New probe of non-Gaussianities with primordial black hole induced gravitational waves

Based on [arXiv:2402.XXXXX, T. Papanikolaou, X. C. He, X.-Ha. Ma, Y. F. Cai., E. N. Saridakis, M. Sasaki]

Theodoros Papanikolaou

14/02/2024 Bottom-Up Cross-Cutting Workshop "JENAS Initiative: Gravitational Wave Probes of Fundamental Physics" Sapienza University of Rome, Italy

ΙΔΡΥΜΑ ΠΑΙΔΕΙΑΣ ΚΑΙ ΕΥΡΩΠΑΪΚΟΥ ΠΟΛΙΤΙΣΜΟΥ

ΙΔΡΥΤΕΣ ΝΙΚΟΣ ΚΑΙ ΛΥΝΤΙΑ ΤΡΙΧΑ

Contents

1. Introduction

2. Gravitational waves from PBH energy density fluctuations

3. Local type primordial non-Gaussianities: The effect on PBH clustering

4. Non-Gaussian PBH induced GWs

5. Constraints on primordial non-Gaussianities

6. Conclusions

Introduction

See for reviews in [Carr et al.- 2020, Sasaki et al - 2018, Clesse et al. - 2017]

PBHs and GWs

- 1) **Primordial induced GWs** generated through second order gravitational effects: $\mathscr{L}^{(3)}_{\Phi,h}$ ∋ $h\Phi^2$, [Bugaev - 2009, Kohri & Terada - 2018]. GWs PBHs
- 2) **Relic Hawking radiated gravitons** from PBH evaporation [Anantua et al. 2008, Dong et al. - 2015].

• 3) **GWs** emitted **by PBH mergers** [Eroshenko - 2016, Raidal et al. - 2017].

• 4) **GWs induced** at second order **by PBH energy density fluctuations** [Papanikolaou et al. - 2020].

PBH-eMD era phenomenology

• PBHs can dominate in the early Universe since $\Omega_{\rm PBH} = \rho_{\rm PBH}/\rho_{\rm tot} \propto a^{-3}/a^{-4} \propto a$.

PBHs with $m_{\rm PBH} < 10^9 \mathrm{g}$ (They evaporate before BBN)

- These ultralight PBHs can **drive the reheating process** through their evaporation [Zagorac et al. - 2019, Martin et al. - 2019, Inomata et al. - 2020] during which all the SM particles can be produced.
- Hawking evaporation of ultralight PBHs can **alleviate as well the Hubble tension** [Hooper et al. - 2019, Nesseris et al. - 2019, Lunardini et al. - 2020] by injecting to the primordial plasma dark radiation degrees of freedom which can increase $N_{\rm eff}$.
- Evaporation of light PBHs can also **produce naturally the baryon asymmetry** through CP violating out-of-equilibrium decays of Hawking evaporation products [J. D. Barrow et al. - 1991, T. C. Gehrman et al. - 2022, N. Bhaumik et al. - 2022].
- **GWs induced by PBH energy density fluctuations can interpret** in a very good agreement **the recently released PTA GW data** [Lewicki et al. - 2023, Basilakos et al. - 2023]

The PBH Matter Field

This **isocurvature perturbation,** $\delta_{\rm PBH}$ generated during the RD era will convert during the PBHD era **to a curvature perturbation** $\zeta_{\rm PBH}$, associated to a PBH gravitational potential $\Phi.$

$$
\mathcal{P}_{\Phi}(k) = S_{\Phi}^2(k) \left(5 + \frac{4}{9} \frac{k^2}{k_d^2} \right)^{-2} \mathcal{P}_{\delta_{\text{PBH}}, \text{Poisson}}(k), \text{ where } S_{\Phi}(k) \equiv \left(\frac{k}{k_{\text{evap}}} \right)^{-1/3}
$$

Scalar Induced Gravitational Waves

• The equation of motion for the Fourier modes, $h_{\vec{k}}$, read as:

$$
h_{\vec{k}}^{s,''}+2\mathscr{H}h_{\vec{k}}^{s,'}+k^2h_{\vec{k}}^s=4S_{\vec{k}}^s.
$$

• The source term, $S_{\vec{k}}$ can be recast as:

