gravitational waves?
● Scattering amplitudes and GWs: up to where?
● How does the quantum nature of black holes impact gravitational wave observations?
● Black hole gravitational wave echos 
● Are all black holes the same?
● EMRIs as probes of fundamental physics
● Can we model EMRIs to high accuracy in

alternative theories of gravity
● Nonlinearities in the black hole ringdown:

can we leverage methods from particle physics?
● Numerical relativity beyond GR - how far can we go?
● Waveform generation in modified gravity and efficient

confrontation against GW data

→ focus slides 
by Elisa
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EMRIS are 
popular!

[SXS][NASA/LISA]



“key questions”: systematics and degeneracies
● Can we tell deviations from GR from matter/waveform systematics?
● Tests of gravity vs modelling systematics
● Interplay between Hierarchical Tests of Gravity and Population Inference
● Importance of environmental effects to estimate cosmological parameters and to 

investigate the nature of dark matter
comments DK:

● most tests rely on matched filtering against waveform models 
(IMRPhenom/SEOBNR/NRSur)

● any other “out of manifold” effect of a given waveform model 
(HoMs/precession/eccentricity/beyond-GR/lensing/environments/…)
can kill your search for a particular one

● extends to “hyper” analyses:
population inference, cosmology, stacked searches

● running theme in ongoing LVK work, historically a bit overlooked,
but now all sorts of combinations are being actively investigated

● set to be even more important in 3G+LISA

[2311.01300]
5+ slides by Elisa

[LVC]

https://arxiv.org/abs/2311.01300


“key questions”: quantum gravity

● What is the fundamental nature of gravity?
● GWs probes of quantum gravity
● Imprints of Quantum nature of space time in GW
● Probing the quantum/fine structure of spacetime using gravitational waves
● Can gravitational wave detectors probe the fluctuating nature of the quantum 

gravity vacuum?
● Quantizing General Relativity and its GW-Signatures

comments DK:
● main avenue 1: modifications to BBH waveforms – see the previous 2 items
● main avenue 2: early universe physics – relics and stochastic backgrounds
● of course this involves the biggest unknowns of theoretical physics
● actual observable signatures often unclear – we need both bright ideas and 

critical, statistically conservative thinking about the methods
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[T.Thiemann / Milde Marketing]

+ slides by Elisa

→ also N. 
Afshordi talk



“key questions”: dark matter & cosmic relics

● Dark Matter Fundamental Nature
● Can we identify the nature of dark matter from its environmental effect on EMRIs? 

[ ← those again! everyone loves EMRIs 💞 ]
● What is the best way to discover PBH, via SSM or IMBH GW detection?

→ a few more 
slides soon

7[I.Bourgault] [Brito, Cardoso & Pani]

[NASA/LISA]

[LVK PRD105,063030, updated in erratum dcc.ligo.org/P2300439/public ]

https://doi.org/10.1103/PhysRevD.105.063030
https://dcc.ligo.org/P2300439/public


“key questions”: 3G, LISA, PTAs, multi-messenger
● Status of the PTA data and their interpretation
● What can we learn about fundamental physics by detecting or constraining any 

stochastic GW background from the early universe?
● What else do we want to search for that LISA or 3G enables but that will not 

already be ruled out by the late 2030s?
● Multi-messenger observation of primordial magnetic fields

comments DK:
● multi-messenger is not just BNSs
● GWs beyond CBCs: persistent sources, stochastic backgrounds, cosmic relics
● of course, could have pasted here again everything about our friends the EMRIs
● multi-wavelength future of GW observations: PTAs + LISA&friends + 3G on the ground
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→ also 
WG2&4



DK’s pet topic I: fundamental physics with lensed GWs

● putting together 2 of the most famous predictions of GR
● first searches: Hannuksela ApJ874:L2 (2019), LVC ApJ923:14 (2021), LVK arXiv:2304.08393
● expected event rate going up with GW detector redshift reach
● probing fundamental physics via the lensing imprints on GW signals:

○ speed of GWs (in multi-messenger case)
○ beyond-GR polarizations, birefringence, …

(but: beware degeneracies!)
○ tool for cosmography

● probes of fundamental physics via finding exotic lenses: IMBHs? MACHOs?

