Strong gravity as a probe of physics beyond the Standard Model + GR

Katy Clough, Queen Mary University of London

Science & Technology Facilities Council

J Bamber, KC et. al 2023 Phys.Rev.D 107 2, 024035

Relevant JENAS questions/wishlist:

- **• Dark Matter Fundamental Nature • Can we tell deviations from GR from**
- **matter/waveform systematics**
- **• Nonlinearities in the black hole ringdown • What else do we want to search for that**
- **LISA or 3G enables but that will not already be ruled out by the late 2030s?**
- **• Tests of gravity vs modelling systematics • Can we identify the nature of dark matter**
- **from its environmental effect on EMRIs?**
- **• What is the fundamental nature of gravity? • Numerical relativity beyond GR - how far**
- **can we go?**
- **• Waveform generation in modified gravity and efficient confrontation against GW data**
- **• Numerical Relativity beyond GR and SM**

D Traykova, KC et. al. 2021, 2023 *Phys.Rev.D* 104 (2021) 10, 103014

Relevant JENAS questions/wishlist:

- **• Dark Matter Fundamental Nature • Can we tell deviations from GR from**
- **matter/waveform systematics**
- **• Nonlinearities in the black hole ringdown • What else do we want to search for that**
- **LISA or 3G enables but that will not already be ruled out by the late 2030s?**
- **• Tests of gravity vs modelling systematics • Can we identify the nature of dark matter**
- **from its environmental effect on EMRIs?**
-
- **• What is the fundamental nature of gravity? • Numerical relativity beyond GR - how far can we go?**
- **• Waveform generation in modified gravity and efficient confrontation against GW data**
- **• Numerical Relativity beyond GR and SM**

D Traykova, KC et. al. 2021, 2023 *Phys.Rev.D* 104 (2021) 10, 103014

Can we probe the fundamental nature of dark matter?

Can we distinguish matter / modifications to GR / waveform systematics?

Numerical relativity beyond GR + SM - how far can we go?

Can we probe the fundamental nature of dark matter?

Can we distinguish matter / modifications to GR / waveform systematics?

Numerical relativity beyond GR + SM - how far can we go?

Now in a position to answer this for specific models, which should be informative for LIGO modelling

Possible in principle to probe wave or particle nature, some reasons to be optimistic for LISA data

Probably not far enough on our own, but can usefully combine analytic and numerical studies

Preliminaries

Fields in modified gravity

JM Ezquiaga et. al 2018 Front.Astron.Space Sci. 5 44 Constrained by

Fields in modified gravity

Modified gravity roadmap

JM Ezquiaga et. al 2018 Front.Astron.Space Sci. 5 44

Fields in modified gravity

JM Ezquiaga et. al 2018 Front.Astron.Space Sci. 5 44

The next order action of scalar-tensor theories beyond GR

Most general parity-invariant scalar-tensor theory of gravity up to

 $\mathcal{L}_{GB}=R^2-4R_{\mu\nu}R^{\mu\nu}+R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma}$

(derivatives)^4:

 $S = \frac{1}{16\pi} \int d^4x \sqrt{-g} (R - X + g_2(\phi)X^2 - V(\phi) + \lambda(\phi) \mathcal{L}_{GB})$

where $X = \nabla^{\mu} \phi \nabla_{\mu} \phi$

Equation of motion for the scalar field has a two sources

Coupling to curvature Potential *λ*(*ϕ*) *V*(*ϕ*)

 $\Box \phi = \lambda'(\phi) \mathscr{L}_{GB} + V'(\phi)$

Equation of motion for the scalar field has a two sources

Matter - mass and self interactions

Equation of motion for the scalar field has a two sources

Coupling to curvature (Approximately Riemann^{^2})

Fundamental fields can then be: 1. An effective description of dark matter (or dark energy)

