WG3: Fundamental problems in high energy and gravitational physics

David Keitel, Elisa Maggio

[Universitat de les Illes Balears] [Max Planck Institute for

[Max Planck Institute for Gravitational Physics (AEI) Potsdam]

Bottom-Up Cross-Cutting Workshop "JENAS Initiative Gravitational Wave Probes of Fundamental Physics" (Rome, 13/02/2024) <u>https://agenda.infn.it/event/37487</u>

scope: WG3 vs the world?

• title of the overall initiative and "workshop:

"Gravitational Wave Probes of Fundamental Physics"

- WG3: "Fundamental problems in high energy and gravitational physics"
- Obviously this does not mean that any of the problems discussed in the other 4 WGs are any less "fundamental"! :-)
- We'll treat this a bit as the "misc" section of the workshop.
- But mainly guided by the 29 WG3 submissions in <u>"key questions" spreadsheet</u>
 → let's try to get these sorted a bit...

"key questions" from the JENAS initiative spreadsheet

"key questions": BHs as probes of gravity

- Tests of BH thermodynamics by GW-BBH observations
- What is the event horizon of a black hole like and how to probe it with gravitational waves?
- Scattering amplitudes and GWs: up to where?
- How does the quantum nature of black holes impact gravitational wave observations?
- Black hole gravitational wave echos
- Are all black holes the same?
- EMRIs as probes of fundamental physics
- Can we model EMRIs to high accuracy in alternative theories of gravity
- Nonlinearities in the black hole ringdown: can we leverage methods from particle physics?
- Numerical relativity beyond GR how far can we go?
- Waveform generation in modified gravity and efficient confrontation against GW data

"key questions": systematics and degeneracies

- Can we tell deviations from GR from matter/waveform systematics?
- Tests of gravity vs modelling systematics
- Interplay between Hierarchical Tests of Gravity and Population Inference
- Importance of environmental effects to estimate cosmological parameters and to investigate the nature of dark matter

comments DK:

- most tests rely on matched filtering against waveform models (IMRPhenom/SEOBNR/NRSur)
- any other "out of manifold" effect of a given waveform model (HoMs/precession/eccentricity/beyond-GR/lensing/environments/...) can kill your search for a particular one
- extends to "hyper" analyses: population inference, cosmology, stacked searches
- running theme in ongoing LVK work, historically a bit overlooked, but now all sorts of combinations are being actively investigated
- set to be even more important in 3G+LISA

"key questions": quantum gravity

- What is the fundamental nature of gravity?
- GWs probes of quantum gravity
- Imprints of Quantum nature of space time in GW
- Probing the quantum/fine structure of spacetime using gravitational waves
- Can gravitational wave detectors probe the fluctuating nature of the quantum gravity vacuum?
- Quantizing General Relativity and its GW-Signatures

comments DK:	+	slides by Elisa
 main avenue 1: modifications to BBH waveforms – see the previous 2 items main avenue 2: early universe physics – relics and stochastic backgrounds of course this involves the biggest unknowns of theoretical physics actual observable signatures often unclear – we need both bright ideas and critical, statistically conservative thinking about the methods 		→ also N. Afshordi talk

"key questions": dark matter & cosmic relics

- Dark Matter Fundamental Nature
- Can we identify the nature of dark matter from its environmental effect on EMRIs?
 [← those again! everyone loves EMRIs ♥]
- What is the best way to discover PBH, via SSM or IMBH GW detection?

