Constraints on Phase Transition in Neutron Stars in a Generalized Setup

Jan-Erik Christian, Jürgen Schaffner-Bielich, Stephan Rosswog

UH Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

Rome, February 12, 2024

Bottom-Up Cross-Cutting Workshop of the JENAS Initiative "Gravitational Wave Probes of Fundamental Physics"

Constraints on Phase Transition in Neutron Stars in a Generalized Setup

Jan-Erik Christian, Jürgen Schaffner-Bielich, Stephan Rosswog

UH Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

February 12, 2024

Bottom-Up Cross-Cutting Workshop of the JENAS Initiative "Gravitational Wave Probes of Fundamental Physics"

Which first order phase transitions to quark matter are possible in neutron stars?

Jan-Erik Christian, Jürgen Schaffner-Bielich, Stephan Rosswog

February 12, 2024

Bottom-Up Cross-Cutting Workshop of the JENAS Initiative "Gravitational Wave Probes of Fundamental Physics" **Jan-Erik Christian,

affner-Bielich, Stephan Rosswog

H

IN Universität Hamburg**

February 12, 2024

g Workshop of the JENAS Initiative "Gravitational

Probes of Fundamental Physics"

J_{an-Erik Christian} Phase Transitio

Neutron Stars

- Extremely dense final stage of stellar evolution.
- Used to test GR and emit gravitational waves.
- Masses are well known, radii less so.
- Observables can be calculated with the equation of state (EoS).

[Artistic render of neutron star merger, LIGO]

We know:

We know:

• Low density from terrestrial experiments and theory.

We know:

- Low density from terrestrial experiments and theory.
- Astrophysical constraints work at high density.

We know:

- Low density from terrestrial experiments and theory.
- Astrophysical constraints work at high density.
- A phase transition to QM will take place at some point.

We know:

- Low density from terrestrial experiments and theory.
- Astrophysical constraints work at high density.
- A phase transition to QM will take place at some point.
- Where is the phase transition and how can we tell from mass, radius and tidal deformability constraints?

Relativistic Mean Field Approach

Relativistic Mean Field Approach

Effective mass: $m^*/m = 0.55 - 0.75$ Symmetry energy: $J = 30 - 32$ MeV Slope parameter: $I = 40 - 60$ MeV

Relativistic Mean Field Approach

Effective mass: $m^*/m = 0.55 - 0.75$ Symmetry energy: $J = 30 - 32$ MeV Slope parameter: $L = 40 - 60$ MeV

 $I = 32$ MeV and $I = 60$ MeV from chiral EFT.

• Setup following: [Hornick et al. 2018, Phys. Rev. C]

Mass-Radius Relations

- Increasing the central pressure increases the mass.
- $m*/m$ is directly linked to an EoS's stiffness.
- Stiffer EoSs feature higher maximal masses and larger radii, they are less compact.

Mass-Radius Constraints

• Neutron stars with $2 M_{\odot}$ are known

Mass-Radius Constraints

- Neutron stars with $2 M_{\odot}$ are known
- NICER measured radii between $11 - 16$ km

Mass-Radius Constraints

- Neutron stars with $2 M_{\odot}$ are known
- NICER measured radii between $11 - 16$ km
- GW170817 constraints the radius with tidal deformability

• In a binary system the companions tidal field induce a quadrupole moment:

$$
Q_{ij}=-\lambda {\cal E}_{ij}
$$

• In a binary system the companions tidal field induce a quadrupole moment:

$$
Q_{ij}=-\lambda {\cal E}_{ij}
$$

Obtain dimensionless form: $\Lambda = \frac{\lambda}{m^5}$

• In a binary system the companions tidal field induce a quadrupole moment:

$$
Q_{ij}=-\lambda {\cal E}_{ij}
$$

• Obtain dimensionless form:

$$
\Lambda = \frac{\lambda}{m^5}
$$

Upper limit for combined value:

$$
\tilde{\Lambda}=\tilde{\Lambda}(\Lambda_1,m_1,\Lambda_2,m_2)\leq 720
$$

• In a binary system the companions tidal field induce a quadrupole moment:

$$
Q_{ij}=-\lambda {\cal E}_{ij}
$$

• Obtain dimensionless form: $\Lambda = \frac{\lambda}{m^5}$

Upper limit for combined value:

$$
\tilde{\Lambda}=\tilde{\Lambda}\left(\Lambda_{1},m_{1},\Lambda_{2},m_{2}\right)\leq720
$$

