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The Status of Analytical Theory: Methods and Bench-Marks

Gravitational Wave Probes of Fundamental Physics 



What is the definition of ``fundamental’’ physics?

We have the known unknowns:  


e.g. What is the equation of state for dense nuclear matter?   We know the action and 
we know something about the quantum number of the ground state, but we dont know 
the Free energy as a function of say the extensive variables.

We have the unknown unknowns:  


e.g.   is GR really valid at all scales down to the Planck scale? This 
would imply the existence of terms in the action aside from those in 
the effective field theory of gravity coupled to the standard model, say 
like a graviton mass, or Axion stars, ``BSM’’.



Theory plays a dual role in searching for insights into ``fundamental” physics

1) Given an action calculate within a systematic expansion with a well 
defined  notion of theoretical error.  Calculate to sufficiently high order 
in the relevant expansion parameter. These calculations may be indirect 
(i.e. backgrounds) or direct. e.g. testing an equation of state for a 
neutron star. 


2) Finding new actions that are a) well motivated b) mathematically 
consistent. e.g. deviations from GR, extra degrees of freedom. Or new 
types of compact objects (boson/axion stars) or environmental effects 
due say to dark matter.



In this talk I will only talk about 1) making precision predictions, focusing on direct effects, 
though the indirect effects  are ``matched’’ to the direct (end of talk).

Consider probing the EOS of a star. We must be able to 
disentangle the non-linear GR effects from the effects 
due to the tidal distortion of the star.

DIfficult problem: solve Einsteins equation sourced by a dynamical compact objects
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Gµ⌫ = Tµ⌫
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Smatter =

Z
d4xL(gµ⌫(x),�i(x))
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Tµ⌫ = h | Tµ⌫(x) |  i
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|  i Describes two localized clumps of stress-energy



1) When can we say with confidence that we have found something beyond the SM?


2) How well can we test an EOS for a NS? 

1) In particle physics to claim a discovery one need 5 
sigma deviations from null hypothesis. Assumes that 
theoretical errors are well defined. Not just varying 
parameters in a model, but there should be an expansion 
parameter such that when it approaches zero the 
prediction becomes exact. The community will have to decide the proper criteria

2) This is much tougher to quantify.



propagation time, the events have a combined signal-to-
noise ratio (SNR) of 24 [45].
Only the LIGO detectors were observing at the time of

GW150914. The Virgo detector was being upgraded,
and GEO 600, though not sufficiently sensitive to detect
this event, was operating but not in observational
mode. With only two detectors the source position is
primarily determined by the relative arrival time and
localized to an area of approximately 600 deg2 (90%
credible region) [39,46].
The basic features of GW150914 point to it being

produced by the coalescence of two black holes—i.e.,
their orbital inspiral and merger, and subsequent final black
hole ringdown. Over 0.2 s, the signal increases in frequency
and amplitude in about 8 cycles from 35 to 150 Hz, where
the amplitude reaches a maximum. The most plausible
explanation for this evolution is the inspiral of two orbiting
masses, m1 and m2, due to gravitational-wave emission. At
the lower frequencies, such evolution is characterized by
the chirp mass [11]

M ¼ ðm1m2Þ3=5
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where f and _f are the observed frequency and its time
derivative and G and c are the gravitational constant and
speed of light. Estimating f and _f from the data in Fig. 1,
we obtain a chirp mass of M≃ 30M⊙, implying that the
total mass M ¼ m1 þm2 is ≳70M⊙ in the detector frame.
This bounds the sum of the Schwarzschild radii of the
binary components to 2GM=c2 ≳ 210 km. To reach an
orbital frequency of 75 Hz (half the gravitational-wave
frequency) the objects must have been very close and very
compact; equal Newtonian point masses orbiting at this
frequency would be only ≃350 km apart. A pair of
neutron stars, while compact, would not have the required
mass, while a black hole neutron star binary with the
deduced chirp mass would have a very large total mass,
and would thus merge at much lower frequency. This
leaves black holes as the only known objects compact
enough to reach an orbital frequency of 75 Hz without
contact. Furthermore, the decay of the waveform after it
peaks is consistent with the damped oscillations of a black
hole relaxing to a final stationary Kerr configuration.
Below, we present a general-relativistic analysis of
GW150914; Fig. 2 shows the calculated waveform using
the resulting source parameters.

III. DETECTORS

Gravitational-wave astronomy exploits multiple, widely
separated detectors to distinguish gravitational waves from
local instrumental and environmental noise, to provide
source sky localization, and to measure wave polarizations.
The LIGO sites each operate a single Advanced LIGO

detector [33], a modified Michelson interferometer (see
Fig. 3) that measures gravitational-wave strain as a differ-
ence in length of its orthogonal arms. Each arm is formed
by two mirrors, acting as test masses, separated by
Lx ¼ Ly ¼ L ¼ 4 km. A passing gravitational wave effec-
tively alters the arm lengths such that the measured
difference is ΔLðtÞ ¼ δLx − δLy ¼ hðtÞL, where h is the
gravitational-wave strain amplitude projected onto the
detector. This differential length variation alters the phase
difference between the two light fields returning to the
beam splitter, transmitting an optical signal proportional to
the gravitational-wave strain to the output photodetector.
To achieve sufficient sensitivity to measure gravitational

waves, the detectors include several enhancements to the
basic Michelson interferometer. First, each arm contains a
resonant optical cavity, formed by its two test mass mirrors,
that multiplies the effect of a gravitational wave on the light
phase by a factor of 300 [48]. Second, a partially trans-
missive power-recycling mirror at the input provides addi-
tional resonant buildup of the laser light in the interferometer
as a whole [49,50]: 20Wof laser input is increased to 700W
incident on the beam splitter, which is further increased to
100 kW circulating in each arm cavity. Third, a partially
transmissive signal-recycling mirror at the output optimizes

