

Global Network of Cavities to Search for Gravitational Waves: GravNet A novel scheme to hunt gravitational waves signatures from the early universe

"Gravitational Wave probes of Fundamental Physics", Rome, 2024

Kristof Schmieden*, Tim Schneemann*, Matthias Schott **

*: University of Mainz, **: University of Bonn

SUPAOX

a **RADES** experiment

Cluster of Excellence

Precision Physics, Fundamental Interactions and Structure of Matter

Based on [arXiv:2308.11497]

Introduction - Gravitational Waves

https://www.esa.int/]

Introduction - Gravitational Waves

- Observation of gravitational waves by LIGO/Virgo is certainly a breakthrough in fundamental physics!
- However, there should/could be other sources of gravitational waves
 - Primordial black hole merges
 - Boson clouds (BH superradiance)

. . .

- Those GW would have frequencies in the GHz regime
 - Should search for high frequency GW

But how?

- Two contributing effects
 - Assuming conversion cavity with volume V within static B-Field

- GW deforms cavity
 - Oscillating change of magnetic flux
 - Excitation of EM field

 Direct conversion of gravitons to photons via the in Gertsenshtein effect

[arXiv:2112.11465]

- Resonant excitation of EM field in Cavity
 - Produced EM power given by:

Now express
$$P_{sig} = \frac{1}{2}Q\omega_g^3 V^{5/3} (\eta_n h_0 B_0)^2 \frac{1}{\mu_0 q}$$

a

 $\overline{2}$

• Axion Haloscopes:

- RF cavity in magnetic field \rightarrow Primakov conversion of axions to photons
- Resonant excitation of cavity mode
- Cavity based haloscopes are sensitive to GWs

• GW:

- Typical quadruple structure
- Preferred mode: TM $02\vec{\Theta}_0$
- Curpendent direction dependent on GW

[arXiv:2112.11465]

• Axions:

- Preferred mode: TM 010
- Current dependent on B-field direction
- Litle overlap with GW mode

[Detecting high-frequency gravitational waves with microwave cavities Asher Berlin, Diego Blas, Raffaele Tito D'Agnolo, Sebastian A.R. Ellis arXiv:2112.11465]

GWPFP — 14/02/2024

t_int 120s 120s 120s 4d 1d

High Frequency Gravitational Waves

- Several well motivated beyond the standard model sources:
 - Primoridal black hole mergers • Chirp signals
 - GW from boson clouds around BHs
 - (BH super radiance)
 - Monochromatic over long timescales
 - Stochastic GW background • Even lower strains ...

- Displayed expected experimental sensitivities for PBHs:
 - Assuming GW signal long enough to ring up cavity
 - E.g.: given for ADMX,SQMS @ $m_{PBH} \approx 10^{-10} M_{\odot}$

• **Supax:** superconducting axion search @ Mainz

- First results on dark photons (~commissioning) [arXiv:2308.08337]
- Goals:
 - Study of new **SC materials** for resonant cavity experiments
 - Study of cavity geometries optimised for GW searches
 - Together with Mainz theory section (P. Schwaller)

• Depends on cavity material: •High purity copper: ~5.10⁴

• Superconducting: difficult in high magnetic field!

- Target: 106
- Achieved: 3.10^5 (non tunable)
 - HTS arXiv: 2002.08769
 - Di-electric arXiv: 2208.12670
- Materials under study: Nb₃Sn, HTS materials (YBCO)
- New: NbN

- **Supax:** new superconducting material for RF cavities:
 - NbN
 - $Q_0 = 3.1 \cdot 10^5$ @ 8.4 GHz, 4 K
 - Measurements within B-field currently ongoing

Cu cavity, coated with NbN at university of Siegen

How to become more sensitive?

- Current efforts focus on improving single cavity sensitivity
- But what about **combining** various setups?
 - Phase aligned combination voltages from of N cavities
 RF amplitude (voltage):

$$V_{comb} = \frac{it\omega}{\sqrt{N}} \sum_{i} V_{i} e^{i\phi_{i}} \propto \sqrt{N}V_{0}$$
$$V_{i} = V, \ \phi_{i} = \phi$$

- Hence the signal power scales linearly in N!
 - Assumed single setup
 - 14T B-field, about 10cm diam., 30cm long
 - 3 spherical cavities @ 5GHz, SC, high Q
 - 1s integration time

Kristof Schmieden

Setup	Supax	GravNet
Shape	cyl.	spher.
$f_0 [{ m GHz}]$	8.3	5.0
Volume [l]	0.128	0.21
Q_0	39600	10^{6}
η	0.08	0.6
$T_{\rm sys}$ [K]	5	0.1
B [T]	14	
int. time	$1 \mathrm{s}$	
n cavities	1	3
noise power [W]	$1.5 \cdot 10^{-21} W$	$6.2 \cdot 10^{-23} W$
$h_0(P_{\text{sig}} = P_{\text{noise}})$	$7.1 \cdot 10^{-21}$	$5.2 \cdot 10^{-23}$

- How sensitive can we get with **10 setups**, scattered around the globe
- Assumptions:
 - Sampling of Waveform -> offline combination of phase aligned IQ data
 - Setups as shown before
 - Effective signal power increased by factor 10
 - Strain sensitivity increased by factor $\sqrt{10} \approx 3$

 $h_0 < 10^{-23}$, 1 second integration time

- Phase alignment for distributed setups:
 - If signal seen in 3 cavities:
 - Direction of GW can be reconstructed
 - Otherwise:
 - Scan through all possible directions and repeat combinations

