Opportunities for gravitational wave searches at high frequencies

Krisztian Peters

IELMHOLTZ RESEARCH FOR

Rome, 15 February 2024 Workshop of the JENAS Initiative "Gravitational Wave Probes of Fundamental Physics"

Gravitational wave experiments

Current landscape

Central focus on the Hz - kHz range

Universe expected to be populated by GWs over many decades in frequency (cf. to EM radiation)

Development of observational efforts at much lower frequencies (see previous talks in this session)

Extend detection reach beyond interferometers

Testing BSM physics with HFGWs

Primordial black holes

PBHs expected to produce a variety of high-frequency GW signals

Stochastic GWs

- PBH evaporation
- Unresolved PBH mergers

Coherent GWs

- PBH superradiance
- **Resolved PBH mergers**

Frequency sweeping done by merger

Highly transient signals close to merging (limits available integration time)

Assume PBH distance, such that 1 event expected / year

| Opportunities for gravitational wave searches at high frequencies | Krisztian Peters, 15 February 2024 **4**

Stochastic GW background

Cosmology of the early universe

Example: Prediction from the BSM model SMASH

CGMB from thermal plasma guaranteed HFGW source, also in the SM

Important to measure entire spectrum!

Ambitious, but rewarding goal

Continue technology development

50 years 23 attempts

 \rightarrow First direct detection

MTW book

"[interferometers] have so low sensitivity that they are of little experimental interest"

page 1014

2017 NOBEL PRIZE IN PHYSICS Rainer Weiss Barry C. Barish Kip S. Thorne

From F. Muia

Two detection principles

Mechanical and EM coupling

Mechanical coupling

Image S. Ellis

• GWs perturb detector, spreading power in frequency space

EM coupling

• Graviton - photon mixing (Gertsenshtein effect) GWs induce in a magnetic field an effective current

Detector concepts

Spanning a wide range of frequencies

Axion search infrastructure

ADMX

How to look: three kinds of experiments

Axion/ALP: different sources

Haloscopes \bullet looking for dark matter constituents, microwaves

cosmological assumptions

Helioscopes \bullet Axions emitted by the sun, X-rays

astrophysical assumptions

Purely laboratory experiments \bullet "light-shining-through-walls", microwaves, optical photons

not depending on cosmology or astrophysics

Graviton photon mixing

Main detection concepts

Photon regeneration

Detect GW to **photon conversion** in a **static magnetic field** (e.g. LSW experiments, helioscopes)

GW drives harmonic oscillator

GW produces **oscillating EM field** in a **microwave cavity** placed in **static magnetic field** (e.g. ADMX)

GW produces a **magnetic flux in a toroid** (resonant LC circuits, e.g. DM radio)

See talk from K. Schmieden

Current bounds

First experimental upper limits in these frequency regions

Bounds on the axion photon coupling obtained by ALPS, OSQAR, CAST can be translated into bounds on the characteristic amplitude of the stochastic GW background:

ALPS

Light-shining-through wall experiment

Any-Light-Particle-Search (ALPS) experiment @ DESY searches for the conversion of photons into light particles and vice versa in a strong transverse magnetic field

ALPS I (data taking 2009):

- 1 HERA dipole
- Optical cavity on generation side to enhance number of photons on generation side

ALPS II (data taking since 2023):

- \cdot 12 + 12 HERA dipoles
- Additional optical cavity on regeneration side to enhance reconversion

Options for ALPS II

Enhance sensitivity for GW detection

Option 1: 212m long **single optical cavity** and single **TES detector**

Option 2: Cross-correlating two 106m optical cavities with individual TES detectors to **lower statistical noise**

Option 3: No optical cavity, **broadband photon detection**

IAXO Future helioscope

BabyIAXO: funded $\overline{\text{V}^{\bullet}}$ prototype

Conversion of solar axions to x-ray photons

Data taking expected in 2028 at DESY

Projected bounds

Based on the axion search infrastructure

Mechanical resonators

SRF cavities

Bulk acoustic wave devices

Levitated sensors

Levitated sensors

Basic idea

Trap a dielectric nanoparticle in a laser beam in an optical cavity

GW displaces particle from its equilibrium position and causes a harmonic restoring force

