Constraints on Phase Transition in Neutron Stars in a Generalized Setup

Jan-Erik Christian, Jürgen Schaffner-Bielich, Stephan Rosswog

Universität Hamburg

Rome, February 12, 2024

Bottom-Up Cross-Cutting Workshop of the JENAS Initiative "Gravitational Wave Probes of Fundamental Physics"

Constraints on Phase Transition in Neutron Stars in a Generalized Setup

Jan-Erik Christian, Jürgen Schaffner-Bielich, Stephan Rosswog

Universität Hamburg

February 12, 2024

Bottom-Up Cross-Cutting Workshop of the JENAS Initiative "Gravitational Wave Probes of Fundamental Physics"

Twin Stars

Conclusion

Which first order phase transitions to quark matter are possible in neutron stars?

[arXiv: 2312.10148]

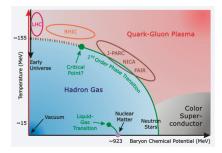
<u>Jan-Erik Christian,</u> Jürgen Schaffner-Bielich, Stephan Rosswog

Universität Hamburg

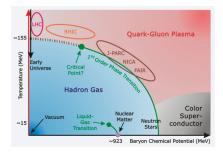
February 12, 2024

Bottom-Up Cross-Cutting Workshop of the JENAS Initiative "Gravitational Wave Probes of Fundamental Physics"

Twin Stars

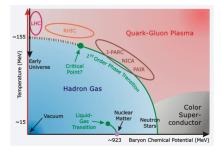

Neutron Stars

- Extremely dense final stage of stellar evolution.
- Used to test GR and emit gravitational waves.
- Masses are well known, radii less so.
- Observables can be calculated with the equation of state (EoS).


[Artistic render of neutron star merger, LIGO]

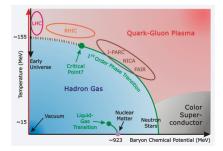
Motivation	Equation of State	
00		

Motivation	Equation of State	Twin Stars	Conclusion
○●		000000	O
Motivation			


We know:

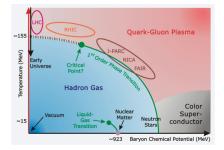
Motivation ○●	Equation of State	
Motivation		

We know:


• Low density from terrestrial experiments and theory.

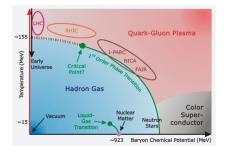
Motivation ○●	Equation of State	

We know:


- Low density from terrestrial experiments and theory.
- Astrophysical constraints work at high density.

Motivation	Equation of State	
00		

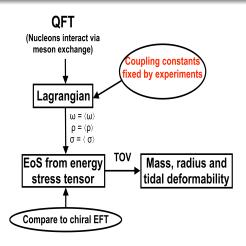
We know:


- Low density from terrestrial experiments and theory.
- Astrophysical constraints work at high density.
- A phase transition to QM will take place at some point.

Motivation ○●	Equation of State	

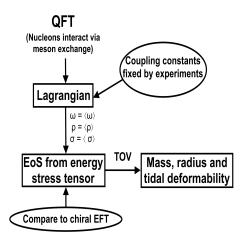
We know:

- Low density from terrestrial experiments and theory.
- Astrophysical constraints work at high density.
- A phase transition to QM will take place at some point.
- Where is the phase transition and how can we tell from mass, radius and tidal deformability constraints?


Equation of State	
00000	

Relativistic Mean Field Approach

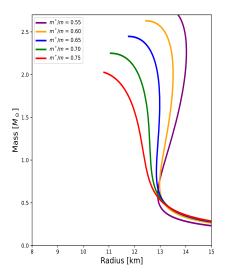
Equation of State	
00000	


Relativistic Mean Field Approach

Effective mass: $m^*/m = 0.55 - 0.75$ Symmetry energy: J = 30 - 32 MeV Slope parameter: L = 40 - 60 MeV

Equation of State	
0000	

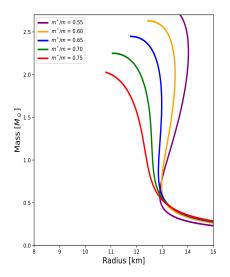
Relativistic Mean Field Approach



Effective mass: $m^*/m = 0.55 - 0.75$ Symmetry energy: J = 30 - 32 MeV Slope parameter: L = 40 - 60 MeV

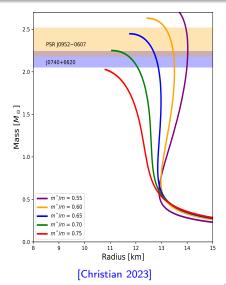
J = 32 MeV and L = 60 MeV from chiral EFT.

