Closing gaps in the GW spectrum: new physics with *μ*Hz GWs and how to detect them

Diego Blas (ICREA/IFAE)

based on 2107.04063/2107.04601 (PRL/PRD22) (w. Alex Jenkins)

HEASER **Barcelona Institute of BIST**

Science and Technology

GOBIERNO DE ESPAÑA

Generalitat de Catalunya Departament de Recerca *i* Universitats

MW in visible band

Spektr-RG–eROSITA all-sky map Nature volume 588, pages 227–231 (2020).

Possible **backgrounds** at *μ*Hz: a rich band

Possible **backgrounds** at *μ*Hz: a rich band

PTA23

What's the origin of the 2023 detection? How does it change at high freq?

The **µAres** detection landscape

Review of sources

arXiv:1908.11391v1 [astro-ph.IM] 29 Aug 2019

Backgrounds from fundamental physics

Can we detect them?

Can we detect them?

2019 Aug 29 [astro-ph.IM] $\mathsf{\nu}1$ 391 arXiv:1908.11

> Alberto Sesana* Università degli Studi di Milano-Bicocca alberto.sesana@unimib.it

Natalia Korsakova Observatoire de la Côte d'Azur natalia.korsakova@oca.eu

i) *μ*Ares: LISA-like concept

Voyage 2050 White Paper

Unveiling the Gravitational Universe at µ-Hz Frequencies

The **µAres** detection landscape

Fedderke et al 2112.11431

ii) Ranging of asteroids?

iii) Future astrometry?

2(1 ~*q ·* ~*n*) $\frac{d}{dx}$ and $\frac{d}{dx}$ are $\frac{d}{dx}$ and $\frac{d}{dx}$ and $\frac{d}{dx}$ the plot to plot the $\frac{1}{2}$ be found in Appendix C.

this result is the foundation of PTA efforts to detect \mathcal{C} efforts to detect \mathcal{C}

 \sim 18]. The redshift depends (and)symmetrically one of \sim

the metric perturbations at the metric perturbations at the "emission" and "absorp- \mathcal{C}

Fedderke et al 2204.07677 Stellar interferometry of each star is recorded twice, separated by a time *t*. These ar interferometry are shown here \sim foot and head respectively of each arrow. The length of each

the potential for gra at frequencies *f <* 1*/t*. The length of the arrows has been evaluate the potentia

The most surprising aspect of aspect of

 $\frac{1}{2}$ of momentum. The Geometric state of $\frac{1}{2}$ changes the Earth-boundary of $\frac{1}{2}$ α strains around $\mu_c \sim 10$ λ (μ 112) nese sources is $\Delta\theta \sim h_c$ after integrating for a time $T \sim 1/f_{\rm gw}$. We show that ji H_{min} of W_{min} of this type due to ste enter of WD of this type due to starspots is bounded to be small enough \cdot $\frac{1}{2}$ small-N approach. We discuss possible noise arising from. $\frac{1}{2}$ fing objects and show how it can shift, defined and show how it can few-meter-scale collecting dishes and baselines of $\mathcal{O}(100 \text{ km})$ is supply a distribution of $\mathcal{O}(100 \text{ km})$ $\frac{1}{2}$ ($\frac{1}{2}$) $\frac{1}{2}$ ($\frac{1}{2}$) $\frac{1}{2}$ $\frac{1}{2}$ $\sum_{k=1}^{\infty}$ w _y. The astrometric angular precision d by orbiting objects and show how it can be mitigated. The only plausible to on the "Earth term". The "star term" (or "pulsar term") is a space-based stellar interferome e is broadly in line with the collectors pro netric center of WD of this type due to starspots is bounded to be small enou gh-precision, small- N approach. We discuss possible noise arising from stellar H_Z/f_{max} The astrometric apoular prec $\left(12/\text{Jgw}\right)$. The astrometric angular prec statished is pounded to be sinan enough $\frac{1}{2}$ random realizations of the $\frac{1}{2}$ sion is a space-based stellar interferc $\frac{1}{2}$ currence curve becoming below $\frac{1}{2}$

e.g. Moore et al 1707.06239 Mihaylov et al. 1804.00660

Klioner 1710.11474

Garcia-Bellido et al. 2104.04778

Monitoring many stars (GAIA or better)

Çalışkan et al 2312.03069

iv) Atomic interferometry in space: AEDGE

Badurina et al 2108.02468 (AION)

Graham et al 1206.0818 (MAGIS) Abou El-Neaj et al 1908.00802

 $\Delta \phi \sim \omega L h$

f [Hz]

The most optimistic future…

f [Hz]

The most optimistic future…

muARES $-$ PPTA -- SKA **AEDGE** LISA --**THEIA** -----**GAIA**

Is this all we can do in this band?