- Displacement is resonantly enhanced when $\omega_{\rm G}$ coincides with trap frequency
- Similar to a resonant bar experiment, but sensor is levitated
- Relatively small sizes of the setups (10~100m)

Limited by thermal noise in the motion of the levitated particles and heating due to light scattering

Second light field to cool and read out axial position of the levitated object

- Displacement of the nanoparticle w.r.t. the trap minimum
	- $\Delta X = 1/2 h(x_s l_m) + O(h^2)$

1-meter prototype

Levitated sensor detector

1-meter prototype under construction at Northwestern University

- Compact Michelson interferometer configuration (to reject common noise sources)
- Pilot run planed in \sim 1y
- Network of detectors with UC Davis and UCL

Stacked dielectric disc reduces photon recoil heating and increases mass of levitated object

- Sphere \rightarrow disc \rightarrow stack
- Ongoing R&D at DESY to use partially-levitated membrane inside cavity (larger membrane size allows to reduce mirror radius)

Levitated sensors

Sensitivity projections

Aggarwal et al. PRL 128 (2022) 11

Resonance tunable from 10 to 300 kHz by varying the laser intensity

a) longer cavity. b) lower temperature. c) heavier particles.

Planned improvements

- 1-meter prototype under construction @ Northwestern University
- 10-meter instrument \rightarrow 1 order of magnitude
- 100-meter instrument \rightarrow 2 orders of magnitude

Levitated sensors

Sensitivity projections

Aggarwal et al. PRL 128 (2022) 11

Resonance tunable from 10 to 300 kHz by varying the laser intensity

Superconducting radio frequency cavities

Analogous to Weber bars, mechanical to EM transducer

GW perturbs cavity walls, which induces EM mode-mixing

Efficient converters of mechanical to EM energy

Operate with small readout noise

 Q_{LC} ~ 10⁶ ≪ Q_{cav} ~ 10¹¹

Heterodyne detection

GWs induce energy transfer between two levels of an EM resonator

Two EM levels achieved by coupling identical cavities

• Each resonant mode of the individual cavities is split in two modes of the coupled resonator with different spacial field distribution (ω_0 and ω_π , symmetric and anti-symmetric modes)

Unique broadband sensitivity

Already with a standard cryostat, explore novel frequency ranges (albeit week limits)

Strongly improve reach by attenuating vibrational noise to its thermal level

Unique broadband sensitivity

Already with a standard cryostat, explore novel frequency ranges (albeit week limits)

Strongly improve reach by attenuating vibrational noise to its thermal level

Unique broadband sensitivity!

Unique broadband sensitivity

Unique broadband sensitivity

The MAGO proposal

… and its revival

Microwave Apparatus for Gravitational Waves Observation On the operation of a tunable electromagnetic detector for R. Ballantini, A. Chincarini, S. Cuneo, G. Gemme¹ R. Parodi, A. Podestà, and R. Vaccarone INFN and Università degli Studi di Genova, Genova, Italy gravitational waves Ph. Bernard, S. Calatroni, E. Chiaveri, and R. Losito CERN, Geneva, Switzerland F Pegorarot, E Picasso‡ and L A Radicati‡§ R.P. Croce, V. Galdi, V. Pierro, and I.M. Pinto +Scuola Normale Superiore, Pisa, Italy INFN, Napoli, and Università degli Studi del Sannio, Benevento, Italy ‡CERN, Geneva, Switzerland 1978 INFN and Scuola Nymmal Superiore, Pisa, Italy and 2005
CERN, Geneva, Switzerland Received 6 December 1977, in final form 20 April 1978

Initial idea from the 70s, which led to the **MAGO proposal** for a **scaled-up experiment** with 500 MHz cavities (not funded)

During the **R&D activities** 3 SRF cavities were built, the first one used for a **proof-of-principle experiment**

The third cavity

- 2-cell cavity with optimised geometry and variable coupling cell
- Never treated nor tested on shelf for $>15y$ @ INFN Genova

In a collaborative effort, DESY/UHH - FNAL - INFN, **continue the R&D studies** with a goal to have synchronised observatories