• Setup following: [Hornick et al. 2018, Phys. Rev. C]


	Equation of State		
00	0000	000000	0
Mass-Rad	ius Relations		

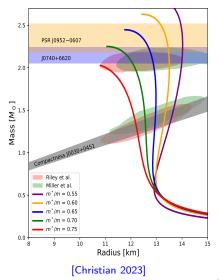
Equation of State ○●○○○	

Mass-Radius Relations


- Increasing the central pressure increases the mass.
- *m**/*m* is directly linked to an EoS's stiffness.
- Stiffer EoSs feature higher maximal masses and larger radii, they are less compact.

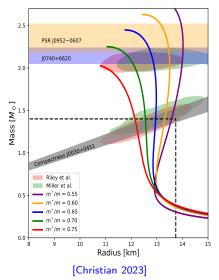
Equation of State ○○●○○	

Mass-Radius Constraints


• Neutron stars with 2 M_{\odot} are known

Equation of State ○○●○○	

Mass-Radius Constraints


- Neutron stars with 2 M_{\odot} are known
- NICER measured radii between 11 – 16 km

Equation of State	

Mass-Radius Constraints

- Neutron stars with 2 M_{\odot} are known
- NICER measured radii between 11 - 16 km
- GW170817 constraints the radius with tidal deformability

Equation of State	

 In a binary system the companions tidal field induce a quadrupole moment:

$$Q_{ij} = -\lambda \mathcal{E}_{ij}$$

Equation of State ○○○●○	

 In a binary system the companions tidal field induce a quadrupole moment:

$$Q_{ij} = -\lambda \mathcal{E}_{ij}$$

• Obtain dimensionless form:

$$\Lambda = \frac{\lambda}{m^5}$$

Equation of State	
00000	

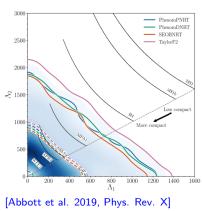
 In a binary system the companions tidal field induce a quadrupole moment:

$$Q_{ij} = -\lambda \mathcal{E}_{ij}$$

• Obtain dimensionless form:

$$\Lambda = \frac{\lambda}{m^5}$$

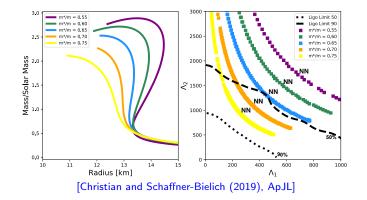
• Upper limit for combined value:


$$\tilde{\Lambda} = \tilde{\Lambda} \left(\Lambda_1, m_1, \Lambda_2, m_2 \right) \le 720$$

Equation of State	
00000	

 In a binary system the companions tidal field induce a quadrupole moment:

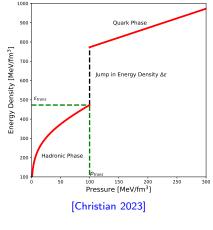
$$Q_{ij} = -\lambda \mathcal{E}_{ij}$$


- Obtain dimensionless form: $\Lambda = \frac{\lambda}{m^5}$
- Upper limit for combined value:

$$ilde{\Lambda} = ilde{\Lambda} \left(\Lambda_1, m_1, \Lambda_2, m_2
ight) \leq 720$$

Equation of State	
00000	

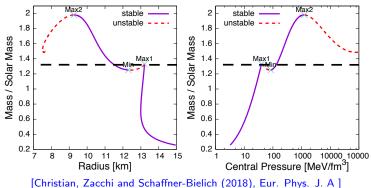
Closer Look: Tidal Deformability Constraint



• Only EoSs with $m^*/m \ge 0.65$ are soft enough to fit the data.