 $S^s_{\vec{i}}$ ⃗*k*

$$
= \int \frac{d^3 \vec{q}}{(2\pi)^{3/2}} e_{ij}^s(\vec{k}) q_i q_j \left[2\Phi_{\vec{q}} \Phi_{\vec{k}-\vec{q}} + \frac{4}{3(1+w)} (\mathcal{H}^{-1} \Phi'_{\vec{q}} + \Phi_{\vec{q}}) (\mathcal{H}^{-1} \Phi'_{\vec{k}-\vec{q}} + \Phi_{\vec{k}-\vec{q}}) \right].
$$

$$
\Omega_{\text{GW}}(\eta, k) \equiv \frac{1}{\rho_{\text{tot}}} \frac{d\rho_{\text{GW}}}{d \ln k} = \frac{1}{24} \left(\frac{k}{a(\eta)H(\eta)} \right)^2 \mathcal{P}_h(\eta, k),
$$
with $\mathcal{P}_h(\eta, k) \equiv \frac{k^3 |h_k|^2}{2\pi^2} \propto \int dv \int du \left(\int f(v, u, k, \eta) d\eta \right)^2 \mathcal{P}_{\Phi}(kv) \mathcal{P}_{\Phi}(ku).$

GW Detectability

• By accounting on BBN bounds on the GW amplitude at $k \sim k_{\text{UV}}$, one can set upper bound constraints on the $\Omega_\mathrm{PBH,f}$ readings as

$$
\Omega_{\rm PBH,f} < 10^{-6} \left(\frac{M_{\rm PBH}}{10^4 {\rm g}} \right)^{-17/24}.
$$

The effect of local-type non-Gaussianities

$$
\langle \mathcal{R}(\mathbf{k}_1) \mathcal{R}(\mathbf{k}_2) \rangle \equiv (2\pi)^3 \delta^{(3)}(\mathbf{k}_1 + \mathbf{k}_2) P_{\mathcal{R}}(k)
$$

$$
\langle \mathcal{R}(\mathbf{k}_1) \mathcal{R}(\mathbf{k}_2) \mathcal{R}(\mathbf{k}_3) \rangle \equiv (2\pi)^3 \delta^{(3)}(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3)
$$

$$
\times \frac{6}{5} f_{\rm NL} [P_{\mathcal{R}}(k_1) P_{\mathcal{R}}(k_2) + 2 \text{ perms}]
$$

$$
\langle \mathcal{R}(\mathbf{k}_1) \mathcal{R}(\mathbf{k}_2) \mathcal{R}(\mathbf{k}_3) \mathcal{R}(\mathbf{k}_4) \rangle \equiv (2\pi)^3 \delta^{(3)}(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3 + \mathbf{k}_4)
$$

$$
\times \begin{cases} \frac{54}{25} g_{\rm NL} [P_{\mathcal{R}}(k_1) P_{\mathcal{R}}(k_2) P_{\mathcal{R}}(k_3) + 3 \text{ perms}] \\ + \tau_{\rm NL} [P_{\mathcal{R}}(k_1) P_{\mathcal{R}}(k_2) P_{\mathcal{R}}(|\mathbf{k}_1 + \mathbf{k}_3|) + 11 \text{ perms}] \end{cases}
$$

$$
\langle \mathcal{R}(\mathbf{k}_1) \mathcal{R}(\mathbf{k}_2) \rangle \equiv (2\pi)^3 \delta^{(3)}(\mathbf{k}_1 + \mathbf{k}_2) P_{\mathcal{R}}(\mathbf{k})
$$

\n
$$
\langle \mathcal{R}(\mathbf{k}_1) \mathcal{R}(\mathbf{k}_2) \mathcal{R}(\mathbf{k}_3) \rangle \equiv (2\pi)^3 \delta^{(3)}(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3)
$$

\n
$$
\times \frac{6}{5} f_{\text{NL}} [P_{\mathcal{R}}(\mathbf{k}_1) P_{\mathcal{R}}(\mathbf{k}_2) + 2 \text{ perms}]
$$

\n
$$
\langle \mathcal{R}(\mathbf{k}_1) \mathcal{R}(\mathbf{k}_2) \mathcal{R}(\mathbf{k}_3) \mathcal{R}(\mathbf{k}_4) \rangle \equiv (2\pi)^3 \delta^{(3)}(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3 + \mathbf{k}_4)
$$