2. An additional gravitational degree of freedom

$\Box \phi = \lambda'(\phi) \mathscr{L}_{GB} + V'(\phi)$

Fundamental fields can then be:

1. An effective description of dark matter

2. An additional gravitational degree of freedom

D Traykova, KC et. al. 2021, 2023 *Phys.Rev.D* 104 (2021) 10, 103014

$\square \phi = \lambda'(\phi) \mathcal{L}_{GB} \left(+ V'(\phi) \right)$

Fundamental fields can then be:

1. An effective description of dark matter

2. An additional gravitational degree of freedom

HO Silva et al 2021 Phys.Rev.Lett. 127 (2021) 3, 031101 M Elley et al 2022 Phys.Rev.D 106 (2022) 4, 044018

Can we probe the fundamental nature of dark matter?

Can we distinguish matter / modifications

to GR / waveform systematics?

Numerical relativity beyond GR + SM - how far can we go?

(Particle physicist) (Astrophysicist)

Does dark matter give signatures in strong gravity environments?

$\rho \sim 1$ GeV/cm³ or 1 M_o/pc³

Does dark matter give signatures in strong gravity environments?

Tiny effect at average galactic densities

(Numerical relativist)

However, potential for significant enhancements around BHs

Review by Brito et. al. (updated 2020) Superradiance: New Frontiers in Black Hole Physics

Circularization vs. Eccentrification in Intermediate Mass Ratio Inspirals inside Dark Matter Spikes

Becker et.al. 2021

Superradiance

Our ability to characterise DM:

• Depends on how the DM is enhanced around the BHs

• Is strongest for larger mass BHs for a given density

Equal mass binaries have been thought to be an unlikely candidate due to DM dispersal

Bertone et. al. 2020 Gravitational wave probes of dark matter: challenges and opportunities

However, wave like case seems to resist dispersal, and forms a central overdensity

energy density

Field

J. Bamber, J. Aurrekoetxea, KC, P. Ferreira 2023 Phys Rev D 107 2, 024035

Wave versus particle: the strong gravity perspective

Schive et al. 2014 Cosmic structure as the quantum interference of a coherent dark wave

See also Wave Dark Matter review by Lam Hui Ann.Rev.Astron.Astrophys. 59 (2021) 247-289

Wave Particle

Potentially significant dephasing

J. Aurrekoetxea, KC, J Bamber, P Ferreira 2023 arXiv 2311.18156 [gr-qc]

Surprisingly persistent effect at higher masses

dephasing density

J. Aurrekoetxea, KC, J Bamber, P Ferreira 2023 arXiv 2311.18156 [gr-qc]

Due to radial force of central overdensity and accretion, rather than drag forces

J. Aurrekoetxea, KC, J Bamber, P Ferreira 2023 arXiv 2311.18156 [gr-qc]

Highlights importance of matter dynamics, as already considered in particle / IMRI case

Kavanagh et. al. 2020, Coogan et. al. 2022 Detecting dark matter around black holes with gravitational waves: Effects of dark-matter dynamics on the gravitational waveform

In the wave-like case most studies assume BHs moving through a static density profile

Phys.Rev.D 104 (2021) 10, 103014

Next steps

- **• Understand the differences between the particle and wave cases**
- **• Test the robustness of backward models to this new source of dephasing**
- **• Study the impact of spin / unequal masses / self interactions**

Can we probe the fundamental nature of

dark matter?

Can we distinguish matter / modifications to GR / waveform systematics?

Numerical relativity beyond GR - how far can we go?

Would we have seen this already?

New curvature () scales probed with BH and NS measurements *RμνρσRμνρσ*

Would we have seen this already?