FIG. 2. Top: Estimated gravitational-wave strain amplitude
from GW150914 projected onto H1. This shows the full
bandwidth of the waveforms, without the filtering used for Fig. 1.
The inset images show numerical relativity models of the black
hole horizons as the black holes coalesce. Bottom: The Keplerian
effective black hole separation in units of Schwarzschild radii
(RS ¼ 2GM=c2) and the effective relative velocity given by the
post-Newtonian parameter v=c ¼ ðGMπf=c3Þ1=3, where f is the
gravitational-wave frequency calculated with numerical relativity
and M is the total mass (value from Table I).
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How we calculate:



We have a tool that is built for such multi-scale problems: Effective Field Theory (EFT)

Inspiral Phase further complicated by multi scale nature of the problem
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L
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Divide and conquer: Treat one scale at a time in expansion in the ratio of scales

EFT is a QFT tool: goal to utilize this methodology efficiently



Treat the smallest scale first:  Point particle limit

Note: at this point we have not used the PN expansion, simply a multipole expansion. R/r expansion


a) b)

FIG. 1. The two stages of our e↵ective field theory. In the first stage a) we consider each body
in isolation and coarse grain to generate an e↵ective field theory of point particles. In the second
stage b) we consider the theory of two such point particles we generate an EFT of a single particle,
representing the bound state, with time dependent multipole moments.

scenario, where a small black hole orbits a large black hole. In this case one expands around

the Schwarzchild solution and, as such, the results are analytically challenging. We will not

be discussing this case here and refer the reader to [4] as an example of the application of

the EFT technique to this case.

Next we consider what the system looks like at distances much longer than r since we

will be observing the binaries asymptotically far away. At these very long distances the

binary looks like single particle with time dependent multipole moments. The power loss

and wave-form then follow from calculations in this final e↵ective theory. The steps of the

coarse graining procedure are illustrated in figure 1.

II. THE SINGLE PARTICLE EFFECTIVE THEORY

Consider an isolated compact body, such as a black hole or neutron star. We wish

to write down an e↵ective theory which accounts for finite size e↵ects that is consistent

with all of the symmetries, which now include, general coordinate invariance and world line

reparameterization invariance (RPI). The former implies that our action must be built out

of scalar invariants. At the level of a point particle we parameterize the particles world line

via xµ(�). The action for the point particle is then given by1

S0 = �M

Z
d⌧ � 2M2

pl

Z
d4x

p
gR, (1)

where

d⌧ = d�

r
dxµ

d�

dx⌫

d�
gµ⌫(x(�)). (2)

1 Note we are sticking with our choice of units where h̄ = c = 1. Thus even though we will be only interested

in classical results, Mpl sits around during intermediate stages of the calculation. This is purely historical

and a consequence of the author’s educational upbringing. Changing back to more conventional units is

hopefully not a great burden on the reader.
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Eliminates need to solve boundary 
value problem (not completey)
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FIG. 1. The two stages of our e↵ective field theory. In the first stage a) we consider each body
in isolation and coarse grain to generate an e↵ective field theory of point particles. In the second
stage b) we consider the theory of two such point particles we generate an EFT of a single particle,
representing the bound state, with time dependent multipole moments.
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Systematically include higher order (finite size) effects 

is consistent with Birkho↵’s theorem, which states that the spherically symmetric solution

to Einstein’s equation is fixed by only one parameter, the mass2. Furthermore, on shell, we

can write down all of the operators in terms of the trace free Weyl tensor defined by (square

brackets indicating anti-symmetrization)

C⇢�µ⌫ = R⇢�µ⌫ � (g⇢[µR⌫]� � g�[µR⌫]⇢) +
1

3
g⇢[µg⌫]�R. (7)

We can further decompose the Weyl tensor into pieces which transform covariantly under

parity. Given a time like vector, which we will take to be the world line tangent vector (v�),

we define the electric and magnetic part of the Weyl tensor as

E⇢µ = C⇢�µ⌫v
�v⌫ ⌘ R⇢�µ⌫v

�v⌫ (8)

B⇢µ =
1

2
? C⇢�µ⌫v

�v⌫ ⌘
1

2
?R⇢�µ⌫v

�v⌫ (9)

where the Hodge dual is defined as

?C⇢�µ⌫ = ✏⇢��↵C
�↵
µ⌫ . (10)

and the equivalences (8,9) hold only on shell. E and B are traceless and symmetric. Phys-

ically we can see that in the static/Newtonian limit Eij ⇠ @i@ih00 is a measure of tidal

acceleration. The relative acceleration between two point particles separated by ~x in a

static field is ~atidal ⌘ ~a1(~x+ ~R)� ~a2(~x) ⇡ RiEij. In analogy with the electro-magnetic field

Bij mixes with Eij under a boost.

The Weyl tensor can be decomposed as follows

Cµ⌫
⇢� = �4E [µ

[⇢�
⌫]
�] + 8E [µ

[⇢v
⌫]v�] + 4✏µ⌫��v

�B�
[⇢v�]. (11)

Symmetry allows us to include two terms that are bi-linear in the Weyl tensor

SE+B =

Z
d⌧(CEEµ⌫E

µ⌫ + CBBµ⌫B
µ⌫). (12)

2 Any term in the action which has a linear piece in the metric will e↵ect the one-point function, i.e. field

value.
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+......
Static Love Numbers. Higher order effects include dynamic Love numbers 
as well as non-linear response terms



BH Love numbers

From point of view of QFT, this is a fine tuning problem that is searching for a symmetry 
explaination.

Perform matching calculation for black holes

Full Theory:

EFT:

Static Love numbers vanish (Damour/Nagar, Biinigton/Poisson,Kol/Smolkin)

 

m t

Tor

To extract Love number we 
must subtract the EFT from the 
Full theory, separates the non-
linearities due to gravity from 
the effect of interest



For Scalar Perturbations it has been shown that the near horizon 
geometry has a conformal symmetry that would forbit the World 
line coupling. See Hui et. Al. 2010.00593

Interestingly enough a new result also finds that the non-linear static Love number vanishes
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SE
NL = CE3

Z
d⌧E3

(Riva, Santoni, Savic, Vernizzi) :
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CE3 = 0.



What do we do about Neutron Stars?