"key questions": 3G, LISA, PTAs, multi-messenger

- Status of the PTA data and their interpretation
- What can we learn about fundamental physics by detecting or constraining any stochastic GW background from the early universe?
- What else do we want to search for that LISA or 3G enables but that will not already be ruled out by the late 2030s?
- Multi-messenger observation of primordial magnetic fields

comments DK:

- multi-messenger is not just BNSs
- GWs beyond CBCs: persistent sources, stochastic backgrounds, cosmic relics
- of course, could have pasted here again everything about our friends the EMRIs
- multi-wavelength future of GW observations: PTAs + LISA&friends + 3G on the ground

DK's pet topic I: fundamental physics with lensed GWs

- putting together 2 of the most famous predictions of GR
- first searches: Hannuksela <u>ApJ874:L2</u> (2019), LVC <u>ApJ923:14</u> (2021), LVK <u>arXiv:2304.08393</u>
- expected event rate going up with GW detector redshift reach
- probing fundamental physics via the lensing imprints on GW signals:
 - speed of GWs (in multi-messenger case)
 - beyond-GR polarizations, birefringence, ...
 (but: beware degeneracies!)
 - tool for cosmography
- probes of fundamental physics via finding exotic lenses: IMBHs? MACHOs?

9

DK's pet topic II: fundamental physics with <u>Continuous GWs</u> (CWs/CGWs)

- Credit: LIGO/T. Pyle
- neutron stars "low" temperature, extreme density nuclear physics laboratories → extensively covered yesterday
- when we finally detect CWs from a deformed spinning NS: a *persistent* source, we can keep observing it and build up signal-to-noise
- likely to be multimessenger sources: either GW co-detection of a known pulsar (more sensitive search due to small trials factor), or a GW blind detection enabling deep EM follow-up
- beyond nuclear physics: long observing times enable detailed polarization tests of beyond-GR theories
- beyond neutron stars: dark matter, early-inspiral binaries (especially: PBHs for LVK, WD-WD for LISA!)

10

dark matter: direct & indirect detection

• dedicated CW-like searches \rightarrow see R. Brito, C. Palomba talks

[[]LVK PRD105.063030, updated in erratum dcc.ligo.org/P2300439/public]

- effects on binary inspirals \rightarrow e.g. K. Clough, P. Cole talks
- lensing signatures

the early Universe: PBH relics

- depending on formation channel, primordial black holes can cover a huge range of masses and number densities
- sensitive probe of early-Universe physics
- GW signatures:
 - features in BBH mass, redshift, spin distributions inconsistent with stellar origins
 - early inspiral phase for sub-solar-mass range: CBC-like or, even lower, CW-like
 - GW lensing
 - stochastic background from unresolved inspirals

the early Universe: cosmic strings, domain walls and other relics

• frozen-in "defects"

Cusp

[Long, Hyde and Vachaspati]

- burst-like signatures
 - string intersections or kink collisions
 - a domain wall passing Earth
- stochastic backgrounds from strings

Kink

what about other wavelengths...? \rightarrow

Kink-Kink Collision

the early Universe: stochastic GW backgrounds

- in all detector bands: astrophysical vs cosmological backgrounds
- PTAs have likely detected something... most people think unresolved SMBHBs... but cosmological alternatives proliferate on the arXiv.
- More data needed for 5σ and for a robust spectral index measurement that informs LVK/3G/LISA detection prospects.
- How to break the "whatever is detected, people will manage to explain it with their favourite pet theory" degeneracy?

black holes as probes of gravity

back to:

15

Probing the horizon of black holes

Current electromagnetic and gravitational observations have probed the black hole spacetime close to the light ring.

EHT, ApJL **910**, L12 (2021)

Abbott+, PRL 116, 061102 (2016)

r = 0

Horizonless compact objects

New physics can prevent the formation of the horizon:

• in quantum-gravity extensions of general relativity e.g., fuzzballs, gravastars, quantum BHs

Mathur, Fortsch. Phys. 53, 793-827 (2005); Mazur+, PNAS 101, 9545-9550 (2004); Oshita+, JCAP 04 (2020) 016

• in general relativity with dark matter or exotic fields e.g., boson stars, wormholes

Liebling+, LRR 20, 5 (2017); Brito+, Phys. Lett. B 752 (2016) 291-295 ; Morris+, Am. J. Phys. 56, 395-412 (1988)

The ringdown

The ringdown is dominated by the **quasi-normal modes** (QNMs) of the remnant, which describe the response of a compact object to a perturbation.