\n
$$
\times \left\{ \frac{54}{25} g_{\text{NL}} [P_{\mathcal{R}}(\mathbf{k}_1) P_{\mathcal{R}}(\mathbf{k}_2) P_{\mathcal{R}}(\mathbf{k}_3) + 3 \text{ perms}] + \eta_{\text{NL}} [P_{\mathcal{R}}(\mathbf{k}_1) P_{\mathcal{R}}(\mathbf{k}_2) P_{\mathcal{R}}(\mathbf{k}_1 + \mathbf{k}_3)] + 11 \text{ perms}] \right\}
$$

\n
$$
kR \ll 1
$$

\n
$$
\delta_{\text{PBH}}(\mathbf{k}) \simeq \mathcal{P}_{\mathcal{R}}(\mathbf{k}) \nu^4 \left(\frac{4}{9 \sigma_{\mathbf{k}}} \right)^4 \int \frac{d^3 p_1 d^3 p_2}{(2\pi)^6} \tau_{\text{NL}}(p_1, p_2, p_1, p_2) W_{\text{local}}^2(p_1) W_{\text{local}}^2(p_2) P_{\mathcal{R}}(p_1) P_{\mathcal{R}}(p_2)
$$

\n
$$
+ \frac{k^3}{2\pi^2} (\mathbf{k} - \text{independent terms})
$$

$$
\langle \mathcal{R}(k_1) \mathcal{R}(k_2) \rangle \equiv (2\pi)^3 \delta^{(3)}(k_1 + k_2) P_{\mathcal{R}}(k)
$$

\n
$$
\langle \mathcal{R}(k_1) \mathcal{R}(k_2) \mathcal{R}(k_3) \rangle \equiv (2\pi)^3 \delta^{(3)}(k_1 + k_2 + k_3)
$$

\n
$$
\times \frac{6}{5} f_{\text{NL}} [P_{\mathcal{R}}(k_1) P_{\mathcal{R}}(k_2) + 2 \text{ perms}]
$$

\n
$$
\langle \mathcal{R}(k_1) \mathcal{R}(k_2) \mathcal{R}(k_3) \mathcal{R}(k_4) \rangle \equiv (2\pi)^3 \delta^{(3)}(k_1 + k_2 + k_3 + k_4)
$$

\n
$$
\times \left\{ \frac{54}{25} g_{\text{NL}} [P_{\mathcal{R}}(k_1) P_{\mathcal{R}}(k_2) P_{\mathcal{R}}(k_3) + 3 \text{ perms}] + 7 \text{NL} [P_{\mathcal{R}}(k_1) P_{\mathcal{R}}(k_2) P_{\mathcal{R}}(|k_1 + k_3|) + 11 \text{ perms}] \right\}
$$

\n
$$
K R \ll 1
$$

\n
$$
\delta_{\text{PBH}}(k) \approx \mathcal{P}_{\mathcal{R}}(k) \nu^4 \left(\frac{4}{9 \sigma_R} \right)^4 \int \frac{d^3 p_1 d^3 p_2}{(2 \pi)^6} \tau_{\text{NL}}(p_1, p_2, p_1, p_2) W_{\text{local}}^2(p_1) W_{\text{local}}^2(p_2) P_{\mathcal{R}}(p_1) P_{\mathcal{R}}(p_2)
$$

\n
$$
+ \frac{k^3}{2 \pi^2} (k \text{ - independent terms}) \equiv \nu^4 \bar{\tau}_{\text{NL}} \mathcal{P}_{\mathcal{R}}(k) + \mathcal{P}_{\delta_{\text{PBH}}, \text{Poisson}}(k), \text{ where } \nu = \delta_c / \sigma_R \sim 8
$$

$$
\langle \mathcal{R}(k_1) \mathcal{R}(k_2) \rangle = (2\pi)^3 \delta^{(3)}(k_1 + k_2) P_{\mathcal{R}}(k)
$$

\n
$$
\langle \mathcal{R}(k_1) \mathcal{R}(k_2) \mathcal{R}(k_3) \rangle = (2\pi)^3 \delta^{(3)}(k_1 + k_2 + k_3)
$$

\n
$$
\times \frac{6}{5} f_{\text{NL}} [P_{\mathcal{R}}(k_1) P_{\mathcal{R}}(k_2) + 2 \text{ perms}]
$$

\n
$$
\langle \mathcal{R}(k_1) \mathcal{R}(k_2) \mathcal{R}(k_3) \mathcal{R}(k_4) \rangle = (2\pi)^3 \delta^{(3)}(k_1 + k_2 + k_3 + k_4)
$$