9[P.Ajith/ICTS]
[Goyal+2021] [Kaiser&McWilliams2020]

https://doi.org/10.3847/2041-8213/ab0c0f
https://doi.org/10.3847/1538-4357/ac23db
http://arxiv.org/abs/2304.08393
https://arxiv.org/abs/2010.02135


DK’s pet topic II: fundamental physics
with Continuous GWs (CWs/CGWs)

● neutron stars – “low” temperature, extreme density
nuclear physics laboratories → extensively covered yesterday

● when we finally detect CWs from a deformed spinning NS:
a persistent source, we can keep observing it and build up signal-to-noise

● likely to be multimessenger sources: either GW co-detection of a known pulsar (more 
sensitive search due to small trials factor), or a GW blind detection enabling deep EM 
follow-up

● beyond nuclear physics: long observing times enable
detailed polarization tests of beyond-GR theories

● beyond neutron stars: dark matter,
early-inspiral binaries
(especially: PBHs for LVK, WD-WD for LISA!)

10[Goyal+2021]



dark matter: direct & indirect detection

● dedicated CW-like searches → see R. Brito, C. Palomba talks
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[Brito, Cardoso & Pani]

 

[LVK PRD105,063030, updated in erratum dcc.ligo.org/P2300439/public ]

● effects on binary inspirals → e.g. K. Clough, P. Cole talks

● lensing signatures

https://doi.org/10.1103/PhysRevD.105.063030
https://dcc.ligo.org/P2300439/public


the early Universe: PBH relics

● depending on formation channel,
primordial black holes can cover
a huge range of masses and number densities

● sensitive probe of early-Universe physics

● GW signatures:

○ features in BBH mass, redshift, spin distributions
inconsistent with stellar origins

○ early inspiral phase for sub-solar-mass range:
CBC-like or, even lower, CW-like

○ GW lensing

○ stochastic background
from unresolved inspirals
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[I.Bourgault]

[Garcia-Bellido2017]



the early Universe: cosmic strings, domain walls and other relics

● frozen-in “defects”

● burst-like signatures

○ string intersections or kink collisions

○ a domain wall passing Earth

● stochastic backgrounds from strings
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[Long, Hyde and Vachaspati] 

[Qi,Sutton,Grote]

what about other wavelengths…? →

https://arxiv.org/abs/1405.7679


the early Universe: stochastic GW backgrounds
● in all detector bands: astrophysical vs cosmological backgrounds
● PTAs have likely detected something… most people think unresolved 

SMBHBs… but cosmological alternatives proliferate on the arXiv.
● More data needed for 5σ and for a robust spectral index measurement that 

informs LVK/3G/LISA detection prospects.
● How to break the “whatever is detected, people will manage to explain it with 

their favourite pet theory” degeneracy?
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[NanoGrav2023]

[IPTA2023] [Renzini+2022]



back to:
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black holes
as probes of 

gravity



Probing the horizon of black holes

Curvature singularity

Horizon
Light ring
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Current electromagnetic and 
gravitational observations have 
probed the black hole spacetime 
close to the light ring.

Abbott+, PRL 116, 061102 (2016)EHT, ApJL 910, L12 (2021)



Horizonless compact objects

New physics can prevent the formation of the horizon:

● in quantum-gravity extensions of general relativity
e.g., fuzzballs, gravastars, quantum BHs

● in general relativity with dark matter or exotic fields
e.g., boson stars, wormholes
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Mathur, Fortsch. Phys. 53, 793-827 (2005); Mazur+, PNAS 101, 9545-9550 (2004); Oshita+, JCAP 04 (2020) 016

Liebling+, LRR 20, 5 (2017); Brito+, Phys. Lett. B 752 (2016) 291-295 ; Morris+, Am. J. Phys. 56, 395-412 (1988)



The ringdown
The ringdown is dominated by the quasi-normal modes (QNMs) of the remnant, 
which describe the response of a compact object to a perturbation.

18EM, Pani, Raposo, Handbook for GW Astronomy, Springer (2021)

Light ringObject’s
radius

Regge, Wheeler, Phys.Rev. 108 (1957) 1063-1069
Zerilli, PRL 24 (1970) 737-738

No horizon       Different QNMs



Fundamental quasi-normal mode

Schwarzschild black hole:

Perfectly reflecting object with radius at microscopical distance from the horizon:
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Horizonless compact objects have low-frequency and long-lived QNMs.

axial

polar

Cardoso+, PRL 116, 171101 (2016); EM, Cardoso, Dolan, Pani, PRD 99, 064007 (2019)