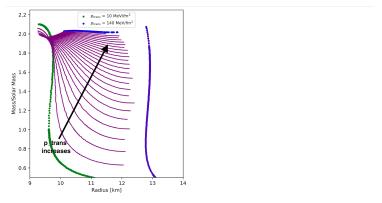
Equation of State	Twin Stars ●○○○○○	

Constant Speed of Sound Quark Matter


- First order phase transition at critical pressure *p*_{trans}.
- Parameterization is well known. [Alford et. al. 2013, Phys. Rev. D]
- We use $c_{QM} = 1$.

$$\epsilon(p) = egin{cases} \epsilon_{HM}(p) \ \epsilon_{HM}(p_{trans}) + \Delta \epsilon + c_{QM}^{-2}(p-p_{trans}) \end{cases}$$

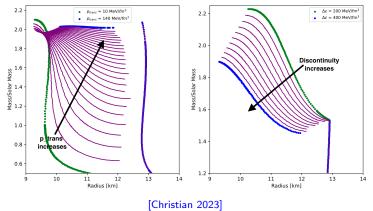
	Equation of State	Twin Stars ○●○○○○	
Tuin Stor			


- I win Star Solutions
 - Phase transition can lead to twin star solutions, where two stars have the same mass, but different radii.

Equation of State	Twin Stars	
	00000	

Parameter Effects on MR Relation; Hybrid vs Twin

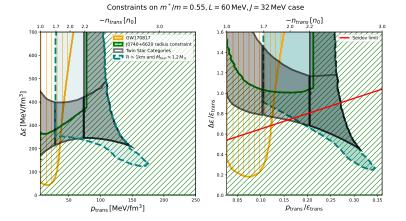
• *p*_{trans} determines the first branch's maximum and the shape of the second branch.



[Christian 2023]

Equation of State	Twin Stars	
	00000	

Parameter Effects on MR Relation; Hybrid vs Twin


- *p*_{trans} determines the first branch's maximum and the shape of the second branch.
- $\Delta \epsilon$ strongly influences the second's maximum by determining the position of the second branch.

Equation of State	Twin Stars	
	000000	

Constraints on Stiff Equation of State

• The GW170817 constraint can be met with a phase transition.

Motivation	Equation of State	Twin Stars	Conclusion

Constraints on Stiff Equation of State

50

100

150

ptrans [MeV/fm³]

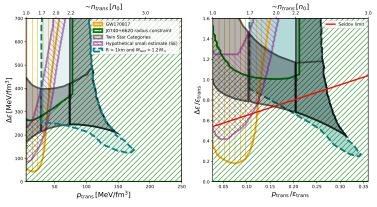
200

- The GW170817 constraint can be met with a phase transition.
- Only a small area is possible as well as likely observable.

 $\sim n_{trans}[n_0]$ $\sim n_{trans}[n_0]$ 1.0 1.7 2.0 2.2 3.0 1.7 1.0 3.0 700 1.6 -GW170817 Seidov limit I0740+6620 radius constrain Twin Star Categories 1.4 600 > 1km and Mrma > 1.2 M 1.2 500 ∆£ [MeV/fm³] 1.0 Δε/ε_{trans} 400 300 200 0.4 100 0.2

250

Constraints on $m^*/m = 0.55$, L = 60 MeV, J = 32 MeV case

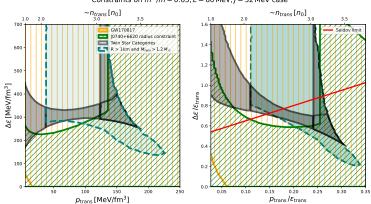

0.05 0.10 0.15 0.20 0.25 0.30 0.35

 $p_{\rm trans}/\varepsilon_{\rm trans}$

Equation of State	Twin Stars	
	000000	

Constraints on Stiff Equation of State

• A hypothetical well determined "small" star does not constrain a stiff EoS further.

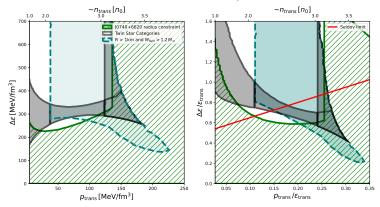


Constraints on $m^*/m = 0.55$, L = 60 MeV, J = 32 MeV case

[Christian et al. 2023, 2312.10148]

Equation of State	Twin Stars 00000●	

Constraints on Softer Equation of state

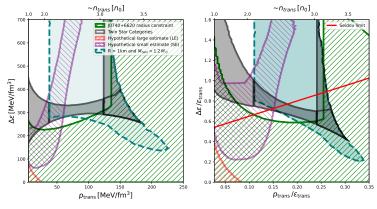


Constraints on $m^*/m = 0.65$, L = 60 MeV, J = 32 MeV case

Equation of State	Twin Stars	
	00000	

Constraints on Softer Equation of state

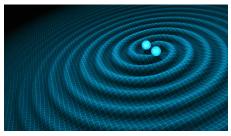
• Large overlap between possible and detectable area...