Here we see why its crucial to subtract the EFT from the full theory calculations
 

me
T C É
I_

NOT PART OF

LOVEFull

Need some model for the full theory side
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S =

Z
d4xL(�, g) � = �0 + ��, g = g0 + �g

Extract Response function at Gaussian level
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+ ... Love number Guaranteed to be


 gauge invariant

See e.g.Chakrabarti, T. Delsate, 
and J. Steinhoff



Including Dissipative Effects

that n = 2. Thus the first finite size e↵ect does not start until v10. This diminishment

of finite size e↵ects in general relativity is often termed “e↵acement” [30]. Note that if we

allow for quantum e↵ects, we only have a bound n  2.

Exercise: n.6 Calculate the leading order potential generated by a non-vanishing

CE.

There are additional finite size corrections which are not associated with the local terms

(12) that arise from dissipative e↵ects. Given that we’re allowing our compact objects

to deform, it is necessary to account for the fact that there is work done in this process.

Some amount of energy will be absorbed by the compact object, i.e. it will heat up thus

increasing its mass. How do we account for this e↵ect? Since we are working in the point

particle approximation we have already integrated out all of the degrees of freedom which

would account for this heating process. Indeed, we really had no right to integrate out these

modes, as they are gapless. i.e. they can be excited via an infinitesimal energy transfer.

Thus we will need to add back in some degrees of freedom that live on the world-line if

we are to have any hope of accounting for this dissipation. This situation is reminiscent

of our discussion of the Van der Waals (VdW) interaction in the previous chapter. The

crucial distinction being that here we will be interested in dissipation. 21 We introduce

a generic field �(⌧) that lives on the world-line to give life to the aforementioned degrees

of freedom. �(⌧) transforms as some representation of the (local) Lorentz group which we

will fix in a moment. We want to couple �(⌧) to the metric in a di↵eomorphism invariant

fashion. Such invariants can be formed via contractions with the Riemann tensor, but, as

discussed in section (II), we should not bother with invariants which vanish by of Einsteins’

equations, so we should couple � to the electric and magnetic pieces of the Weyl tensor.

Assuming parity invariance, we introduce two distinct fields on the worldline, Qµ⌫(⌧) and

Mµ⌫(⌧) which are even and odd under parity respectively and couple to E and B such that

the action is given by

Sdis =

Z
d⌧(QabE

ab +MabB
ab). (84)

Here we have written the expression in terms of small Roman letters to denote local orthog-

onal coordinates, as opposed to the global coordinates denoted by greek letters. Working in

21 Note that the VdW case also has a dissipative component, due to radiation, which we ignored.
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When we integrate out the short distance physics we implicitly assume there 
are no gapless modes, which fails in the case for which we have dissipation. 
We need to integrate back in these modes by introducing new world line d.o.f
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Qab(⌧),Mab(⌧)

Assuming the ground state is spherically symmetric 
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hQab(⌧)i = 0

Linear Response information is contained in the retarded Greens function

while the tidal coupling gives

Hint =
�

�e

Z
d�e

�
Q

E
µ⌫E

µ⌫ + Q
B
µ⌫B

µ⌫
�
. (2.11)

Below, we will use this formalism to calculate the e↵ects of dissipation on the dynamics of

gravitationally interacting compact objects, focusing on the case of Schwarzschild black holes.

First, consider as a simplifying case a small black hole propagating in a fixed background gµ⌫

whose curvature scale R is much larger than the Schwarzschild radius. Varying the In-In action

in this background with respect to x
µ then yields the equation

D

Ds
p
µ
⌘

dx
⇢

ds
r⇢p

µ = hQ
E
⇢�ir

µ
E

⇢� + hQ
B
⇢�ir

µ
B

⇢�
, (2.12)

(this variation is done most conveniently in Gauss normal coordinates centered on the worldline,

i.e. @�gµ⌫(x(�)) = 0, and then covariantizing to obtain a result valid in any frame). Using the

general properties of the Schwinger-Keldysh generating function, the tidal moments (expectation

values) hQE,B
⇢� (s)i induced by the background curvature are given, in the linearized approximation,

by

hQ
E
µ⌫(s)i =

Z
ds

0
G

E;ret
µ⌫;⇢�(s � s

0)E⇢�(x(s0)) + O(E2), (2.13)

and similarly for hQ
B
µ⌫i, where the retarded Green’s function of the operator Q

E/B
µ⌫ is defined by

G
E/B;ret
µ⌫,⇢� (s � s

0) = �i✓(s � s
0)h[QE/B

µ⌫ (s), QE/B
⇢� (s0)]i, (2.14)

and the expectation value is calculated at zero external field, Eµ⌫ = Bµ⌫ = 0. Thus Eq. (2.12)

describes the motion of a general compact object (not necessarily a black hole), in the limit of

small radius, in terms of the response functions of moment operators. These response functions

in turn depend on the microphysics which describes the internal dynamics of the compact body.

At present we have no microscopic theory of these correlators, though we do know that they are

constrained by sum rules [49, 50].

If the internal dynamics is fast compared to the time scale of the tidal perturbation, the

frequency space response functions will be a polynomial, with coe�cients that depend on the

internal structure of the compact object. This is equivalent to the statement that the corre-

lation functions die o↵ exponentially fast at late times. In [10], we showed that the first two

terms in the low-frequency expansion of the retarded Green’s function are related respectively

to the object’s tidal Love number and graviton absorption cross section. The former/latter is

conservative/dissipative and related to the real/imaginary part of the frequency-space retarded

Green’s function. For our present purposes we are only interested in the retarded propagator for

a non-spinning (Schwarzschild) black hole, for which the vanishing of the static response [2–4]

together with the results of [10] fixes the response to be of the form

hQ
E
µ⌫(s)i =

r
6
s

180GN

✓
Pµ

⇢
P⌫

�
�

1

3
Pµ⌫P

⇢�

◆
Ė⇢�(x(s)) + · · · , (2.15)

hQ
B
µ⌫(s)i =

r
6
s

180GN

✓
Pµ

⇢
P⌫

�
�

1

3
Pµ⌫P

⇢�

◆
Ḃ⇢�(x(s)) + · · · , (2.16)
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Matching for Black Holes

e.g. match graviton absorption cross section

The resulting, instantaneous, potential is given by

SE
pot = �G

Z
dt(m1Q

ij
2 (t) +m2Q

ij
1 (t))qij(t) (94)

where qij(t) = @i@j
1

|~x1�~x2| and we are working in the rest frame so the indices are spatial.