Postmerger signal

Same black-hole 
ringdown Gravitational-wave 

echoes

due to trapped modes

due to the excitation 
of the light ring

20
Cardoso+, PRL 116, 171101 (2016); EM, Testa, Bhagwat, Pani, PRD 100, 064056 (2019)



● A tentative evidence for echoes in the GW data has been reported

● Independent searches argued that the statistical significance for echoes is 
consistent with noise

● No evidence for echoes by the LIGO/Virgo/KAGRA collaboration

● Einstein Telescope will constrain the reflectivity of compact objects at percent 
level for a GW150914-like remnant.
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Abedi+, PRD 96, 082004 (2017); Conklin+, PRD 98, 044021 (2018)

Westerweck+, PRD 97, 124037 (2018); Nielsen+, PRD 99, 104012 (2019); Uchikata+, PRD 100, 062006 (2019); Lo+, PRD 99, 084052 (2019); Tsang+, PRD 101, 064012 (2020)

Abbott+, PRD 103, 122002 (2021); Abbott+, arXiv: 2112.06861 (2021)

Branchesi+, EM, Pacilio, Pani, JCAP 07 (2023) 068

Searches for gravitational-wave echoes



Signatures of horizonless objects in the inspiral
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● Tidal heating: energy absorption by the black-hole horizon is modified as                                     
                                    

● Tidal deformability: Horizonless objects have nonzero tidal Love numbers.

Datta+, PRD 101, 044004 (2020)

Cardoso+, PRD 95, 084014 (2017); Chakraborty+, arXiv:2310.06023 (2023); Piovano+, PRD 107, 024021 (2023)

● Resonances are excited when the orbital 
frequency matches the quasi-normal 
modes of the central horizonless object.
Cardoso+, PRD 100, 084046 (2019); EM+, PRD 104, 104026 (2021)



Parametrised tests of general relativity
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Parametrised tests of GR introduce fractional deviations to the GR parameters as                                

to constrain the degree to which the data agree with GR.

Abbott+, PRD 100, 104036 (2019); Abbott+, PRD 103, 122002 (2021); Abbott+, arXiv: 2112.06861 (2021)



Parametrised tests of general relativity
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● Constraints on post-Newtonian coefficients
Abbott+, arXiv:2112.06861 (2021); Mehta+, PRD 107, 044020 (2023); Li+, PRD 85, 082003 (2012); Agathos+, PRD 89, 082001 (2014)

● Constraints the fundamental quasi-normal 
mode in the ringdown

● Can be mapped in modified theories of 
gravity or models of horizonless objects

Abbott+, arXiv:2112.06861 (2021); Brito+, PRD 98, 084038 (2018); Ghosh+, PRD 103, 
124041 (2021); Carullo+, PRD 99, 123029 (2019); Isi+, arXiv:2107.05609



Biases in tests of general relativity
Waveform systematics and data-quality issues could lead to false violations of GR.

25
LVK Testing General Relativity group, in preparation

Spin-precession GW150914-like signal + glitch

SXS:BBH:1386
(mildly precessing)
SNR = 59

Tomte glitch
(15-150 Hz)



Biases in tests of general relativity
Waveform systematics and data-quality issues could lead to false violations of GR.

26
LVK Testing General Relativity group, in preparation

Spin-precession

SXS:BBH:1397
(strongly precessing)
SNR = 53

Blip glitch
(50-1500 Hz)

GW150914-like signal + glitch



Open questions

● How to tell a deviation of GR from waveform systematics, noise and 
environmental effects?

● Numerical relativity beyond GR: how far can we go?
● What can we learn about the remnant from a non-observation of echoes?
● Are simulations of the formation of horizonless compact objects available?
● How to extract fundamental physics from CW observations?
● How will GW detectors compete with other DM detection efforts?
● How to extract detailed information from SGWBs and control model degeneracy?
● What other remnants from the early Universe can we find at very low

(or maybe very high!) frequencies?
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WG3: today (Tuesday)
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WG3: Thursday
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Backup slides



Injection studies

- SXS:BBH:1386 - strongly precessing

- SXS:BBH:1397 - mildly precessing

The injections are analyzed with the predicted power spectral density for O4 and the 
detector network of LIGO Hanford, Livingston and Virgo. 
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LVK Testing General Relativity group, in preparation



Injection studies

- Tomte glitch
mid duration (0.1-1.0 s)
low-mid frequency band (50-150 Hz)

- Blip glitch
short duration (<0.1 s)
mid-high frequency band (>150 Hz)

The injections are analyzed with the predicted power spectral density for O4 and the 
detector network of LIGO Hanford, Livingston and Virgo. 
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LVK Testing General Relativity group, in preparation


