Gravitational Wave Analysis with Machine Learning

Note: the pdf version breaks some overlays and animations (e.g. the gifs on slides 4, 19)

Maximilian Dax, MPI for Intelligent Systems (Tübingen), <u>mdax@tue.mpg.de</u>

[1] Dax et al., Real-Time Gravitational Wave Science with Neural Posterior Estimation, Phys. Rev. Lett. **127**, 241103 (2021)

- [2] Dax et al., Group equivariant neural posterior estimation, ICLR 2022
- [3] Dax, et al., Neural Importance Sampling for Rapid and Reliable Gravitational-Wave Inference, Phys.Rev.Lett. 130, 171403 (2023)

Maximilian Dax

Collaborators: Green, Gair, Wildberger, Buchholz, Gupte, Pürrer, Deistler, Macke, Buonanno, Schölkopf

Turning known-unknowns into known-knowns,

and thereby help to investigate the **unknown-unknowns**.

Maximilian Dax

I. Real-Time GW Inference

[1] Dax et al., Real-Time Gravitational Wave Science with Neural Posterior Estimation, Phys. Rev. Lett. 127, 241103 (2021)

Maximilian Dax

Gravitational wave analysis: comparing data to models

General relativity (GR)

- Black hole mergers emit gravitational waves (GWs)
- GW shape depends on the black hole properties
 15 parameters: masses, spins, ...

GW analysis Decode GW information to characterize the black holes

Inverse problems in science

- **Forward direction** $\theta \rightarrow d$ is defined by a simulator, $d \sim p(d \mid \theta)$ •
- **Inverse direction** with Bayesian inference •

Limitations of conventional GW inference [e.g., MCMC]

computationally costly
(increasing event rate!)

don't scale to high-quality GW models

no fast localization for e.m. follow-up

require tractable likelihood \Rightarrow need noise model

Amortised simulation-based inference (SBI)

Traditionally: inference with **stochastic samplers** (e.g., MCMC) - need tractable likelihood $p(d | \theta)$ \rightarrow simplifying assumption - need many likelihood evaluations \rightarrow expensive

- Amortised SBI: fit neural network $q(\theta | d)$ as surrogate for $p(\theta | d)$ • • Train with samples $d \sim p(d | \theta)$ \rightarrow no simplifying assumption Perform inference with trained network \rightarrow cheap •
- Requirements
 - 1. Expressive **density estimator** $q(\theta | d)$ (*N*-dim density, conditional on d)
 - 2. Training strategy s.t. $q(\theta | d) = p(\theta | d) \forall d$

Normalising flows Rezende & Mohamed, ICML 2015

Idea: transform base distribution $\mathcal{N}_{[0,1]}$ to $q(\theta \mid d)$ via f_d •

Flexible f_d achieved by composition of simple transforms •

Normalizing flows can be made **arbitrarily expressive** •

 $\theta = f_d(u), \quad u \sim \mathcal{N}_{[0,1]}(u)$

$$q(\theta \mid d) = \mathcal{N}_{[0,1]} \left(f_d^{-1}(\theta) \right) \left| \det J_{f_d}^{-1} \right|$$

 f_d parameterised using neural network with learnable parameters ϕ

Neural posterior estimation (NPE) Papamakarios & Murray, NeurIPS 2016

• Minimize

average ove

$$D_{\text{KL}}(p | q) = \int dd \, p(d) \int d\theta \, p(\theta | d)$$

$$= \int dd \, p(d) \int d\theta \, \frac{p(\theta) \, p}{p}$$

$$\sim \int d\theta \, p(\theta) \int dd \, p(d | \theta)$$

Neural posterior estimation (NPE) Papamakarios & Murray, NeurIPS 2016

Minimize

$$D_{\mathrm{KL}}(p | q) = -\mathbb{E}_{\theta \sim p(\theta)}\mathbb{E}_{d \sim p(d|\theta)}\left[\log q(\theta | d)\right] + \mathrm{const.}$$

Monte Carlo approximation: train flow by minimizing loss *L* across dataset \mathscr{D} •

$$L = -\log q_{\phi}(\theta \mid d), \qquad \mathcal{D} = \left\{\theta^{(i)}, d^{(i)}\right\}_{i=1'}^{N} \theta^{(i)} \sim p(\theta), \ d^{(i)} \sim p(d \mid \theta^{(i)})$$