University Genova

Ultra-High-Frequency Gravitational Waves Initiative

Development of GW science in the frequency range above 10 kHz

202

Dec

 $\overline{13}$

<u>Er</u>-

1.12414v2

 $arXiv:201$

Main aim to **promote scientific progress** in this new area of research, both from **theoretical** and **experimental** points of view

Regular workshops organised (last one in Dec. 2023) to **create a network of researchers** and **discuss the state-of-the-art** of the field

Summary of the first workshop published in a **white paper**

Currently being updated to include latest results and developments

Challenges and Opportunities of Gravitational Wave Searches at MHz to GHz Frequencies

N. Aggarwal^{9, *}, O.D. Aguiar^b, A. Bauswein^e, G. Cella^d, S. Clesse^e, A.M. Cruise^f, V. Domcke^{g,h,i,} D.G. Figueroa^j A. Geraci^k M. Goryachev^l H. Grote^m M. Hindmarshⁿ⁰ F. Muja^{p,i,s} N. Mukund? D. Ottaway^{r,s}, M. Peloso^{t,u}, F. Quevedo^{p,*}, A. Ricciardone^{t,u}, J. Steinlechner^{v,w,x,*}, S. Steinlechner^{v,w,*} S. Sun^{y,2}, M.E. Tobar^{*i*}, F. Torrenti^{α}, C. Unal^{β}, G. White⁷

A bstract

The first direct measurement of gravitational waves by the LIGO and Virgo collaborations has opened up new avenues to explore our Universe. This white paper outlines the challenges and gains expected in gravitational wave searches at frequencies above the LIGO/Virgo band, with a particular focus on Ultra High-Frequency Gravitational Waves (UHF-GWs), covering the MHz to GHz range. The absence of known astrophysical sources in this frequency range provides a unique opportunity to discover physics beyond the Standard Model operating both in the early and late Universe, and we highlight some of the most promising gravitational sources. We review several detector concepts which have been proposed to take up this challenge, and compare their expected sensitivity with the signal strength predicted in various models. This report is the summary of the workshop Challenges and opportunities of high-frequency gravitational wave detection held at ICTP Trieste, Italy in October 2019, that set up the stage for the recently launched Ultra-High-Frequency Gravitational Wave (UHF-GW) initiative.

arXiv:2011.12414v2

*Corresponding authors: Nancy Aggarwal (nancy.aggarwal@northwestern.edu),
Valerie Domcke (valerie.domcke@cern.ch), Francesco Muia (fm538@damtp.cam.ac.uk) Fernando Quevedo (fq201@damtp.cam.ac.uk), Jessica Steinlechner (jessica.steinlechner@ligo.org) Sebastian Steinlechner (s.steinlechner@maastrichtuniversity.nl)

<https://indico.cern.ch/event/1257532/>

Ultra-high frequency gravitational waves: where to next?

Dec 4, 2023, 9:00 AM → Dec 8, 2023, 7:00 PM Europe/Zurich

Towards a new gravitational wave plotter

Extend coverage to high frequencies and add cosmological signals

Aim to develop a **new gravitational wave plotter** that can cover the **ultra-high frequency range** and which adapts to the **needs of the community** (up to date and reactive to feedback)

Francesco Muia, Carlos Tamarit, Andreas Ringwald

Conclusions

GW signals above 10 kHz a smoking gun for BSM physics, exciting scientific opportunities

Strongly growing interest in the community

Important synergies between axion searches and HFGW searches

Experimental efforts started with several isolated attempts, will hopefully grow in more systematic approaches

Moderate size of experiments very attractive, allows also for several synchronised observatories

| Opportunities for gravitational wave searches at high frequencies | Krisztian Peters, 15 February 2024 **31**

Thank you

With helpful input from Francesco Muia and many other members of the UHFGW initiative, and from speakers of our recent workshop https://indico.cern.ch/event/1257532/

Cosmic Gravitational Microwave Background (CGMB)

 h_c

 10^{-39}

 10^{-3}

 10^{-1}

 $10¹$

Guaranteed GW background

Particle collisions in the radiation dominated universe due to thermal fluctuations in the plasma