$$\frac{d^2\psi(r)}{dr_*^2} + \left[\omega^2 - V(r)\right]\psi(r) = 0$$

Regge, Wheeler, Phys.Rev. **108** (1957) 1063-1069 Zerilli, PRL **24** (1970) 737-738

No horizon → Different QNMs

Fundamental quasi-normal mode

Schwarzschild black hole: $M\omega=0.37-i0.089$

Perfectly reflecting object with radius at microscopical distance from the horizon:

$$M\omega = \left\{ \begin{array}{ll} 0.07 - i2 \times 10^{-9} & \text{axial} \\ 0.04 - i3 \times 10^{-11} & \text{polar} \end{array} \right.$$

Horizonless compact objects have low-frequency and long-lived QNMs.

Cardoso+, PRL 116, 171101 (2016); EM, Cardoso, Dolan, Pani, PRD 99, 064007 (2019)

Postmerger signal

Cardoso+, PRL 116, 171101 (2016); EM, Testa, Bhagwat, Pani, PRD 100, 064056 (2019)

Searches for gravitational-wave echoes

• A tentative evidence for echoes in the GW data has been reported

Abedi+, PRD 96, 082004 (2017); Conklin+, PRD 98, 044021 (2018)

• Independent searches argued that the statistical significance for echoes is consistent with noise

Westerweck+, PRD 97, 124037 (2018); Nielsen+, PRD 99, 104012 (2019); Uchikata+, PRD 100, 062006 (2019); Lo+, PRD 99, 084052 (2019); Tsang+, PRD 101, 064012 (2020)

• No evidence for echoes by the LIGO/Virgo/KAGRA collaboration

Abbott+, PRD **103**, 122002 (2021); Abbott+, arXiv: 2112.06861 (2021)

• Einstein Telescope will constrain the reflectivity of compact objects at percent level for a GW150914-like remnant. Branchesi+, EM, Pacilio, Pani, JCAP 07 (2023) 068

Signatures of horizonless objects in the inspiral

• **Tidal heating**: energy absorption by the black-hole horizon is modified as

 $\dot{E}_{
m ECO} = \left(1 - |\mathcal{R}|^2
ight)\dot{E}_{
m H}$ Datta+, PRD 101, 044004 (2020)

• Tidal deformability: Horizonless objects have nonzero tidal Love numbers.

Cardoso+, PRD 95, 084014 (2017); Chakraborty+, arXiv:2310.06023 (2023); Piovano+, PRD 107, 024021 (2023)

• **Resonances** are excited when the orbital frequency matches the quasi-normal modes of the central horizonless object.

Cardoso+, PRD 100, 084046 (2019); EM+, PRD 104, 104026 (2021)

22

Parametrised tests of general relativity

Parametrised tests of GR introduce fractional deviations to the GR parameters as

 $\theta_{\rm GR} \to \theta_{\rm GR} (1 + \delta \theta)$

to constrain the degree to which the data agree with GR.

Abbott+, PRD 100, 104036 (2019); Abbott+, PRD 103, 122002 (2021); Abbott+, arXiv: 2112.06861 (2021)

Parametrised tests of general relativity

Constraints on post-Newtonian coefficients

Abbott+, arXiv:2112.06861 (2021); Mehta+, PRD 107, 044020 (2023); Li+, PRD 85, 082003 (2012); Agathos+, PRD 89, 082001 (2014)

-0.500 - 0.500

-0.125

0.250

 δf_{220}

0.625

1.000

 Can be mapped in modified theories of gravity or models of horizonless objects

Biases in tests of general relativity

Waveform systematics and data-quality issues could lead to false violations of GR.

Biases in tests of general relativity

Waveform systematics and data-quality issues could lead to false violations of GR.

