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Disclaimer!
v Since a few years, tens of papers are published every year on “ultralight dark 

matter & gravitational wave detectors”

v I will (rather arbitrarily) choose a few examples, 
focusing on analyses of actual detector data  

v I will not discuss in detail the great potentialities of 
third generation GW detectors (ET, LISA,…)

v Forgive me for not citing your preferred papers….

From NASA/ADS
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Classical source classification (from the data analysis point of view)

Different techniques are used in different cases, keeping in mind the three 
cornerstones of data analysis:

§ Sensitivity: try to detect signals as small as possible

o Robustness: w.r.t. waveform uncertainties and instrumental noise

Ø Computational efficiency: many analyses are computationally bound

CW (e.g. spinning neutron stars )

Transient signals Persistent signals



v DM candidates cover ~90 orders of magnitude in mass

Signatures of DM in gravitational wave detectors
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GW detectors offer an 
``opportunity window” for free 

Ultralight particles “Classical” DM 
candidates

Black holes

In many cases GW data analysis methods can be 
directly applied or adapted in a straightforward 
way to the search of DM fingerprints in GW data

v In recent years a growing body of literature on the potentiality of GW 
detectors as tools to probe DM has been produced [see e.g. Bertone et al., arxiv 1907.10610]



GW emission from boson clouds 
around spinning BHs  (10-14 – 10-11 eV) 

Direct interaction
of ultra-light DM 

(10-14 – 10-11 eV) with 
detector optics
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Impact of DM on binary dynamics 
[Baumann et al., PRD99, 044001 (2019); 
Hannuksela et al. Nature Astron. 3 447 (2019); 
Xue, Huang, Science China Physics, Mechanics & 
Astronomy, 67 210411 (2024)  ]

Credit: Ana Sousa Carvalho
Bertone+

See talks by P. Cole and V. Desjacques 
on Thursday



Ultra-light boson clouds around spinning BHs [Arvanitaki et al., PRD81, 123530 (2010)]

q Massive bosonic fields around a Kerr BH are amplified, due to supperradiance 
instability, at the expense of the BH rotational energy  

Brito et al., Lect. Not. Phys. 971 (2020)

Superradiance 
condition:

BH angular frequency 
at the outer horizon

field angular frequency azimuthal quantum number

q A macroscopic boson condensate forms 
around the BH
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q Once formed, the cloud dissipates through the emission of CWs (emission time 
scale >> instability time scale)

for scalar bosons, and α << 1
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§ Signal at the detector affected by various effects 

Doppler effect, which depends on frequency and        
source position

Amplitude modulation (for signal 
longer than ~ 1 sidereal day)

§ Signal processing aims at removing such effects in order to collect all the 
signal power in a single bin

Relativistic effects
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Real data are full of weird stuff!

O3L data

v Discrimination among real astrophysical signals and instrumental noise is an 
important part of the analysis: coincidences, vetos, follow-up analysis, 
interaction with detector experts,… 

O3



Ø All-sky searches 
[D’Antonio, CP et al., PRD98, 103017 (2018);              
CP, DAntonio, Astone et al., PRL123, 171101 (2019);              
LVK, PRD105, 102001 (2022)]

Scalar bosons: Exclusion regions from all-sky O3 search Scalar bosons: Search targeting Cyg X-1 in O2 [Sun+ 2020] 
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Searches for CW from boson clouds

LVK 2022

Ø Directed searches [Isi et al., PRD99, 084042 (2019); 
Sun et al., PRD101, 063020 (2020);                                         

Zhu, Baryakhtar et al., PRD102, 063020 (2020);  
LVK, PRD106, 042003 (2022); J
Jones et al., PRD108, 064001 (2023)                                           
D’Antonio, CP, et al., PRD108, 122001 (2023)]

(D=1kpc, χi=0.5)
Signal amplitude 
for tage=105yr

Signal amplitude 
for tage=5x106yr
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Search for stochastic background from boson clouds
o Stochastic background produced by the superposition of all scalar/vector

boson cloud signals

o Assume uniform BH spin distribution
Scalar boson clouds (O1+O2+O3)

Vector boson clouds (O1+O2)

o Some mass intervals penalized (depending 
on the spin distribution)

[Tsukada, Brito et al., PRD103, 082005 (2021)]

[Yuan et al., PRD106, 023020 (2022)]
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Constraints from BH spin distributions [Ng et al., PRL126, 151102 (2021)]

§ Superradiance instability should limit the spin of BHs [Arvanitaki & Dubovski, PRD83, 
044026 (2011), Brito et al., PRD96, 064050 (2017),….]