Results in GWs, enhanced and redshifted to the approx. same frequency today in the GHz range

Magnitude and peak frequency to distinguish between SM and BSM models

 10^{-14} nterferomet EDGES 10^{-19} **LISA** 10^{-24} **DECIGO** ! BBO 10^{-29} ultimate DECIGO Eq. CGMB $\text{SM }\Delta N_{\text{eff}} = 10^{-3}$ 10^{-34} SM inf. bound v MSM

Ringwald et al, 2011.04731

 10^9 10^{11} 10^{13} 10^{15} 10^{17} 10^{19}

 f [Hz]

 $10⁷$

 10^{5}

 10^{3}

SMASH

Standard Model*Axion*Seesaw*Higgs-Portal Inflation

Minimal model of particle physics and cosmology

SMASH extends the SM by

- 3 right-handed SM singlet neutrinos N_i
- a SM singlet complex scalar field σ \bullet
- a vector-like extra quark Q

all charged under a new global $U(1)_{PQ}$ symmetry, that is spontaneously broken by vev $\langle |\sigma| \rangle = v_{\sigma}/\sqrt{2} \sim 10^{11} \text{ GeV}$

It solves five puzzles in particle physics and cosmology in one smash:

- Strong CP problem (Peccei Quinn (PQ) mechanism)
- 2. Dark matter (Axion)
- Neutrino masses and mixing (Typ I seesaw mech.) 3.
- Baryon asymmetry (Thermal leptogenesis) 4.
- **Inflation** (Higgs-portal inflation) 5.

[Ballesteros, Redondo, AR, Tamarit, arXiv:1608.05414; 1610.01639]

Gravitational wave searches with photon regeneration

LSW experiments (ALPS, OSQAR), helioscopes (CAST, IAXO)

Ejlli et al. Eur.Phys.J.C 79 (2019) 12

(Baby) IAXO and MADMAX

Looking for solar axions and direct DM search

Conversion of solar axions to x-ray photons Data taking in 2028 in HERA-South

Resonantly enhance axion-photon conversion with a stack of dielectric plates

10T dipole magnet with an aperture of 1m

In prototyping phase (operation ~2030 if funded)

Partially-levitated membrane inside cavity

Alternative approach to levitated particle or disc

At a cavity length of 100m and disk radius of 75 µm requires an end mirror radius of 1m

• 3x considered for $ET \rightarrow$ requires new technology

Membrane, realized via microfabrication techniques, is structurally connected to the environment via a supporting substrate

- Membrane Q factor similar to levitated stacks, results in comparable sensitivity
- Allows to reduce mirror radius, enabling to rely on established mirror technology
- Membrane's connection to a substrate enables straight forward handling and installation in the cavity

Parameters necessary to compute the characteristic amplitude

$$
h_c^{\rm min}(0,\omega)\simeq \sqrt{\frac{4\,N_{\rm exp}}{A\,B^2\,L^2\,\epsilon_\gamma(\omega)\,\Delta\omega}}\simeq 1.6\times 10^{-16} \sqrt{\left(\frac{N_{\rm exp}}{1\ {\rm Hz}}\right)\left(\frac{1\ {\rm m}^2}{A}\right)\left(\frac{1\ {\rm T}}{B}\right)^2\left(\frac{1\ {\rm m}}{L}\right)^2\left(\frac{1\ {\rm Hz}}{\Delta f}\right)\left(\frac{1}{\epsilon_\gamma(\omega)}\right)}
$$

- N_{exp} detected number of photons per second, $\mathcal{L}^{\mathcal{A}}$
- A cross-section of the detector, $\mathcal{L}_{\mathrm{eff}}$
- B magnetic field amplitude, $\overline{}$
- L distance extension of the magnetic field, $\mathcal{L}_{\mathcal{A}}$
- $\epsilon_{\nu}(\omega)$ quantum efficiency of the detector,
- Δf operation frequency of the CCD.

MAGO's readout

Phase shift in signal mode gives additional discrimination

Magic-tee

Magic-tee approach

- Shift signal phase of one cell by π
- Loaded mode cancels, signal mode amplified

Can be tested with injected signal or with mechanical deformation of cavity with piezos

Contact