- - PBH signals are fast transients

- How sensitive can we get with **10 setups**, scattered around the globe
- Assumptions:
 - Sampling of Waveform -> offline combination of phase aligned IQ data
 - Setups as shown before
 - Effective signal power increased by factor 10
 - Strain sensitivity increased by factor $\sqrt{10} \approx 3$

 $h_0 < 10^{-23}$, 1 second integration time

- Longer integration times
 - Sensitivity gain with integration time t^{1/4}

 $h_0 < 10^{-24}$, 2h integration time

- GW strain: largest if merging is imminent (closest to innermost stable circular orbit)
 - Frequency drift large

$$\dot{f} = \frac{96}{5} \pi^{8/3} m_c^{5/3} f^{11/3} \simeq 4.62 \times 10^{11} \,\mathrm{Hz}^2 \left(\frac{m_{\mathrm{PBH}}}{10^{-9} M_{\odot}}\right)^{5/3} \left(\frac{f}{\mathrm{GH}}\right)^{10} \,\mathrm{GH}^2$$

- To resonantly excite a cavity:
 - GW frequency must stay within resonator bandwidth
 - $\omega/Q \approx 10^{10} Hz/10^6 = 10 kHz$
 - Very short integration times O(ms) or below for larger PBH masses
- No improvement with longer integration times!
 - Alternative?

- Similar approach as for low frequency BH mergers:
 - Analysis in **time domain**
 - Data rates: ~100MB/s per channel for 10MHz bandwidth

- Simultaneous fit of expected signal shape in all data streams
 - Exploiting all available information
 - + Increased sensitivity compared to time domain analysis
 - - Significant increase in storage & CPU requirement
 - Sensitive to short transient signals

Alternative for fast transient signals - Photon Counting

- Recent progress in R&D for single RF photon counters
- Several technologies under study
 - Current Biased Josephson Junctions
 - Kerr Josephon Parametric amplifiers
 - Transmon Q-Bit readout

[arXiv:2302.07556] [arXiv:2308.07084] [arXiv:2307.03614]

- Shown single photon efficiency: 43% @ 90 Hz dark count rate
 - Big R&D effort ongoing [ERC syn.: "Dark Quantum"]
- Measurement boils down to a coincidence measurement !
- Coincidence window and needed number of coincident detectors optimised depending on
 - Background rate (thermal, detector noise)
 - Signal Rate

[arXiv:2307.03614]

- Background rate:
 - Average thermal power in cavity @ 0.1K ~ $4x10^{-23}$ W, corresponding to 10 photons / s @ 5 GHz
 - Could be lowered going to lower temperatures
 - Assuming advances in the near future on the single photon sensors:
 - Detector dark count rate will drop significantly -> negligible
- Parameter used for Calculation:
 - Allowed accidental coincidence rate: <= 1/year
 - Background rate: 10 Hz
 - N detectors: 20

number of coincidences

Photon Counting - Signal efficiency

• Overall signal efficiency dependent on detector efficiency, coincidence window and signal photon flux:

•
$$\epsilon_{single} = \epsilon_{det} \Delta t_{coincidence} \Phi_{sig}$$
 Φ_{sig} = signal photon f

$$\epsilon_{tot} = \sum_{i>k} \binom{N}{k}, p = \epsilon_{single}$$
, k = number of required c

- Parameter used for Calculation:
 - Allowed accidental coincidence rate: <= 1/year
 - Background rate: 10 Hz
 - N detectors: 20
 - *e_{det}*: 0.5

• With 20 detectors a photon flux of 40 Hz can be detected with an efficiency of 1 within a coincidence interval of **32ms**

flux

coincidences, N = number of detectors

number of coincidences

me [s]

ton Counting - Sensitivity on GW

• With 20 detectors a photon flux of 40 Hz can be detected with an efficiency of 1 within a coincidence interval of 32ms

- Signal photon flux depends on conversion region:
 - a) Magnet dimensions as before (9cm diameter), B = 14T
 - b) Assuming large NMR magnet (80cm diameter), B = 9T

Setup	GravNet-a	GravNet-b	
radius	$40 \mathrm{mm}$	40 cm	
length	$12 \mathrm{cm}$	$50~{ m cm}$	
Volume $[m^3]$	6×10^{-4}	0.25	
Q_0	10^{6}	10^{5}	
$T_{\rm sys}$ [K]	0.1	0.1	
B [T]	14	9	

Global network of HFGW detectors will be able to reach into the interesting region for PBH with existing technologies!

> Significant room for improvements: more detectors, larger volumes, higher detector efficiency

- Remember: SNR scales linear with number of detectors!
- Integrating measurement:
 - Sample RF data, combine phase aligned, integrate
- Typical integration times too long to be sensitive to BH merges!
- Photon counting style experiments:
 - Recent advancements in single RF photon detection allows to use coincidences of several detectors
 - Using 20 independent detectors:
 - Sensitivity: $h_0 < 3x10^{-22} \dots 3x10^{-24}$

Requires large meta material cavities (high frequency @ large volume)

• To increase the sensitivity of halo scope style experiments we suggest to build a **global network of detectors**

- Single frequency sufficient to hunt for PBH mergers!
- Could even combine measurements at different frequencies

GravNet is an idea up for discussion

• Many advantages in combining efforts searching for UHFGWs in coordinated way

 GravNet would significantly improve the sensitivity on high frequency. gravitational waves

- Based on commercial magnet systems, which is comparatively cheap
- Worldwide collaboration would share costs automatically with local lab-based experiments
- Easy exchange of R&D results and integration at all locations
- Sensitivity to the PBH parameter space with existing technologies!

Cluster of Excellence Based on [arXiv:2308.11497]