§ Bayesian analysis carried using BHs from GWTC-2
Posterior distribution of boson mass

§ Range 1.3E-13 – 2.7E-13 eV penalized



•Ultra-light DM can directly interact with interferometer optical 
components producing a potentially detectable signal

•It is not a GW signal, but nevertheless the interaction can cause 
a differential strain

DM direct interactions

•The mass scale to which detectors are sensitive is set by the particle 

field frequency: 𝑓0 =
𝑚𝐴𝑐2

ℎ
→ 10−14 − 10−11𝑒𝑉 for Earth-bound 

detectors
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§ The ultra-light DM field couples to the fields of the SM 
à Interaction terms in the SM Lagrangian à Coupling constants

§ Superposition of plane waves à stochastic signal

§ Maxwell-Boltzmann velocity distribution à narrow-band signal
Simulated dark photon signal

§ Such signals can be searched in detector data adapting techniques used for 
stochastic/continuous wave searches
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• Typical analyses based on:

Ø Cross-correlation [Pierce et al., PRL121, 061121 (2018)]

Ø Excess power [Miller et al., PRD103, 102002 (2021), Vermeulen et al 2103.03783]

• In both methods data are divided in segments of given duration, individually 
processed using Fourier transforms, and then combined in order to compute 
a detection statistic

• Discrimination among signal and noise is complicate, and also among
different signal models

Cross-correlation
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Direct search for scalar fields [Vermeulen et al 2103.03783; Göttel et al., 2401.18076]

o A scalar field induces a variation of the fine structure constant α and electron 
rest mass me à variation of mirror’s size ℓ and refractive index 𝑛

o Interferometer beam splitter interacts asymmetrically with light in the two 
arms à variation of light optical path 

o Non-negligible effects due to small 
thickness differences among arm 
test masses
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q Approximation to Discrete Fourier 
Transform to get a FFT over logharitmic 
bin spacing à computational speed-up

LIGO O3 constraints on coupling parameters

q Orders of magnitude improvement 
w.r.t. atomic spectroscopy experiments
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Direct search for vector fields (dark photons) 
[Guo et al., Comm. Phys 2, 155 (2019), LVK PRD 105, 063030 (2022)]

• Dark photons couple to SM sector via the baryon number B or the baryon –
lepton number B-L

• Associated to a new U(1)B,B-L gauge field

Different mirrors “feel” a slightly 
different field à differential strain

Coupling constant

Morisaki et al. 2021, PRD 103, 051702

Pierce et al. 2018, PRL 121, 061102

Picture credit: Y. Zhao

Oscillating dark electric force
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Upper limit on the coupling constant (O3 data), assuming U(1)B

v Improvement of up to two orders of magnitude w.r.t. direct search 
experiments, assuming U(1)B

LVK  PRD 105, 063030 (2022 updated in erratum https://dcc.ligo.org/LIGO-P2300439/public

https://dcc.ligo.org/LIGO-P2300439/public
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Direct search for vector fields (dark photons) in KAGRA         
[Michimura et al., PRD102, 102001 (2020); Nakatsuka et al. PRD108, 092010 (2022); LVK, to be submitted]

v KAGRA detector has sapphire test masses, while auxiliary optics are made of 
fused silica à different Q/M ratios à different response to the vector field 
à enhanced differential length variation, especially for U(1)B-L

Predicted constraints assuming 1 yr of KAGRA at design sensitivity



Conclusions
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Ø Analysis of GW data is already providing interesting constraints on ultralight 
bosons

ØData analysts are eager to tune their pipelines, or develop new ones, 
following advances in source/signal modelling  

Ø Interpretation of the results is an important issue for which interaction 
among data analysts and theorists would be very welcome

Ø Discrimination among signal and noise, and among different signal models, 
is another hot topic
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ØThe key could be nearby….

Thanks for your attention!



BACKUP SLIDES
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Basic features of CWs
v Narrow-band, nearly periodic signals, with duration such the effect of detector 

motion is not negligible
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Doppler effect:

More complicated if the source is in a binary system (depends on up to 5 Keplerian parameters)
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A) Time-frequency representation of the data B) Doppler correction and computation of a detection statistic

C) Coincidences among candidates found in detectors + vetoesReal data are full of weird stuff

Data contain 
hardware injections 



v Expected amplitude much lower than for CBC signals

Good luck! Galactic sources Ellipticity: largely unknown

v We can exploit signal long duration to build-up SNR

v Need to develop DA pipelines to deeply dig into the detector noise. 
Computational efficiency is often a major issue. 

v Once detected, a CW is forever! (not true in the case of long transient signals)25



o 107 – 108 BHs are expected to exist in the Milky Way

o Signal superposition in all-sky searches, if most                                                 
BHs are sorrounded by a boson cloud

Relative detection efficiency as a function 
of the signal-per-bin density

o Robustness of current search method has been 
demonstrated in [Pierini, Astone, CP et al. PRD106, 
042009 (2022)] 

o Possible sensitivity improvement by tuning FFT 
duration in semi-coherent searches [R. Felicetti, 
Master Thesis, Sapienza University of Rome 2022]

Pierini+ 2022

Felicetti 2022

26
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SGWB from tensor boson clouds [Guo et al. Arxiv 2312.16435]

Assume uniform spin distribution

Tensors: faster timescales – stronger signals
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Credit: L. Pierini
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Indirect search looking at gaps in the BH mass-spin plane (Brito+ 2018, see also Ng+ 2021)
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Standard scenario: coupling to EM sector 
+ standard DM Halo model

Additional coupling to QCD sector + 
Relaxation Halo model 

Orders of magnitude improvement w.r.t. atomic spectroscopy experiments and, 
for some model, w.r.t. fifth force experiments 



๏DP coupling to the protons/neutrons of the detector mirrors induces a 
differential strain with two components:

➡ Differential strain due to the spatial        
gradient of the DP field

➡ Equivalent differential strain due to       
finite speed of light in detector arms

Credit: L. Pierini

Pierce+ 2018

Morisaki+ 2021 32


