Recap on Simulation flow and Data-MC comparison

Digitizzation flow

- For each hit of the track:
 - A mean number of ionization electrons are produced: $\bar{N}_{e}^{ion} = \Delta E/W$ (W =46.2 eV/pair in He/CF4 60/40)
 - The actual number N_e^{ion} of ionization electrons is obtained from a Poisson distribution with mean = \bar{N}_e^{ion}
 - Ionization electrons are partially absorbed in the gas: $N_e = N_e^{ion} e^{-\frac{z}{\lambda}}$ where z is the distance from the GEM stack

Digitizzation flow

- GEM gain fluctuation and diffusion
 - Gain fluctuations in the first foil only are relevant:
 - For each ionization electron $N_e^{G1,k}$ multiplication electrons in the first GEM $(k=1, N_e^{ion})$ are extracted using an exponential distribution with mean = G^{G1} $(G^{G1}$ is the gain of the first GEM foil)
 - Total number of multiplication electron for the first foil: $N_e^{G1} = \sum_k N_e^{G1,k} \cdot \epsilon_{extr}^{G1}$ (ϵ_{extr}^{G1} : extraction efficiency for the first GEM)
 - The total number of multiplication electrons computed considering the gain of other GEM foils and the extraction efficiency of the second foil: $N_e^{tot} = N_e^{G1} \cdot (G^{G2} \cdot \epsilon_{extr}^{G2})$
- Saturation:
 - Electrons from GI/2 diffused in 3D voxels: $\sigma_T = \sqrt{\sigma_{T_0}^2 + \sigma_{D,T}^2}$ $\sigma_L = \sqrt{\sigma_{L_0}^2 + \sigma_{D,L}^2}$

The number n of electrons in each voxel is multiplied by a gain $G^3 = A \frac{g}{1 + \frac{n}{r}(g-1)}$

(where g is the non-saturated gain and A is an overall free parameter)

• Finally the total number of electron is the sum of the electrons in all the voxels along the drift direction

Digitizzation flow

• Photon collection:

- The mean total number of photons per pixel is obtained using 0.07 γ/e : $\bar{N}_{\gamma}^{tot} = N_e^{tot} \cdot 0.07 \ \gamma/e$
- The number of total photons N_{γ}^{tot} extracted from a Poissonian distribution with mean value $ar{N}_{\gamma}^{tot}$
- The number of photons hitting the sensor depends on the solid angle ratio $N_{\gamma} = N_{\gamma}^{tot} \cdot \Omega$ where

 $\Omega = \frac{1}{(4 \cdot (\delta + 1)a)}; \text{ where } \delta = \frac{image \ size}{sensor \ size} \text{ and } a=0.95 \text{ aperture}$

• 2D histogram filled with the numbers of photons reaching given pixel

• Vignetting effect:

• Each pixel of the track is multiplied by the value of the vignetting map (<1)

Consistent? Yes, in data, we have the GEM + lens effect, but we correct only for lens

https://arxiv.org/pdf/2007.00608.pdf

• Extraction efficiency from

measurement https://cds.cern.ch/record/2313231/files/CERN-THESIS-2018-027.pdf

• Saturation par from optimization

Digitizzation flow

- Pedestal addition:
 - The tracks produced are then superimposed to real sCMOS pedestal to obtain the picture

Energy response and resolution on data

Events / (1133.33 counts)

10³

10²

Study of linearity and energy resolution performed overground with low energy electron recoils from X-Rays

Data-MC comparison

- Track as a spot with few light (small or no saturation)
- Track as a spot with increasing in light →saturation→LY decrease (negligible tail)
- Track starts to have a consistent non saturated tail, dominating the light→saturation less effective on total light→LY decrease

Track shape variables comparison

Simulation

+ Data

•Nice agreement in the distributions, some fine tuning of the parameters needed

Bkg crosscheck

•As a crosscheck the pure bkg distribution have been compared with no source run

Cosmic run

+ Pure bkg extracted distrib.

Open questions (also for the paper)

- Would it be better to use the map from run 5791-5800? Taken just before the X-Ray
- Track shape variables could change
- We could test it

Does the energy resolution explanation convince you?

Backup slides

Only 1 gaussian?

Difference of 0.5% in energy resolution not even appreciable in data

sPlots: a statistical tool to unfold data distributions

- Dataset containing two variables (consisting of signal S and background B)
- By fitting one distribution (with S + B model)

S weight and B weight assigned to each event proportional to probability of being S and B

• The pure S and pure B distribution can be unfolded by weighting each event by the weight of being S and B

Weighted signal events

60

40

20

5.27

 Since the weight can be positive or negative plotting the pure signal distribution the negative weight cancels the background part