Closer Look: Tidal Deformability Constraint

• Only EoSs with $m^*/m > 0.65$ are soft enough to fit the data.

Constant Speed of Sound Quark Matter

 $\int_{a}^{b} f(x)$

- First order phase transition at critical pressure p_{trans} .
- Parameterization is well known. [Alford et. al. 2013, Phys. Rev. D]
- We use $c_{QM} = 1$.

$$
\epsilon(p) = \begin{cases} \epsilon_{HM}(p) \\ \epsilon_{HM}(p_{trans}) + \Delta \epsilon + c_{QM}^{-2}(p - p_{trans}) \end{cases}
$$

Twin Star Solutions

Phase transition can lead to twin star solutions, where two stars have the same mass, but different radii.

Parameter Effects on MR Relation; Hybrid vs Twin

• p_{trans} determines the first branch's maximum and the shape of the second branch.

[Christian 2023]

Parameter Effects on MR Relation; Hybrid vs Twin

- p_{trans} determines the first branch's maximum and the shape of the second branch.
- $\Delta \epsilon$ strongly influences the second's maximum by determining the position of the second branch.

Constraints on Stiff Equation of State

• The GW170817 constraint can be met with a phase transition.

Constraints on $m^*/m = 0.55$, $L = 60$ MeV, $J = 32$ MeV case

Constraints on Stiff Equation of State

- The GW170817 constraint can be met with a phase transition.
- Only a small area is possible as well as likely observable.

Constraints on $m^*/m = 0.55$, $L = 60$ MeV, $J = 32$ MeV case

Constraints on Stiff Equation of State

• A hypothetical well determined "small" star does not constrain a stiff EoS further.

Constraints on $m^*/m = 0.55$, $L = 60$ MeV, $J = 32$ MeV case

[Christian et al. 2023, 2312.10148]

Constraints on Softer Equation of state

Constraints on $m^*/m = 0.65$, $L = 60$ MeV, $J = 32$ MeV case

Constraints on Softer Equation of state

• Large overlap between possible and detectable area...

Constraints on $m^*/m = 0.65$, $L = 60$ MeV, $J = 32$ MeV case

Constraints on Softer Equation of state

- Large overlap between possible and detectable area...
- ...unless we consider a well determined "small" star.

Constraints on $m^*/m = 0.65$, $L = 60$ MeV, $J = 32$ MeV case

[Christian et al. 2023, 2312.10148]

Summary and Outlook

[LIGO]

- Phase transitions in neutron stars create unique mass radius relations and tidal deformability.
- The overlap between easily detectable and possible solution is shrinking rapidly.
- Gravitational wave measurements should be able to probe the area inaccessible by mass and radius constrains.

Categories of Twin Stars

- **Category I: Both maxima** meet mass constraint M_{data} .
- Category II: Only the hadronic maximum exceeds M_{data} .
- Category III: Only the hybrid maximum exceeds M_{data} .
- Category IV: Only hybrid stars can be observed.

Category I and II NICER constraints

Category III NICER constraints

[Christian and Schaffner-Bielich (2021), Phys. Rev. D]

Hybrid stars NICER constraints

Tidal deformability changes GW170817

MR constraints for more RMF models

[Christian 2023]

Influence of c_{QM} and hadronic EoS on parameter space

Backup Slide

Parameter Variation

