Closing gaps in the GW spectrum: new physics with μ Hz GWs and how to detect them

Diego Blas (ICREA/IFAE)

based on 2107.04063/2107.04601 (PRL/PRD22) (w. Alex Jenkins)

Barcelona Institute of BIST

Science and Technology

GOBIERNO **DE ESPAÑA**

Generalitat de Catalunya Departament de Recerca i Universitats

MW in visible band

Spektr-RG-eROSITA all-sky map Nature volume 588, pages 227–231 (2020).

Possible backgrounds at μ Hz: a rich band

Possible backgrounds at μ Hz: a rich band

PTA23

What's the origin of the 2023 detection? How does it change at high freq?

10⁵

The µAres detection landscape

Review of sources

arXiv:1908.11391v1 [astro-ph.IM] 29 Aug 2019

Backgrounds from fundamental physics

Can we detect them?

Can we detect them?

2019 Aug 29 [astro-ph.IM] ٧l 391 arXiv:1908.1

> Alberto Sesana* Università degli Studi di Milano-Bicocca alberto.sesana@unimib.it

Natalia Korsakova Observatoire de la Côte d'Azur natalia.korsakova@oca.eu

i) µAres: LISA-like concept

Voyage 2050 White Paper

Unveiling the Gravitational Universe at µ-Hz Frequencies

The µAres detection landscape

ii) Ranging of asteroids?

Fedderke et al 2112.11431

e.g. Moore et al 1707.06239 Mihaylov et al. 1804.00660

Klioner 1710.11474

Garcia-Bellido et al. 2104.04778

Monitoring many stars (GAIA or better)

Fedderke et al 2204.07677

Stellar interferometry

Çalışkan et al 2312.03069

iii) Future astrometry?

at characteristic strains around $h_c \sim 10^{-17} \times (\mu \text{Hz}/f_{\text{GW}})$. The astrometric angular precision required to see these sources is $\Delta \theta \sim h_c$ after integrating for a time $T \sim 1/f_{\rm GW}$. We show that jitter in the photometric center of WD of this type due to starspots is bounded to be small enough to permit this high-precision, small-N approach. We discuss possible noise arising from stellar reflex motion induced by orbiting objects and show how it can be mitigated. The only plausible technology able to achieve the requisite astrometric precision is a space-based stellar interferometer. Such a future mission with few-meter-scale collecting dishes and baselines of $\mathcal{O}(100 \,\mathrm{km})$ is sufficient to achieve the target precision. This collector size is broadly in line with the collectors proposed for

iv) Atomic interferometry in space: AEDGE

Badurina et al 2108.02468 (AION)

Abou El-Neaj et al 1908.00802 Graham et al 1206.0818 (MAGIS)

 $\Delta \phi \sim \omega Lh$

The most optimistic future...

f [Hz]

The most optimistic future...

muARES **—** РРТА -- SKA AEDGE LISA _ THEIA ____ GAIA

0.001

f [Hz]

Is this all we can do in this band?

 $f \sim \mu \text{Hz}$

few days

Intuitive idea (from '60s) Influence of a GW on a binary system (e.g. non-relativistic)

Newtonian potential

 $f \sim \mu \text{Hz}$

few days

$$\ddot{r}^{i} + \frac{GM}{r^{3}}r^{i} = \delta^{ik}\frac{1}{2}\ddot{h}_{kj}r^{j}$$
Initial

$$\ddot{r}^i + \frac{GM}{r^3}r^i =$$

Better characterised for its 6 Newtonian constants of motion

- period *P*, eccentricity *e*: size and shape of orbit
- Inlination *I*, ascending node *Ω*:
 orientation in space
- pericentre ω,
 mean anomaly at epoch ε:
 radial and angular phases

for generic perturbation:

 $\delta \ddot{m{r}} = r(\mathcal{F}_r \hat{m{r}} + \mathcal{F}_ heta \hat{m{ heta}} + \mathcal{F}_\ell \hat{m{ heta}}), \quad \hat{m{ heta}}$