New curvature () scales probed with BH and NS measurements *RμνρσRμνρσ*

Interesting regimes identified in the decoupling limit

e.g. stealth dynamical scalarization for Type II

See also: M Okounkova 2020 Phys.Rev.D 102 (2020) 8, 084046

HO Silva et al 2021 Phys.Rev.Lett. 127 (2021) 3, 031101 M Elley et al 2022 Phys.Rev.D 106 (2022) 4, 044018

Well posed evolutions

Aron KovacsQueen Mary University of London

Well posed formulation of the full theory proposed in Modified Harmonic Gauge (in weak coupling limit)

ÁD Kovács and H Reall 2020 Phys.Rev.Lett. 124 (2020) 22, 221101

Equation of motion for the scalar field as before

Coupling to curvature (Approximately Riemann^{^2})

Equation of motion for the metric is "a hot mess"

$$
\rho^{\text{GB}} = \frac{\Omega M}{2} - M_{kl}\Omega^{kl},
$$
\n(A2a)
\n
$$
J_i^{\text{GB}} = \frac{\Omega_i M}{2} - M_{ij}\Omega^j - 2(\Omega^j_{[i}N_{j]} - \Omega^{jk}D_{[i}K_{j]k}),
$$
\n(A2b)
\n
$$
S_{ij}^{\text{GB}} = 2\gamma^k_{(i}\Omega_{j)}^{\text{TF},l}(\mathcal{L}_n A_{kl} + \frac{1}{\alpha}(D_k D_l \alpha)^{\text{TF}} + A_{km}A_{l}^m)
$$
\n
$$
-\Omega_{ij}^{\text{TF}}(\mathcal{L}_n K + \frac{1}{\alpha}D^k D_k \alpha - 3A_{kl}A^{kl} - \frac{K^2}{3})
$$
\n
$$
-\frac{\Omega}{3}(\mathcal{L}_n A_{ij} + \frac{1}{\alpha}(D_i D_j \alpha)^{\text{TF}} + A_{im}A_{j}^m)
$$
\n
$$
-\Omega_{nn}M_{ij} + N_{(i}\Omega_{j)} - 2\epsilon_{(i}^{kl}B_{j)k}\Omega_l
$$
\n
$$
+\gamma_{ij}[\rho^{rhs} - N^k\Omega_k + \frac{M}{6}(\Omega_{nn} + \frac{\Omega}{3}) - \frac{1}{3}\Omega^{\text{TF},kl}M_{kl}
$$
\n
$$
-\Omega^{\text{TF},kl}(\mathcal{L}_n A_{kl} + \frac{1}{\alpha}(D_k D_l \alpha)^{\text{TF}} + A_{km}A_{l}^m)
$$
\n
$$
+ \frac{2\Omega}{9}(\mathcal{L}_n K + \frac{D^k D_k \alpha}{\alpha} - \frac{3}{2}A_{kl}A^{kl} - \frac{K^2}{3})],
$$
\n(A2c)

 $with$

$$
M_{ij} = R_{ij} + \frac{1}{\chi} \left(\frac{2}{9} \tilde{\gamma}_{ij} K^2 + \frac{1}{3} K \tilde{A}_{ij} - \tilde{A}_{ik} \tilde{A}_{j}^k \right), \text{ (A3a)}
$$

\n
$$
N_i = \tilde{D}_j \tilde{A}_i^j - \frac{3}{2\chi} \tilde{A}_i^j \partial_j \chi - \frac{2}{3} \partial_i K, \text{ (A3b)}
$$

\n
$$
B_{ij} = \epsilon_{(i}^{kl} D_k A_{j)l}, \text{ (A3c)}
$$

\n
$$
\Omega_i = f' \left(\partial_i K_{\phi} - \tilde{A}^j_{i} \partial_j \phi - \frac{K}{3} \partial_i \phi \right) + f'' K_{\phi} \partial_i \phi, \text{ (A3d)}
$$

\n
$$
\Omega_{ij} = f' (D_i D_j \phi - K_{\phi} K_{ij}) + f'' (\partial_i \phi) \partial_j \phi, \text{ (A3e)}
$$