Constraints on $m^*/m = 0.65$, L = 60 MeV, J = 32 MeV case

Equation of State	Twin Stars ○○○○○●	

Constraints on Softer Equation of state

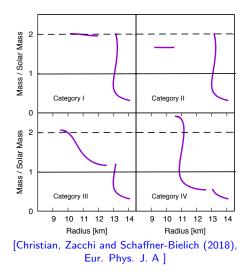
- Large overlap between possible and detectable area...
- ...unless we consider a well determined "small" star.


Constraints on $m^*/m = 0.65$, L = 60 MeV, J = 32 MeV case

[Christian et al. 2023, 2312.10148]

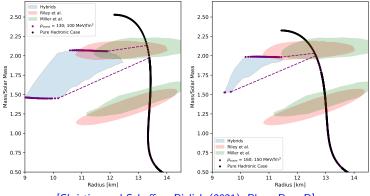
Equation of State	Conclusion
	•

Summary and Outlook


[LIGO]

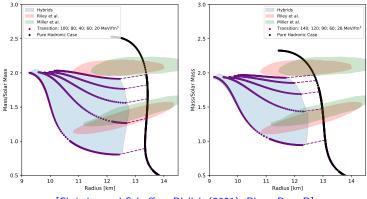
- Phase transitions in neutron stars create unique mass radius relations and tidal deformability.
- The overlap between easily detectable and possible solution is shrinking rapidly.
- Gravitational wave measurements should be able to probe the area inaccessible by mass and radius constrains.

Equation of State	Conclusion


Categories of Twin Stars

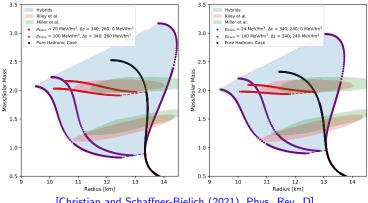
- Category I: Both maxima meet mass constraint M_{data}.
- Category II: Only the hadronic maximum exceeds *M*_{data}.
- **Category III**: Only the hybrid maximum exceeds M_{data} .
- Category IV: Only hybrid stars can be observed.

Equation of State	Conclusion

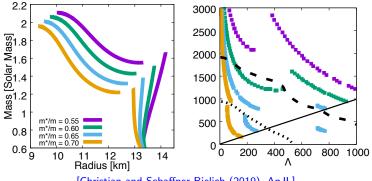

Category I and II NICER constraints

[Christian and Schaffner-Bielich (2021), Phys. Rev. D]

Equation of State	Conclusion

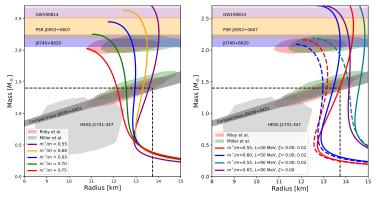

Category III NICER constraints

[Christian and Schaffner-Bielich (2021), Phys. Rev. D]


Equation of State	Conclusion

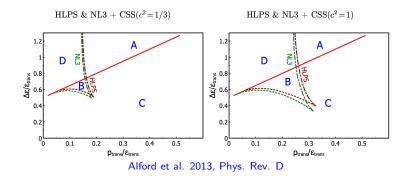
Hybrid stars NICER constraints

Equation of State	Conclusion

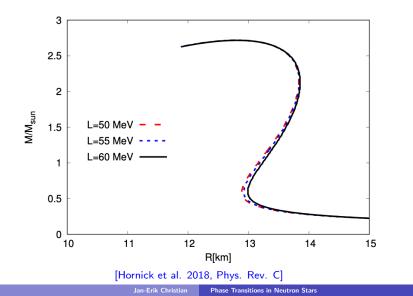

Tidal deformability changes GW170817

[Christian and Schaffner-Bielich (2019), ApJL]

Equation of State	Conclusion

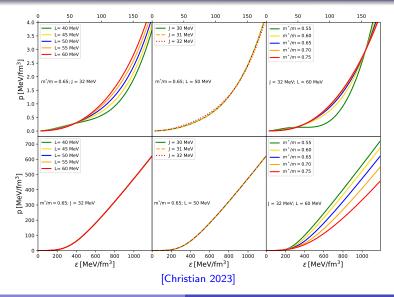

MR constraints for more RMF models

[Christian 2023]


Equation of State	Conclusion

Influence of c_{QM} and hadronic EoS on parameter space

Equation of State	Conclusion
C11.1	


Backup Slide

14/14

	Equation of State		Conclusion
00	00000	000000	<u> </u>

Parameter Variation