$$\begin{split} \dot{P} &= \frac{3P^2\gamma}{2\pi} \left[\frac{e\sin\psi\mathcal{F}_r}{1+e\cos\psi} + \mathcal{F}_{\theta} \right], \\ \dot{e} &= \frac{\dot{P}\gamma^2}{3Pe} - \frac{P\gamma^5\mathcal{F}_{\theta}}{2\pi e(1+e\cos\psi)^2}, \\ \dot{I} &= \frac{P\gamma^3\cos\theta\mathcal{F}_{\ell}}{2\pi(1+e\cos\psi)^2}, \\ \dot{\varphi} &= \frac{\tan\theta}{\sin I}\dot{I}, \\ \dot{\omega} &= \frac{P\gamma^3}{2\pi e} \left[\frac{(2+e\cos\psi)\sin\psi\mathcal{F}_{\theta}}{(1+e\cos\psi)^2} - \frac{\cos\psi\mathcal{F}_r}{1+e\cos\psi} \right] - \cos\psi \\ \dot{\varepsilon} &= -\frac{P\gamma^4\mathcal{F}_r}{\pi(1+e\cos\psi)^2} - \gamma(\cos I\dot{\varphi} + \dot{\omega}), \end{split}$$

Ω

 $\ddot{\boldsymbol{r}} + \frac{GM}{r^2} \hat{\boldsymbol{r}} = \delta \ddot{\boldsymbol{r}}.$

for generic perturbation:

 $\delta \ddot{\boldsymbol{r}} = r(\mathcal{F}_r \hat{\boldsymbol{r}} + \mathcal{F}_{ heta} \hat{\boldsymbol{ heta}} + \mathcal{F}_{\ell} \hat{\boldsymbol{\ell}}),$

$$\begin{split} \dot{P} &= \frac{3P^2\gamma}{2\pi} \left[\frac{e\sin\psi\mathcal{F}_r}{1+e\cos\psi} + \mathcal{F}_{\theta} \right], \\ \dot{e} &= \frac{\dot{P}\gamma^2}{3Pe} - \frac{P\gamma^5\mathcal{F}_{\theta}}{2\pi e(1+e\cos\psi)^2}, \\ \dot{I} &= \frac{P\gamma^3\cos\theta\mathcal{F}_{\ell}}{2\pi(1+e\cos\psi)^2}, \\ \dot{\varphi} &= \frac{\tan\theta}{\sin I}\dot{I}, \\ \dot{\omega} &= \frac{P\gamma^3}{2\pi e} \left[\frac{(2+e\cos\psi)\sin\psi\mathcal{F}_{\theta}}{(1+e\cos\psi)^2} - \frac{\cos\psi\mathcal{F}_r}{1+e\cos\psi} \right] - \cos\psi \\ \dot{\varepsilon} &= -\frac{P\gamma^4\mathcal{F}_r}{\pi(1+e\cos\psi)^2} - \gamma(\cos I\dot{\varphi} + \dot{\omega}), \end{split}$$

timing of binary pulsars

Two probes lunar and satellite laser ranging

Our estimates (solid: today; dashed 2038)

Blas&Jenkins Phys.Rev.Lett. 128 (2022) 10, 101103

Satellites (*P*~hours)
 (better ranging?) Envelope of pulsars (*P*~hours - 100 days)

Lunar laser ranging (*P*~month) (2038 line requires replacing the mirrors ...may/will happen before 2030!)

Murphy 1309.6294

Possible backgrounds

Our estimates (solid: today; dashed 2038)

Blas&Jenkins Phys.Rev.Lett. 128 (2022) 10, 101103

Our estimates (solid: today; dashed 2038)

Blas&Jenkins Phys.Rev.Lett. 128 (2022) 10, 101103

Satellites (P~hours)

Envelope of pulsars (P~hours - 100 days)

Lunar laser ranging (*P*~month) (2038 line requires replacing the mirrors ...may/will happen before 2030!)

Murphy 1309.6294

• We may see the signal of PTAs!!!

in 2050 $\Omega \lesssim 3 \times 10^{-9} \text{ at } f \sim \mu \text{Hz}$

- ····· NANOGrav
- SMBBHs
- FOPTs
- SMBH mimickers

 10^{2}

····· Ultralight bosons

Possible backgrounds

µHz GWs

- The μ Hz band is very rich for **astrophysical** and **cosmological** sources
- There are ideas of how to access it, though most of them are futuristic
- The resonant absorption of GWs by binaries (LLR/SLR/pulsars) may give a handle at level (in 2038)
 - $\Omega_{\rm gw} \ge 4.8 \times 10^{-9} \quad f = 0.85 \,\mu {\rm Hz}$ $\Omega_{\rm gw} \ge 8.3 \times 10^{-9} \qquad f = 0.15 \,{\rm mHz}$
- Future plans: new mirror in the Moon? New optimised satellites?