The expectation value of this potential vanishes assuming the compact obejct is spherically

symmetric, i.e. h⌦ | Qij | ⌦i = 0, where | ⌦i is ground state. To get a non-vanishing result

we need two insertions of the potential Spot, as shown in figure (6b). The magnetic potential

will be sub-leading in the PN expansion and will be ignored.

Let us try to gain some intuition for the degrees of freedom that live on the world line. If

we are to have control over our calculations, it had better be that the correlators of M and

Q are analytic around ! = 0, since we are working in a derivative expansion. Physically, this

implies that the correlations functions die o↵ faster than any power in time. Classically we

know that the system will have a set of quasi-normal modes whose propagators have poles

o↵ the real axis. In the low energy limit we will be sampling the tails of these ringing modes.

Modeling the system as a set of damped harmonic oscillators the two point functions should

schematically look like

GR(!) ⌘
Z

dtei!thQ(t)Q(0)i ⇠ 1

!2 � !2
0 + i�!

. (95)

If we consider the case of a black hole, where the quasi-normal spectrum is known, there is

only one relevant scale rs and !0 ⇠ � ⇠ r�1
s . Note that the system is e↵ectively ungapped

even though the real part of the pole is non-zero. This is due to the dissipation (width), as

any small amount of energy can be absorbed, as we would expect from a classical macroscopic

object.

Given our assumption of exponential die o↵ in time, we may expand the correlation

function in a series in !. Since the real time propagator is real valued, the imaginary part

of the frequency space propagator is odd and its expansion takes the form

GR(!) = A1 + i!B1 + A2!
2 + ... (96)

It is important to understand that once we include the couplings to the internal degrees of

freedom (90) we will be double counting if we also include the local terms in (20). However,
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Since the response function has no long 
time tails we can expand in small omega

Exercise: n.7 Using the linearized versions of Eij and Bij in momentum space

Eij =
1

2Mpl
!2✏�ij Bij =

!

2Mpl
✏iklkl✏

�
kj, (103)

�abs(!) =
X

�

1

8M2
pl

⇣
!3AE+

ijkl(!)✏
�
ij✏

�?
kl + !AB+

ijkl(!)(
~k ⇥ ✏�)ij(~k ⇥ ✏�?)kl

⌘
(104)

where (~k ⇥ ✏�)ij = ✏ialkl✏�aj.

Utilizing our assumption of rotational symmetry and the tracelessness of Qij, we may

parameterize the correlator in frequency space as:

AE+
ijkl(!) ⌘

Z
dte�i!th0 | Qij(t)Qkl(0) |0i ⌘ AE+(!)(�ik�jl + �il�jk � 2

3
�ij�kl) (105)

with a similar parameterization for the magnetic Wightman function AB+. The tensor

structure on the RHS of this identity in the space of spin two tensors. Then using the sum

over physical polarization (in transverse traceless gauge)

X

h

✏hij(k)✏
⇤h
rs (k) ⌘ Pij;rs(k) =

1

2


�ir�js + �is�jr � �ij�rs +

1

k2
(�ijkrks + �rskikj)

� 1

k2
(�irkjks + �iskjkr + �jrkiks + �jskikr) +

1

k4
kikjkrks

�
, (106)

gives

�abs(!) =
!3

2M2
pl

�
AE+(!) + AB+(!)

�
. (107)

Then we may use the fluctuation dissipation theorem to relate the Wightman function (A+)

to the imaginary part of the retarded propagtor.
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Now we can extract the coefficients B1 by comparing to the 
graviton absorption cross section using the relations

Exercise: n.8 Prove the fluctuation dissipation theorem

✓(!)A+(!)� ✓(�!)A�(!) = 2ImGret(!) (108)

by performing a spectral decomposition of A±. Gret(!) is defined via

Gijkl
ret = Gret(!)(�

ik�jl + �il�jk � 2

3
�ij�kl). (109)

Now show that the imaginary part of the retarded propagator is odd under ! ! �!,

while the real part is even.

Next we use the fact that the full theory scattering equation, often called the Regge-

Wheeler equation [38], is invariant under electric magnetic duality transformations, which

implies that A+E = A+B ⌘ A+ (so that A+ = M2
pl�abs/!3).

Then the dissipative force is given by

FA
l = �i

X

a

m2
aG

2

32⇡

Z
dt0

Z
[d!]ei!(t�t0)�abs(!)

!3
(@lqij(t))(

2

3
�ij�kl��ik�jl��il�jk)qkl(t

0). (110)

Given that Im(Gret(!)) is odd in !, �abs must be an even. Moreover, since the Gret should

decay in time, it is analytic in ! near the origin. Thus writing

�i
abs(!) = A4iR

6
i!

4 + A6iR
8
i!

6 + .... (111)

where Ri is the radius of object i. The series starts at order !4 since the action is local in

time given our assumptions about the correlators and the potential nature of the interaction.

The force exerted on the world line is then

~F1 = �~F2 =
9G

8⇡

X

a 6=b

A4bR
6
bm

2
a

✓
1

~x8
(~v + 2

~x · ~v
~x2

~x)

◆
(112)

Let us now specialize to the case of a black hole. At leading order in the derivative

expansion the absorptive cross section for a graviton scattering on a black hole is given by
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[37]

�abs =
4⇡r6s!

4

45
, (113)

so that R = rs = 2Gm and A4 =
4⇡
45 and

FBHi
1 = �FBHi

2 = (m2
am

6
b +m2

bm
6
a)
32G7

5

✓
1

~x8
(~v + 2

~x · ~v
~x2

~x)

◆
(114)

The power loss then follows by dotting this result into the velocity.