\n
$$
\times \left\{ \frac{54}{25} g_{\text{NL}} [P_{\mathcal{R}}(k_1) P_{\mathcal{R}}(k_2) P_{\mathcal{R}}(k_3) + 3 \text{ perms} + \pi_{\text{NL}} [P_{\mathcal{R}}(k_1) P_{\mathcal{R}}(k_2) P_{\mathcal{R}}(|k_1 + k_3|) + 11 \text{ perms}] \right\}
$$

\n
$$
+ \pi_{\text{NL}} [P_{\mathcal{R}}(k_1) P_{\mathcal{R}}(k_2) P_{\mathcal{R}}(|k_1 + k_3|) + 11 \text{ perms}] \right\}
$$

\n
$$
\mathcal{P}_{\delta_{\text{PBH}}}(k) \approx \mathcal{P}_{\mathcal{R}}(k) \nu^4 \left(\frac{4}{9\sigma_R} \right)^4 \left(\frac{d^3 p_1 d^3 p_2}{(2\pi)^6} \tau_{\text{NL}}(p_1, p_2, p_1, p_2) W_{\text{local}}^2(p_1) W_{\text{local}}^2(p_2) P_{\mathcal{R}}(p_1) P_{\mathcal{R}}(p_2) \right)
$$

\n
$$
+ \frac{k^3}{2\pi^2} (k \text{ - independent terms}) \equiv \nu^4 \bar{\tau}_{\text{NL}} \mathcal{P}_{\mathcal{R}}(k) + \mathcal{P}_{\delta_{\text{PBH}} \text{Poisson}}(k),
$$

The non-Gaussian PBH matter power spectrum

Ansatz : $\mathcal{P}_{\mathcal{R}}(k_{\text{evap}} < k < k_{\text{UV}}) \simeq 2 \times 10^{-9}, \quad \tau_{\text{NL}}(k_1, k_2, k_3, k_4) = \tau_{\text{NL}}(k_{\text{f}})e$ $-\frac{1}{2\sigma_{\tau}^2} \left(\sum_{i=1,2,3,4} \ln^2 \frac{k_i}{k_f} \right)$

The non-Gaussian PBH matter power spectrum

Ansatz : $\mathcal{P}_{\mathcal{R}}(k_{\text{evap}} < k < k_{\text{UV}}) \simeq 2 \times 10^{-9}, \quad \tau_{\text{NL}}(k_1, k_2, k_3, k_4) = \tau_{\text{NL}}(k_{\text{f}})e$ $-\frac{1}{2\sigma_{\tau}^2} \left(\sum_{i=1,2,3,4} \ln^2 \frac{k_i}{k_f} \right)$

The non-Gaussian PBH matter power spectrum

Ansatz : $\mathcal{P}_{\mathcal{R}}(k_{\text{evap}} < k < k_{\text{UV}}) \simeq 2 \times 10^{-9}, \quad \tau_{\text{NL}}(k_1, k_2, k_3, k_4) = \tau_{\text{NL}}(k_{\text{f}})e$ $-\frac{1}{2\sigma_{\tau}^2} \left(\sum_{i=1,2,3,4} \ln^2 \frac{k_i}{k_f} \right)$

Non-Gaussian Induced GWs

Non-Gaussian Induced GWs

Constraining non-Gausianities

Conclusions

- **GWs** induced by **PBH isocurvature perturbations** can be abundantly produced in **eMD eras before BBN** driven by PBHs and give us access to the early Universe given their **potential detectability by GW experiments.**
- In particular, by requiring not to have GW overproduction at the end of BBN one can set **constraints on the abundances of ultralight PBHs** with $m_{\rm PBH} < 10^9 \rm g$ which are **otherwise unconstrained** by other observational probes.
- Incorporating in the analysis **the effect of local-type primordial non-Gaussianities on PBH clustering** we found a **bi-peaked structure of the induced GW signal** with the l**ow frequency peak being related to the** $\tau_{\rm NL}$ **parameter.**
- Accounting finally for BBN bounds on the GW amplitude we set **constraints on primordial non-Gaussianities on very small scales** $k > 10^5 \rm Mpc^{-1}$ **, otherwise** unconstrained by current CMB and LSS probes.
- The portal of **PBH induced GWs induced** can serve as a **new messenger from the early Universe.**

Thanks for your attention!