\n
$$
\Omega_{nn} = f'' K_{\phi}^2 - \frac{f'}{\alpha} D^k \alpha D_k \phi - f' \mathcal{L}_n K_{\phi}, \text{ (A3f)}
$$

Well posed evolutions

Fully non linear studies in GHC with excision

WE East, JL Ripley 2021 Phys.Rev.D 103 (2021) 4, 0440404 Phys.Rev.Lett. 127 (2021) 10, 101102

A Hegade et. al. 2023 Phys.Rev.D 107 (2023) 4, 044044

Well posed evolutions PN approximations insufficient

M Corman et. al. 2023 Phys.Rev.D 107 (2023) 2, 2

Llibert Areste Salo

Queen Mary University of London

Pau Figueras

Queen Mary University of London

Similar studies without explicit excision

L Areste Salo, KC, P Figueras PRL 129 (2022) 26, 261104

Revisiting stealth scalarisation with backreaction

Tensor GW

Scalar GW

Scalar field at horizon

BH spin

Deviation in Kretschmann scalar

Evolution code publicly available: GRFolres

code, which makes use of the Chombo library for adaptive mesh refinement.

Getting started

Detailed installation instructions and usage examples are available in our wiki, with the home page giving guidance on where to start.

Llibert Areste Salo

Queen Mary University of London

Generic initial conditions : code coming soon

Sam Brady

Queen Mary University of London

S. Brady, L Areste Salo, KC, P Figueras, Annamalai P.S. Phys.Rev.D 108 (2023) 10, 104022

Change in metric solution

Scalar field profile

Next steps

- **• Test the robustness of LIGO "beyond GR" pipelines to several "best case" models**
- **• Compare to DM waveforms**
- **• Study the impact of spin and unequal masses**

Can we probe the fundamental nature of dark matter?

Can we distinguish matter from modifications to GR?

Numerical relativity beyond GR + SM - how far can we go?

Numerical relativity

Works well for the late inspiral / merger of approximately equal mass objects

LIGO Collaboration 2016 Phys. Rev. Lett. 116, 061102 (2016)

Numerical relativity

Does not work well for long inspirals where length/time scales very different

Kavanagh et. al. 2020, Coogan et. al. 2022 Detecting dark matter around black holes with gravitational waves: Effects of dark-matter dynamics on the gravitational waveform

But relativistic / strong gravity effects may be important here

D Traykova, R Vicente, KC et. al. 2021, 2023 *Phys.Rev.D* 104 (2021) 10, 103014, arXiv [gr-qc] 2305.10492

Dynamical friction and gravitational Magnus effect - combining numerics and analytics

Dina Traykova

Max Planck Institute

D Traykova, R Vicente, KC et. al. 2021, 2023 *Phys.Rev.D* 104 (2021) 10, 103014, arXiv [gr-qc] 2305.10492

Rodrigo Vicente

To appear (tomorrow!) To appear (tomorrow!)

Dynamical friction and gravitational Magnus effect - combining numerics and analytics

Relativistic aerodynamics of spinning black holes

Conor Dyson $\mathbb{D}^{1,*}$ Jaime Redondo-Yuste $\mathbb{D}^{1,+}$ Maarten van de Meent $\mathbb{D}^{1,2}$ and Vitor Cardoso $\mathbb{D}^{1,3,4}$

Gravitational Magnus effect from scalar dark matter

Zipeng Wang,^{1,} Thomas Helfer,^{2,} Dina Traykova,^{3,} Katy Clough,^{4,} and Emanuele Berti^{1,}

Summary

Can we probe the fundamental nature of dark matter?

Can we distinguish matter / modifications to GR / waveform systematics?

Numerical relativity beyond GR + SM - how far can we go?

Now in a position to answer this for specific models, which should be informative for LIGO modelling

Possible in principle to probe wave or particle nature, some reasons to be optimistic for LISA data

Probably not far enough on our own, but can usefully combine analytic and numerical studies