Now let us return to the question of the v scaling of the wordline line terms (136). We

would like to determine the scaling of the absorptive potential (100) in both L and v. As

previsouly emphasized we can read o↵ the scaling by studying the scalings of the operators

which make up the Feynman diagram (7b). The scaling of Q can be read o↵ by looking at

its correlator

Im

Z
dtei!th0 | TQab(t)Qcd(0) | 0i / !(GM)6M2

pl. (115)

In the context of of calculating the potential in the PN expansion ! scales as v/R and dt

scales as R/v such that

Q(⌧)Q(0) ⇠ (v/R)2M6/M10
pl = v4/L2(M/Mpl)

81/M2
pl = L2v8/M2

pl. (116)

So that Q scales as Lv4/Mpl. Now we may consider the scaling of action

S =

Z
dtQµ⌫E

µ⌫ ⇠ r

v
⇥ Lv4M�1

pl ⇥ 1

Mpl
r�2 ⇥ v1/2r�1 ⇠ L

v7/2

r2M2
pl

⇠ L
v11/2

r2M2v2
⇥ vL ⇠ v13/2.

(117)

Two insertions of this operator with two mass insertions leads to an overall scaling of v13.

The lack of L suppression is consistent with a classical correction. A similar calculation

shows that the magnetic contribution has the identical scaling. The e↵ective action should

then scale as v13. The odd power of v is constitent with a non-conservative e↵ect since it is

not time reversal invariant.

To fix these finite size coe�cient one must do a matching calculation. As we have em-

phasized previously we are free to match in any way we wish. In the sense that we could

match by putting the object in a static external field (see the last citation in [42]), or we

could match via an on-shell scattering calculation [51].
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Add Spin

In order to account for dissipative e↵ects while retaining a point particle description, we

employ the framework introduced in [4, 5] and further developed in [6–9]. In this approach, long

wavelength dissipative e↵ects due to the internal structure (finite size e↵ects) is attributed to the

existence of gapless modes localized on the worldline which absorb energy as well as linear and

angular momentum from the external environment.

We begin with the worldline theory in the absence of dissipation. In addition to the tra-

jectory xµ(�), we also introduce an orthonormal frame eaµ which is necessary to describe spin

dynamics [16], and obeys the constraints

⌘abe
a

µeb⌫ = gµ⌫(x), gµ⌫(x)eµae⌫
b

= ⌘ab, (2.1)

where a, b = 0, 1, 2, 3 are local Lorentz indices. The rotation of the particle relative to fixed

inertial frames is then encoded in the angular velocity

⌦ab = gµ⌫eaµ
D

D�
eb⌫ = �⌦ba, (2.2)

with D

D�
eaµ = ẋ⇢

r⇢eaµ = ėaµ ��⇢
�µẋ�ea⇢ (the overdot correspond to di↵erentiation with respect

to �). Finally, it is convenient to define an einbein e(�) in order to enforce reparameterization

invariance � 7! �0(�), e0(�0)d�0 = e(�)d�.

We begin by writing down the most general reparameterization invariant (RPI) action to

leading order in a derivative expansion in powers of R/R ⌧ 1,

Spp = �

Z
dxµpae

a
µ +

1

2

Z
d� Sab⌦ab +

1

2

Z
ds

�
pap

a
� m2

�
+

Z
ds�aS

abpb + · · · , (2.3)

where ds = e(�)d�, with units of time/energy, is RPI. For our purposes here, this treatment is

more convenient than the Routhian approach employed in [11]. In this equation the momentum

pµ = ��Spp/�ẋµ and spin Sab = @Spp/@⌦ab are conjugate variables to xµ and eaµ. The quantity

m2 is an arbitrary function of all possible scalars constructed out of pa, Sab and gµ⌫ . The form

of this function is not predicted by the point-particle EFT, but rather must be fixed through a

matching procedure to the UV theory of the extended object. m2(p, S) determines the relation

between the spin and angular velocity ⌦ab. It also fixes the Regge trajectory [16] of the spinning

particle, i.e. the relation between the invariant mass p2 and the spin, which follows from variation

of Spp with respect to e(�).

The last term in Eq. (2.3), involving the Lagrange multiplier �a enforces a ‘supplementary’

constraint on Sab that reduces the number of spin degrees of freedom down to the three required

by Poincare symmetry. We find it convenient to impose

Sabpb = 0. (2.4)

which is known as the covariant spin supplementary condition, other choices [24, 25] have no e↵ect

on physical predictions. Likewise, �a itself is ambiguous since it can be shifted by an amount

proportional to pa without a↵ecting the equations of motion. The variation of Spp with respect

to the kinematic variables (xµ, pa, eaµ, Sab, �a, e) leads to the Papapetrou-Mathison-Dixon [26]

equations of motion for pµ = eaµpa and Sµ⌫ = eaµeb⌫Sab, with pµpµ = m2.
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Higher order finite size effects again follow from writing down all Dif and RPI invariant terms
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of this function is not predicted by the point-particle EFT, but rather must be fixed through a

matching procedure to the UV theory of the extended object. m2(p, S) determines the relation

between the spin and angular velocity ⌦ab. It also fixes the Regge trajectory [16] of the spinning

particle, i.e. the relation between the invariant mass p2 and the spin, which follows from variation

of Spp with respect to e(�).

The last term in Eq. (2.3), involving the Lagrange multiplier �a enforces a ‘supplementary’

constraint on Sab that reduces the number of spin degrees of freedom down to the three required

by Poincare symmetry. We find it convenient to impose
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which is known as the covariant spin supplementary condition, other choices [24, 25] have no e↵ect
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Arbitrary scalar build from 
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(p, S, g)

We can add dissipation along the lines of the spinless case. Dissipation is enhanced in the 
spinning case. Incoming wave sees enhancement of frequency.

(R. Porto)



Aside: Can quantum effects/Hawking Radiation get enhanced such that its 
measurable?

If we assume that EFT of GR obeys the standard axioms of QFT, 


all vacuum effects (Hawking) will be suppressed by powers of M_pl.