- Minimization of D_{KL} + arbitrarily expressive \Rightarrow perfect recovery of posterior •
- NPE uses same ingredients as MCMC (prior + likelihood), but **only requires samples**

GW simulator

GW measurement: **signal** + **noise** •

- Assumption: stationary Gaussian noise •
- Tractable likelihood

$$p(d \mid \theta) = \mathcal{N}_{[\mu=0,\sigma^2=PS]}$$

GW signal, from general relativity model

 $n \sim \mathcal{N}(0, S_n)$

stationary Gaussian detector noise

+

Inference network

DINGO: Deep **IN**ference for **G**ravitational-wave **O**bservations

Maximilian Dax

Embedding network

٠

•

•

•

- 46M learnable parameters
- compresses data $72K \rightarrow 128$
- first layer seeded with SVD

Neural spline flow Durkan *et al.*, NeurIPS 2019 - 94M learnable parameters

PSD Conditioning \rightarrow instant tuning to noise level

Training

- End-to-end
- 2B simulations
- 3 days on A100 with batch size 4096

Inference 20 seconds per event

Evaluation on real events

Maximilian Dax

Quantitative evaluation on real events

GW150914 - 0.8 1.1 0.2 0.8 0.2 0.3 0.5 0.5 0.1 0.3 0.8 0.2 0.7 1.4 GW150914 - 0.8 1.1 0.2 0.8 0.2 0.3 0.5 0.5 0.1 0.3 0.8 0.2 0.7 1.4 GW151012 - 2.7 1.6 0.1 0.9 0.4 0.2 0.5 0.5 0.1 0.1 0.6 0.1 1.4 0.5 GW170104 - 6.4 2.6 0.2 0.4 0.7 0.1 0.7 0.4 0.1 0.3 0.3 0.8 0.6 15 15 15 15 15 16 1.3 0.2 0.2 1.0 0.8 0.2 0.3 3.4 0.3 1.2 1.2 10 10 1.4 1.2 1.2 5.5 10 10 1.4 1.4 1.2 2.5 2.0 10 1.4 1.4 1.2 2.5 2.0 1.5 1.5 1.2 1.4 1.4 1.4 1.2 2.5 2.0 5 5		m_1	m_2	Ø	d_L	q_{j}	az	0 ₁	02	Ø12	ØJL	0 JN	Ý	Q	б		
GW150914 - 0.8 1.1 0.2 0.8 0.2 0.3 0.5 0.5 0.1 0.3 0.8 0.2 0.7 1.4 GW151012 - 2.7 1.6 0.1 0.9 0.4 0.2 0.5 0.5 0.1 0.1 0.6 0.1 1.4 0.5 GW170104 - 6.4 2.6 0.2 0.4 0.7 0.1 0.7 0.4 0.1 0.1 0.3 0.3 0.8 0.6 0.1 1.4 0.5 GW170104 - 6.4 2.6 0.2 0.4 0.7 0.1 0.7 0.4 0.1 0.1 0.3 0.3 0.3 0.8 0.6 1.5 0.6 0.1 1.4 0.5 0.5 0.5 0.1 0.1 0.1 0.3 0.3 0.3 0.8 0.6 1.5 0.6 0.1 0.1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 1.2 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4		1	I	I	<u> </u>	1	1	1	1	I	Т	<u> </u>	<u> </u>	1		_	- 20
GW151012 - 2.7 1.6 0.1 0.9 0.4 0.2 0.5 0.5 0.1 0.1 0.6 0.1 1.4 0.5 GW170104 - 6.4 2.6 0.2 0.4 0.7 0.1 0.7 0.4 0.1 0.1 0.3 0.3 0.8 0.6 GW170729 - 0.9 1.5 0.4 6.3 0.2 0.2 1.0 0.8 0.2 0.3 3.4 0.3 1.2 1.2 GW170809 - 0.5 0.8 0.1 0.5 0.2 0.1 0.4 0.4 0.1 0.5 1.4 0.2 2.2 5.5 GW170814 - 1.2 1.3 0.2 1.5 0.2 0.2 0.4 0.3 0.2 1.4 1.4 1.2 2.5 2.0 GW170818 - 1.6 1.3 0.2 1.1 1.0 0.2 1.9 0.5 0.1 2.4 1.8 0.4 3.8 2.4	GW150914 -	0.8	1.1	0.2	0.8	0.2	0.3	0.5	0.5	0.1	0.3	0.8	0.2	0.7	1.4		20