 $f \sim \mu Hz$

few days

Absorption of GWs by binaries

Influence of a GW on a binary system (e.g. non-relativistic) *A* was writed by the property resonances of the set of t **Intuitive idea (from '60s)**

 \ddot{r}^i +

GM

 $\frac{r_1}{r^3}r^i$

$$
= \delta^{ik} \frac{1}{2} \ddot{h}_{kj} r^j
$$

 $f \sim \mu Hz$

few days

- **period** *P***, eccentricity** *e*: *size* and *shape* of orbit
- **inlination** *^I***, ascending node** ◆: *orientation* in space
- **o** pericentre ω , mean anomaly at epoch ε : radial and angular *phases*

Better characterised for its 6 Newtonian constants of motion

Absorption of GWs by binaries

$$
\ddot{r}^i + \frac{GM}{r^3}r^i =
$$

Absorption of GWs by binaries

$$
\ddot{\boldsymbol{r}} + \frac{GM}{r^2}\hat{\boldsymbol{r}} = \delta \ddot{\boldsymbol{r}}.
$$

for generic perturbation:
 $\delta \ddot{\boldsymbol{r}} = r(\mathcal{F}_r \hat{\boldsymbol{r}} + \mathcal{F}_\theta \hat{\boldsymbol{\theta}} + \mathcal{F}_\ell \hat{\boldsymbol{\ell}}),$

$$
\dot{P} = \frac{3P^2 \gamma}{2\pi} \left[\frac{e \sin \psi \mathcal{F}_r}{1 + e \cos \psi} + \mathcal{F}_{\theta} \right],
$$
\n
$$
\dot{e} = \frac{\dot{P}\gamma^2}{3Pe} - \frac{P\gamma^5 \mathcal{F}_{\theta}}{2\pi e (1 + e \cos \psi)^2},
$$
\n
$$
\dot{I} = \frac{P\gamma^3 \cos \theta \mathcal{F}_{\ell}}{2\pi (1 + e \cos \psi)^2},
$$
\n
$$
\dot{\Omega} = \frac{\tan \theta}{\sin I} \dot{I},
$$
\n
$$
\dot{\omega} = \frac{P\gamma^3}{2\pi e} \left[\frac{(2 + e \cos \psi) \sin \psi \mathcal{F}_{\theta}}{(1 + e \cos \psi)^2} - \frac{\cos \psi \mathcal{F}_r}{1 + e \cos \psi} \right] - \text{cc}
$$
\n
$$
\dot{\varepsilon} = -\frac{P\gamma^4 \mathcal{F}_r}{\pi (1 + e \cos \psi)^2} - \gamma (\cos I \dot{\Omega} + \dot{\omega}),
$$

for generic perturbation:

$$
\dot{P} = \frac{3P^2 \gamma}{2\pi} \left[\frac{e \sin \psi \mathcal{F}_r}{1 + e \cos \psi} + \mathcal{F}_{\theta} \right],
$$
\n
$$
\dot{e} = \frac{\dot{P} \gamma^2}{3Pe} - \frac{P \gamma^5 \mathcal{F}_{\theta}}{2\pi e (1 + e \cos \psi)^2},
$$
\n
$$
\dot{I} = \frac{P \gamma^3 \cos \theta \mathcal{F}_{\ell}}{2\pi (1 + e \cos \psi)^2},
$$
\n
$$
\dot{\Omega} = \frac{\tan \theta}{\sin I} \dot{I},
$$
\n
$$
\dot{\omega} = \frac{P \gamma^3}{2\pi e} \left[\frac{(2 + e \cos \psi) \sin \psi \mathcal{F}_{\theta}}{(1 + e \cos \psi)^2} - \frac{\cos \psi \mathcal{F}_r}{1 + e \cos \psi} \right] - \text{cc}
$$
\n
$$
\dot{\varepsilon} = -\frac{P \gamma^4 \mathcal{F}_r}{\pi (1 + e \cos \psi)^2} - \gamma (\cos I \dot{\Omega} + \dot{\omega}),
$$

Absorption of GWs by binaries

 $\ddot{\boldsymbol{r}} + \frac{GM}{r^2}\hat{\boldsymbol{r}} = \delta \ddot{\boldsymbol{r}}.$

timing of binary pulsars

lunar and satellite laser ranging lunar and satellite laser ranging Two probes

Possible backgrounds

Our estimates (solid: today; dashed 2038)

Envelope of pulsars (*P*~hours - 100 days) Satellites (*P*~hours) *(better ranging?)*

Lunar laser ranging (*P*~month) *(2038 line requires replacing the mirrors …may/will happen before 2030!)*

Blas&Jenkins Phys.Rev.Lett. 128 (2022) 10, 101103

Murphy 1309.6294

Our estimates (solid: today; dashed 2038)

Blas&Jenkins Phys.Rev.Lett. 128 (2022) 10, 101103

-
-
-
-
-

- **NANOGrav**
- SMBBHs
- FOPTs
- SMBH mimickers
- Ultralight bosons

Envelope of pulsars (*P*~hours - 100 days)

Satellites (*P*~hours)

Possible backgrounds

Our estimates (solid: today; dashed 2038)

Lunar laser ranging (*P*~month) *(2038 line requires replacing the mirrors …may/will happen before 2030!)*

Blas&Jenkins Phys.Rev.Lett. 128 (2022) 10, 101103

Murphy 1309.6294

We may see the signal of PTAs!!!

 $\frac{m}{\Omega} \leq 3 \times 10^{-9}$ at $f \sim \mu$ Hz

*μ***Hz GWs**

- The *μ*Hz band is very rich for **astrophysical** and **cosmological** sources
- There are **ideas** of how to access it, though **most** of them are **futuristic**
- The resonant **absorption of GWs by binaries** (LLR/SLR/pulsars) may give a handle at level (in 2038)
	- $\Omega_{\rm gw} \geq 4.8 \times 10^{-9}$ $f = 0.85 \,\mu \rm Hz$ $\Omega_{\rm gw} \geq 8.3 \times 10^{-9}$ $f = 0.15 \,\rm mHz$
- **Future plans:** new mirror in the Moon? New optimised satellites?