GW150914-like signal + glitch

Open questions

- How to tell a deviation of GR from waveform systematics, noise and environmental effects?
- Numerical relativity beyond GR: how far can we go?
- What can we learn about the remnant from a non-observation of echoes?
- Are simulations of the formation of horizonless compact objects available?
- How to extract fundamental physics from CW observations?
- How will GW detectors compete with other DM detection efforts?
- How to extract detailed information from SGWBs and control model degeneracy?
- What other remnants from the early Universe can we find at very low (or maybe very high!) frequencies?

WG3: today (Tuesday)

Overview by Conveneers	David Keitel et al.
Physics Department - Aula Amaldi (Marconi Building), Sapienza University of Rome	16:30 - 17:00
The ringdown of spinning horizonless compact objects	Elisa Maggio
Physics Department - Aula Amaldi (Marconi Building), Sapienza University of Rome	17:00 - 17:25
Black holes as point particles: from amplitudes to self-force	Riccardo Gonzo
Physics Department - Aula Amaldi (Marconi Building), Sapienza University of Rome	17:25 - 17:50
Rotating metrics from scattering amplitudes in arbitrary dimensions	Claudio Gambino
Physics Department - Aula Amaldi (Marconi Building), Sapienza University of Rome	17:50 - 18:15
Quantum Gravity Effects on Dark Matter and Gravitational Waves	Rishav Roshan
Physics Department - Aula Amaldi (Marconi Building), Sapienza University of Rome	18:15 - 18:40

WG3: Thursday

Dynamical friction on compact binary systems	Vincent Desjacques	
Physics Department - Aula Amaldi (Marconi Building), Sapienza University of F	epartment - Aula Amaldi (Marconi Building), Sapienza University of Rome 14:30 - 14:55	
Podium 2: Report from Conveners of WG3 and WG4 (P2)	Carlo Tasillo, Elisa Maggio, Simone Mastrogiovanni	
Physics Department - Aula Amaldi (Marconi Building), Sapienza University of R	Rome 14:55 - 16:25	

Acknowledgments

D. Keitel is supported by the Spanish Ministerio de Ciencia, Innovación y Universidades (ref. BEAGAL 18/00148) and cofinanced by the Universitat de les Illes Balears, and would like to acknowledge additional support by the Spanish Agencia Estatal de Investigación grants CNS2022-135440, PID2022-138626NB-I00, PID2019-106416GB-I00, RED2022-134204-E, RED2022-134411-T, funded by MCIN/AEI/10.13039/501100011033; the MCIN with funding from the European Union NextGenerationEU/PRTR (PRTR-C17.I1); Comunitat Autonòma de les Illes Balears through the Direcció General de Recerca, Innovació I Transformació Digital with funds from the Tourist Stay Tax Law (PDR2020/11 - ITS2017-006), the Conselleria d'Economia, Hisenda i Innovació grant numbers SINC02022/18146 and SINC02022/6719, co-financed by the European Union and FEDER Operational Program 2021-2027 of the Balearic Islands; and the "ERDF A way of making Europe".

E. Maggio acknowledges funding from the Deutsche Forschungsgemeinschaft (DFG) - project number: 386119226.

Backup slides

Injection studies

- SXS:BBH:1386 - strongly precessing

$$M = 60 \, M_{\odot}, q = 1.35$$

 $\chi_{\rm eff} = -0.02, \chi_p = 0.80$ at an m = 2 frequency of 9.6 Hz

- **SXS:BBH:1397** - mildly precessing

$$M = 60 \, M_{\odot}, q = 1.56$$

 $\chi_{\text{eff}} = -0.06, \chi_p = 0.28$ at an m = 2 frequency of 8.6 Hz

The injections are analyzed with the predicted power spectral density for O4 and the detector network of LIGO Hanford, Livingston and Virgo.

Injection studies

 Tomte glitch mid duration (0.1-1.0 s) low-mid frequency band (50-150 Hz)

 Blip glitch short duration (<0.1 s) mid-high frequency band (>150 Hz)

The injections are analyzed with the predicted power spectral density for O4 and the detector network of LIGO Hanford, Livingston and Virgo.