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GW151012 -	2.7	1.6	0.1	0.9	0.4	0.2	0.5	0.5	0.1	0.1	0.6	0.1	1.4	0.5		JS d
GW170729 - 0.9 1.5 0.4 6.3 0.2 1.0 0.8 0.2 0.3 3.4 0.3 1.2 1.2 GW170809 - 0.5 0.8 0.1 0.5 0.2 0.1 0.4 0.4 0.1 0.5 1.4 0.2 2.2 5.5 GW170814 - 1.2 1.3 0.2 1.5 0.2 0.4 0.3 0.2 1.4 1.4 1.2 2.5 2.0 GW170818 - 1.6 1.3 0.2 1.1 1.0 0.2 1.9 0.5 0.1 2.4 1.8 0.4 3.8 2.4	GW170104 -	6.4	2.6	0.2	0.4	0.7	0.1	0.7	0.4	0.1	0.1	0.3	0.3	0.8	0.6		r 10 iverg
GW170809 - 0.5 0.8 0.1 0.5 0.2 0.1 0.4 0.1 0.5 1.4 0.2 2.2 5.5 GW170814 - 1.2 1.3 0.2 1.5 0.2 0.2 0.4 0.3 0.2 1.4 1.2 2.5 2.0 5 GW170818 - 1.6 1.3 0.2 1.1 1.0 0.2 1.9 0.5 0.1 2.4 1.8 0.4 3.8 2.4	GW170729 -	0.9	1.5	0.4	6.3	0.2	0.2	1.0	0.8	0.2	0.3	3.4	0.3	1.2	1.2		gence
GW170814 - 1.2 1.3 0.2 1.5 0.2 0.2 0.4 0.3 0.2 1.4 1.4 1.2 2.5 2.0	GW170809 -	0.5	0.8	0.1	0.5	0.2	0.1	0.4	0.4	0.1	0.5	1.4	0.2	2.2	5.5		
GW170818 - 1.6 1.3 0.2 1.1 1.0 0.2 1.9 0.5 0.1 2.4 1.8 0.4 3.8 2.4	GW170814 -	1.2	1.3	0.2	1.5	0.2	0.2	0.4	0.3	0.2	1.4	1.4	1.2	2.5	2.0		
	GW170818 -	1.6	1.3	0.2	1.1	1.0	0.2	1.9	0.5	0.1	2.4	1.8	0.4	3.8	2.4		nat]
GW170823 - 0.5 0.6 0.1 0.9 0.2 0.2 0.4 0.2 0.2 0.2 0.2 0.2 0.5 0.2 0.4 0.4 0.4 0.4	GW170823 -	0.5	0.6	0.1	0.9	0.2	0.2	0.4	0.2	0.2	0.2	0.5	0.2	0.4	0.4		

JS Divergence between MCMC and DINGO

- Mean JSD = 0.0009 nat (MCMC vs. MCMC: 0.0007) •
- Posteriors regarded as **indistinguishable if JSD** \leq 0.0020 nat \rightarrow fulfilled for 90% of marginals •
- Deviation on similar level as deviation between different stochastic samplers (LALInference vs. bilby) •

II. Symmetries

[1] Dax et al., Real-Time Gravitational Wave Science with Neural Posterior Estimation, Phys. Rev. Lett. 127, 241103 (2021)
[2] Dax et al., Group equivariant neural posterior estimation, ICLR 2022

*up to time shifts

Symmetries in GW inference

Equivariance (covariance) under time shift

$$p(\theta | d) = p(g\theta | T_g d) | \det J_g |$$

NPE learns such symmetries from simulation data • \Rightarrow requires network and training capacity

How can we **enforce such symmetries**? •

$\forall g \in G$

Group equivariant neural posterior estimation (GNPE)

GNPE simplifies inverse problems with symmetries

If you are interested talk to me during the breaks or find the paper at

arXiv:2111.13139

GNPE (cont'd)

GNPE is a generic way to integrate (approximate) ٠ symmetries into *conditional* density estimation.