Roughly: All classical observables can only depend upon 

relative to AB
+(!) by one power of (�H!)�1 = 1/(4⇡rs!) � 1. So it would seem that Hawking

radiation, which is a manifestly quantum e↵ect, is not parametrically suppressed relative to the

purely classical (absorptive) processes which the Boulware state describes.

The enhancement of AU
+(!) over AB

+(!) has a simple interpretation as the Bose enhancement

of the black body distribution as TH ! 0, which is equivalent to the limit rs! ⌧ 1 in which

our EFT description is valid. Despite this enhancement at the level of the Wightman functions,

Hawking radiation contributes to “classical observables” e↵ects that are suppressed by powers

of !/mP l rather than �H!, as one would intuitively expect. In the full theory, this can be

understood by considering the retarded propagator for the field �,

GR(x, x0) = �i✓(t � t0)h |[�(x), �(x0)]| i, (4.1)

which is the only correlator that is observable in classical BH processes, e.g. radiation from

macroscopic binary systems. In fact, the commutator [�(x), �(x0)]| is simply a c-number up to

terms suppressed suppressed by !/mP l. This follows because the full theory result in ref. [11]

describes a free field propagating in a background gravitational field. Neglecting the interactions,

� obeys linear equations of motion, so canonical quantization in the fixed background implies

that [�(x), �(x0)] is proportional to the identity operator times a c-number function of x, x0. (It

is straightforward to check explicitly from the expressions in sec. 2 that h |[�(x), �(x0)]| i does

not depend on  ). Thus the e↵ects of Hawking radiation on the retarded response function are

suppressed by powers of the interactions. In particular, for the more realistic case of gravitons,

such self-interactions are suppressed by powers of !/mP l ⌧ 1, which are unobservable in classical

processes.

On the other hand, in the EFT we have at coincident spatial points

h[�(x), �(x0)]i =
1

8⇡r2

Z
d!

2⇡
e�i!t

⇥
A +(!) � A +(�!)

⇤
, (4.2)

as r ! 1, so the statement that the retarded correlator in the full theory is state independent

gets translated into a consistency relation on the EFT, namely

AB

+(!) � AB

+(�!) = AU

+(!) � AU

+(�!). (4.3)

To leading order in the power counting, we have from Eq. (2.23) that AB
+(!)�AB

+(�!) ⇡ 4⇡r2s!,

while in the Unruh state AU
+(!) � AU

+(�!) = 0 + O(rs!). Due to the Bose enhancement of

Hawking radiation in the Unruh state, verifying the consistency relation Eq. (4.3) requires a

calculation at next-to-leading order in the power counting parameter. This provides a non-trivial

test of the EFT formalism, to which we turn to below.

4.1 NLO matching in the Unruh state

There are two types of corrections to the Wightman function in the EFT. One is from corrections

due to the gravitational potential interaction between the point source and the scalar field. The

second is from multiple insertions of the �
R

d⌧�O coupling in Eq. (1.2). Insertions of higher

multipole operators, coupled to spatial gradients of �, give rise to terms suppressed by more

powers of 1/r and need not be considered when matching to the correlators of the monopole

operator O(⌧).
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Independent of vacuum up to corrections suppressed by the Planck Mass

Unruh, Hartle-Hawking and Boulware all give the same result.

(Goldberger,IZR) 
2023



Next we coarse grain at the level of the orbital radius to reduce 
the two body system to a dynamical one body. We will do so in 
the PN expansion.

So far we have shown that we can reproduce the interactions of a finite size 
object in a gravitational background using a point particle approximation in a 
multiple expansion.  But the pay off of the EFT is that we have traded a 
boundary value problem for a much simpler one because  the action is 
universal. Dont need to resolve it. 

gµν = ηµν + hµν

<latexit sha1_base64="x2D3ZjIwUBWlVyRQEJqNfzQRjZc=">AAACF3icbVDLSsNAFJ3UV62vqEs3g0UQhJCIr2XRTZcV7AOaECbTSTN0MgkzE6WE/oUbf8WNC0Xc6s6/cdoGrK0HBg7nnMude4KUUals+9soLS2vrK6V1ysbm1vbO+buXksmmcCkiROWiE6AJGGUk6aiipFOKgiKA0baweBm7LfviZA04XdqmBIvRn1OQ4qR0pJvWpGfu3EGXZ6NXEH7kUJCJA+w/iufzER8s2pb9gRwkTgFqYICDd/8cnsJzmLCFWZIyq5jp8rLkVAUMzKquJkkKcID1CddTTmKifTyyV0jeKSVHgwToR9XcKLOTuQolnIYBzoZIxXJeW8s/ud1MxVeeTnlaaYIx9NFYcagSuC4JNijgmDFhpogLKj+K8QREggrXWVFl+DMn7xIWqeWc2Gd355Va9dFHWVwAA7BMXDAJaiBOmiAJsDgETyDV/BmPBkvxrvxMY2WjGJmH/yB8fkD5+KgZQ==</latexit>

hµ⌫ ! Hµ⌫ + hµ⌫
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Hµ⌫ 6= 0 k > 1/r
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hµ⌫ 6= 0 k < 1/r

Split the fluctuations 
into long (radiation, h) 
and short (potential,H) 
wavelengths



H and h have definate scalings in v, and the action can be 
written as power expansion such that every term scales 
homogeneously.
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H ⇠ v
2
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h ⇠ v5/2

In this way we learn that  the  static Electric  Love number terms scale as v^10 (5PN).

``Effacement Theorem’’.  (Damour)

Though for Neutron Stars we expect a numerical enhancement 
(factor of 10 since the radius is not fixed by the mass).



Next Step in Coarse Graining Procedure

r
R

One composite object with 
dynamical multipole moments

This step is accomplished by


Solving for H and plugging it back into


The action.



This is equivalent to calculating all Feynman diagrams within  
no external graviton lines. Generates a set of potentials in 

the PN expansion.

Order v^2 Calculation of Potential 
(EIH)

iGNm1m2

2|x1 − x2|

[

3(v2

1 + v
2

2) − 7v1 · v2 − (v1 · n)(v2 · n)
]
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V (r) =

In this way one can calculate Feynman diagrams up to any required order.