Architecture independent • ⇒ compatible with domain-specific architectures

- GW inference
 - Exact symmetry under time shift
 - Approximate symmetry under rotation of incident direction

• Exact equivariances: enforced by construction **Approximate equivariances:** used to constrain data distribution

NPE vs. GNPE

GNPE iterations

Maximilian Dax

III. Verification through Importance Sampling

[3] Dax^{*}, Green^{*} et al., Neural Importance Sampling for Rapid and Reliable Gravitational-Wave Inference, Phys.Rev.Lett. **130**, 171403 (2023)

WHAT IF THE ANSWERS ARE WRONG? ORTA

- THIS IS YOUR MACHINE LEARNING SYSTEM?
 - YUP! YOU POUR THE DATA INTO THIS BIG PILE OF LINEAR ALGEBRA, THEN COLLECT THE ANSWERS ON THE OTHER SIDE.

 - JUST STIR THE PILE UNTIL THEY START LOOKING RIGHT.

Importance sampling

Express target distribution $p(\theta | d)$ via proposal distribution $q(\theta | d)$, generate weighted samples from $p(\theta)$:

- Importance sampling requires $\operatorname{supp}(p) \subseteq \operatorname{supp}(q)$ $[p \equiv p(\theta | d), q \equiv q(\theta | d)]$
- DINGO minimizes forward KL-divergence KL(p | q) which is probability-mass covering! $supp(p) \nsubseteq supp(q) \Rightarrow diverging DINGO loss$

\Rightarrow Produce exact results by reweighting **DINGO samples with likelihood**

Importance sampling diagnostics and evidence

Effective sample size n_{eff} related to variance of the weights.
 Sample efficiency *e* quantifies the quality of the DINGO proposal distribution.

$$n_{\text{eff}} = \frac{\left(\Sigma_i w_i\right)^2}{\Sigma_i \left(w_i^2\right)} \qquad \qquad \epsilon = \frac{n_{\text{eff}}}{n}$$

• **Bayesian evidence** related to normalisation of weights.

$$p(d) = \frac{1}{n} \sum_{i} w_{i} \qquad \sigma_{\log p(d)} = A$$

 $\in (0,1] \Rightarrow don't need ground truth$ posterior for verification

$$\boxed{\frac{(1-\epsilon)}{(n\cdot\epsilon)}}$$

 $\Rightarrow Unbiased estimate,$ variance scales with 1/n

DINGO-IS: qualitative results

 \Rightarrow Even when DINGO results are off, IS results match LALInference well

DINGO-IS: quantitative results

- Evaluation on 42 real GW events (third LVK observing run)
- DINGO-IS IS ~100x more sample efficient than MCMC
 - Median $\epsilon = 10.9\%$ for GW model IMRPhenomXPHM
 - Median $\epsilon = 4.4\%$ for GW model SEOBNRv4PHM
- Estimate Bayesian evidence **10x more precise** than nested sampling
- High-accuracy inference for SEOBNRv4PHM (MCMC takes ~ months)
 ⇒ IS only way of verifying results
- Low sample efficiency flags with low ϵ : adversarial attacks, glitches, failures of GW model, ...

nan MCMC enomXPHM

[$\epsilon = 36.8\%$ for IMRPhenomPv2]

Summary

DINGO is a **fast and accurate inference method for GW** data analysis

- Inference in seconds to minutes -
- Independently verified with importance sampling -
- 10x precision improvement for Bayesian evidence -
- Reviewed for PE at LIGO -
- Working on BNS and NSBH
- Working on various science cases (eccentricity, population studies, testing GR) ٠
- **problems** in your research, feel free to reach out :)

github.com/dingo-gw/dingo

Tested for various BBH models (IMRPhenomPv2, IMRPhenomXPHM, SEOBNRv4PHM);

If you need **fast GW inference** or encounter a seemingly intractable / expensive **inverse**

The bigger picture

\Rightarrow Synthesize individual samples from distribution

⇒ Extract summary statistics to describe distribution