 The PM Expansion

QFT was developed to treat theories relativistically, so why not perform an expansion in 


G and keep all orders in v? This corresponds to the ``Post-Minkowksian” expansion which 
corresponds to an expansion in 
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� =
GM

b
(Eikonal limit).

Despite the fact that PM is not systematic for the problem of interest it is useful:

1) Reduce the number of diagrams needed

2) Used to fit parameters in EOB

World line EFT has been used to calculate to 4 PM (Porto et al)



Once we have integrated out the potential modes we are left with a theory of 
one particle with dynamical multipole moments which we use to calculate the 
radiation.

Calculate moments of the stress energy Tensor
 

I

5 5 Q F So de t

Q Q Xi r



Leading  Love number 

Leading Dissipative 

BH NS

5PN 4PN ish

Exotic Object

4PN (S=0) (2.5 max S) <?4PN

?

?

Distinguishing  Neutron Star from an exotic object will 
be a challenge. We must first gain confidence that we 
know whats going on with NS.  Look for unique 
signature of exotics (.e.g. parity violating effects  E.B 
finite size effects). (Modrekiladze)



Where do we stand in calculating 
background to finite size effects?

Potentials:            5 PN (Bernard,Blanchet, Bohe,Faye, 
Marchant, Marsat.  Blumlein, Maier, Marquard and Schaefer)  
5PN spin(Levi+Yin)

Radiation:           4Pn (Blanchet,Bernard,Blanchet, Bohe,Faye, 
Marchant, Marsat),  4Pnspin (Cho, Porto,Yang)

Reaching 5Pn was a great achievement of the 
community, that involved many people who 
dedicated signficant time and energy on these 
tough calculations.  Foffa and Sturani, Damour, 
Jaranowski. 



Environmental Effects

The motion of a finite body in a fluid in GR is computationally intensive. Utilize EFT 
techniques to simplify the problem. 

(With Beka Modekiladze)

Again point particle approximation, but now we have the caveat that the fluid 
gradients must be small compared to the radius of the objects.

which coincides with bi-gravity results.

We can see what is 3-form of the argument of generic F function

(v · u)2

vµvµ
=

�2
u(1� u · v)2

1� v2
=

(1� u · v)2

(1� u2)(1� v2)
(25)

We see that in the limit when u = v, argument of F goes to 1. Also, we can compare to the limit case for the result

of string in the fluid

F

 
(1� u? · v?)2 � u2

k(1� v?)2

(1� u2)(1� v2?)

!
! F

✓
(1� u · v)2

(1� u2)(1� v2)

◆
(26)

where we kept only perpendicular directions, since in the limit of point particle, every direction is perpendicular to

it.

3 Coupling with Gravity

3.1 Expansion of Action

S = �m

Z
dt
p
ẋµẋ⌫gµ⌫F

⇣
1� (ẋ↵u�g↵�)2

ẋ⇢ẋ�g⇢�

⌘
(27)

S = �m(1 + C)

Z
d⌧ +mC

Z
dt

(ẋ↵u�g↵�)2p
ẋ⇢ẋ�g⇢�

(28)

The first term of action will provide the same mass insertion vertices of the original theory, with reparameterized

mass m ! m(1 + C). So let’s now concentrate on the Lagrangian of the second term and see its expansion.

L = mC
(ẋ↵u�g↵�)2p

ẋ⇢ẋ�g⇢�
(29)

Using the following expansion of gravitons,

gµ⌫ = ⌘µ⌫ +
hµ⌫

Mpl
(30)

L = mC
(ẋ · u)2 + (ẋ · u)h↵�

Mpl
(ẋ↵u̇�

+ ẋ� u̇↵
) +

h↵�h⇢�

M2
pl

ẋ↵u̇� ẋ⇢u̇�

q
1� v2 + hµ⌫

Mpl
ẋµẋ⌫

(31)

L = mC
⇣
(ẋ·u)2+(ẋ·u)h↵�

Mpl
(ẋ↵u̇�

+ẋ� u̇↵
)+

h↵�h⇢�

M2
pl

ẋ↵u̇� ẋ⇢u̇�
⌘⇣

1+
v2

2
�1

2

hµ⌫

Mpl
ẋµẋ⌫�3

4
v2

hµ⌫

Mpl
ẋµẋ⌫

+
3

8

h↵�h⇢�

M2
pl

ẋ↵ẋ� ẋ⇢ẋ�
+...

⌘

(32)

L = mC
⇣
(ẋ · u)2 � (ẋ · u)2

2

hµ⌫

Mpl
ẋµẋ⌫

+
3(ẋ · u)2

8

h↵�h⇢�

M2
pl

ẋ↵ẋ� ẋ⇢ẋ�

+
(ẋ · u)2

2
v2 � 3(ẋ · u)2

4
v2

hµ⌫

Mpl
ẋµẋ⌫

+2(ẋ · u)h↵�

Mpl
ẋ(↵u̇�) � (ẋ · u)h↵�hµ⌫

M2
pl

ẋ(↵u̇�)ẋµẋ⌫

+(ẋ · u)v2 h↵�

Mpl
ẋ(↵u̇�)

+
h↵�h⇢�

M2
pl

ẋ↵u̇� ẋ⇢u̇�
⌘

3

I will need to keep this order, for the future, if we’d like to add higher terms to make it easier (consistent with my

calculations). Now, let’s regroup it in more intuitive form.

L = mC
⇣
(ẋ · u)2(1 + v2

2
)

+ 2(ẋ · u)(1 + v2

2
)
h↵�

Mpl
ẋ(↵u̇�) � (ẋ · u)2

2
(1 +

3v2

2
)
hµ⌫

Mpl
ẋµẋ⌫

+
3(ẋ · u)2

8

h↵�h⇢�

M2
pl

ẋ↵ẋ� ẋ⇢ẋ� � (ẋ · u)h↵�hµ⌫

M2
pl

ẋ(↵u̇�)ẋµẋ⌫
+

h↵�h⇢�

M2
pl

ẋ↵u̇� ẋ⇢u̇�
⌘

Let’s now expand (ẋ · u) terms up to O(v2)

L = mC

✓
1 + (u� v)

2 � v2

2

+ 2

⇣
1 +

1

2
(u� v)

2
⌘h↵�

Mpl
ẋ(↵u̇�) � 1

2

⇣
1 + (u� v)

2
+

v2

2

⌘ hµ⌫

Mpl
ẋµẋ⌫

+
3

8

h↵�h⇢�

M2
pl

ẋ↵ẋ� ẋ⇢ẋ� � h↵�hµ⌫

M2
pl

ẋ(↵u̇�)ẋµẋ⌫
+

h↵�h⇢�

M2
pl

ẋ↵u̇� ẋ⇢u̇�

◆

3.2 Vertices

Lv0 = +
3mC

2Mpl
H00 (33)

Lv1 = +(2ui
+ vi)

mC

Mpl
H0i (34)

Lv2 = +
1

2

⇣
(u� v)

2 � v2

2

⌘mC

Mpl
H00 +

3mC

8

H00H00

M2
pl

+
mC

Mpl
(viuj

+ uivj � 1

2
vivj)Hij (35)

If we now combine these results with �m(1 + C)
R
d⌧ part, vertices from the full Lagrangians are

Lv0 = � M

2Mpl
(1� 2C)H00 (36)

Lv1 = � M

Mpl

�
vi � 2Cui

�
H0i (37)

Lv2 = � M

4Mpl

�
v2 � C(2u+ v) · u

�
H00 +

MH00H00

8M2
pl

(1 + 4C)� M

2Mpl

�
vivj(1 + 2C)� 2C(viuj

+ uivj)
�
Hij (38)

Due to this form, we can use results of any previous diagram calculations and just update coe�cients.
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Need to match full theory to effective theory to determine C

For an incompressible  fluid one can solve for C in 
the case of a rigid BC’s analytically 

Figure 9: Infinite mass sphere inside the fluid

5.1 Fixing C

Since we’ve seen that solution to the matching problem are static, (94) takes form

@i(⇢u
iuj

+ p�ij) = �@i

 
mv2

2
�3(x)�ij + �3(x)mC

⇣
(u2 � 2u · v)�ij � 2(ui

+ vi)uj
⌘!

. (152)

Point mass term will not play a role,

⇢uiuj
+ p�ij = ��3(x)mC

⇣
(u2 � 2u · v)�ij � 2(ui

+ vi)uj
⌘
. (153)

Contracting indices with �ij provides us

⇢u2
+ 3p = ��3(x)mC

⇣
3(u2 � 2u · v)� 2u2 � 2u · v

⌘
, (154)

⇢u2
+ 3p = ��3(x)mC(u2 � 8u · v). (155)

From for our matching problem we know that

p+
⇢u2

2
= const (156)

And for simplicity we consider u · v = 0

� ⇢u2

2
= ��3(r �R)mCu2

(157)

For simplicity we can pick n perpendicular to v. Then we have After integration, where constant density is assumed,

we obtain

C =
1

2

4
3⇡R

3⇢

m
(158)
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Effects the Fluid EOM as well as the PN potentials (drag force 
negligible in most realistic cases, though dynamical friction 

will not be)



Calculate new set of Potentials and Multipole 
moments due to effects of fluid

Figure 6: 3 Graviton Vertex Potential

V6 =
M2

1 (1� 2C1)
2M2(1� 2C2)

64M4
pl(4⇡)

2r2
+ (1 $ 2) (44)

3.4 1PN Potentials from Three Body Interaction

At the 1PN order we also have the following binary interactions with fluid

(a) (b)

Figure 7: 1PN Fluid to Binary Interaction 1PN Potentials
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00(x1(t1))H
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p
00(x3(t3))i (45)

As with seagul topology we have two possible contraction, but note that now we don’t have
1
2 factor from the

exponent anymore, since we have three distinct vertices. Thus, we obtain

Fig.2a =
M1M2

M4
pl

2

8 · 2 · 2

Z
dV 0⇢(r0)

Z
dt1dt2dt3hHk

00(x1(t1))H
l
00(x2(t2))ihHq

00(x1(t1))H
p
00(x3(t3))i (46)

We obtain two
1
2 factors, due to P00,00 =

1
2 , from propagators. While the rest provides the typical

1
4⇡r factors,

V2a = �M1M2

64M4
pl

1

4⇡r

Z
dV 0 ⇢(r

0
)

4⇡r0
, (47)

where r = x1 � x2 and r
0
= x1 � x3.

Fig.2b =
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pl

⇣
1

2

⌘3
Z

dV 0⇢(r0)

Z
dt1dt2dt2hH l

00(x1)H
k
00(x2)H

q
00(x3)i (48)
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Fig.2b = �M1M2
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After dropping mass renormalization terms, we have

Z
dt

M1M2

8 · 4M4
pl

Z
dV 0⇢(r0)

⇣Z
[d3k]

eik(x2�x1)

k2

⌘⇣Z
[d3q]

eiq(x3�x1)

q2

⌘
(52)

Which provides us

V2b =
M1M2

32M4
pl

1

4⇡r

Z
dV 0 ⇢(r

0
)

4⇡r0
(53)

For all the diagrams in this section, we have used only H00 vertices, so to include fluid part as well, using (33), we

could simply generelize ⇢ in the final answers.

⇢ ! ⇢(1� 2C) (54)

Note that we could use M ! M(1� 2C) to update Newtonian potential.

3.5 Moments

At the leading order, for binary and fluid with one radiating graviton, we have only one diagram

(a) (b)

Figure 8: Binary+Fluid Radiation
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In order to find new physics or corroborate some models of collective 
phenomena we still have much work to do. For neutron stars need to start 
by feeling confident about smoking guns for qualitatively distinct models.

A further challenge arises from the fact that we can extract 
tidal parameters in a systematic way from the merger data, 
but must restrict ourselves to the early stages of the inspiral.


