Study of the e⁺e⁻ $\rightarrow \pi^+\pi^-\psi(2S)$ reaction at $\sqrt{s} > 4.6$ GeV and search for the charged Z_c(4430) exotic state

Marco Scodeggio

mscodegg@fe.infn.it

Preamble

What and Why

The $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ reaction offers the possibility to probe the **XYZ sector**, via the investigation of 2 exotic states

The **Y(4660)** via the e⁺e⁻ $\rightarrow [\pi^{+}\pi^{-}/f_{0}(980)]\psi(2S)$

Y(4660), observed by BaBar^[1], BELLE^[2], and BESIII^[3] hypothesised to be a **baryonium**^[4], a **molecule**^[5], or a **tetraquark**^[6]

Study of the exotic $Z_c(4430)$ state through the $e^+e^- \rightarrow \pi^+Z_c(4430) \rightarrow \pi^+\pi^-\psi(2S)$

Z⁺_c(4430) was **observed** and studied in the *B*-decays in the $\pi \psi(2S)$ invariant mass by BELLE^[7] (and by LHCb^[8])

Motivation

In Refs. [9, 10], the $Z_c(3900)^{\pm}$ state is seen both in $\pi\psi(2S)$ and $\pi J/\psi$, and in relation with the Y(4260) resonance

Ref. [10] finds R = $\sigma(\pi^{\pm}Z_{c}(3900)^{+} \rightarrow \pi^{+}\pi^{-}J/\psi)/\sigma(\pi^{+}\pi^{-}J/\psi) \sim 22\%$, neglecting the the J/ ψ to ψ (2S) PHSP change, ~100 events are expected around Y (4660)

^[1] Phys. Rev. D **89**, 111103 ^[2] Phys. Rev. D **91**, 112007 ^[3] Phys. Rev. D **104**, 052012 ^[4] J. Phys. G **35**, 075008 (2008) ^[5] Phys. Lett. B **665**, 26-29 ^[6] Phys. Rev. D **89**, 114010 ^[7] Phys. Rev. D **88**, 074026 ^[8] Phys. Rev. Lett. **112**, 222002 ^[9] Phys. Rev. D **96**, 032004 ^[10] Phys. Rev. Lett **110**, 252001

BESIII Italia - November 2023

Preamble

What and Why

The $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ reaction offers the possibility to probe the **XYZ sector**, via the investigation of 2 exotic states

The **Y(4660)** via the e⁺e⁻ $\rightarrow [\pi^{+}\pi^{-}/f_{0}(980)]\psi(2S)$

Y(4660), observed by BaBar^[1], BELLE^[2], and BESIII^[3] hypothesised to be a **baryonium**^[4], a **molecule**^[5], or a **tetraquark**^[6]

Study of the exotic $Z_c(4430)$ state through the $e^+e^- \rightarrow \pi^+Z_c(4430) \rightarrow \pi^+\pi^-\psi(2S)$

Z⁺_c(4430) was **observed** and studied in the *B*-decays in the $\pi \psi(2S)$ invariant mass by BELLE^[7] (and by LHCb^[8])

How

The study will make use of the 12 datasets @√s > 4.6 GeV

No Z_c(4430) **signal** was observed in the **mono-energetic datasets**^[11], so the main idea is to merge all the data $@\sqrt{s} > 4.6 \text{ GeV}$ to use the whole statistics

^[2] Phys. Rev. D **91**, 112007 ^[3] Phys. Rev. D **104**, 052012 ^[4] J. Phys. G **35**, 075008 (2008) ^[5] Phys. Lett. B **665**, 26-29 ^[6] Phys. Rev. D **89**, 114010 ^[7] Phys. Rev. D **88**, 074026 ^[8] Phys. Rev. Lett. **112**, 222002 ^[9] Phys. Rev. D **96**, 032004 ^[10] Phys. Rev. Lett **110**, 252001 ^[11] Phys. Rev. D **104**, 052012

BESIII Italia - November 2023

Preamble

Datasets

Dataset	E_{CoM} (MeV)	$\mathcal{L}~(\mathrm{pb}^{-1})$	Boss Version
4610	$4611.86{\pm}0.12{\pm}0.30$	$103.65{\pm}0.05{\pm}0.55$	
4620	$4628.00{\pm}0.06{\pm}0.32$	$521.53 {\pm} 0.11 {\pm} 2.76$	
4640	$4640.91{\pm}0.06{\pm}0.38$	$551.65{\pm}0.12{\pm}2.92$	7.0.6
4660	$4661.24{\pm}0.06{\pm}0.29$	$529.43 {\pm} 0.12 {\pm} 2.81$	
4680	$4681.92{\pm}0.08{\pm}0.29$	$1667.39{\pm}0.21{\pm}8.84$	
4700	$4698.82{\pm}0.10{\pm}0.36$	$535.54{\pm}0.12{\pm}2.84$	
4740	$4739.70 {\pm} 0.20 {\pm} 0.30$	$163.87 {\pm} 0.07 {\pm} 0.87$	
4750	$4750.05{\pm}0.12{\pm}0.29$	$366.55{\pm}0.10{\pm}1.94$	
4780	$4780.54{\pm}0.12{\pm}0.30$	$511.47 {\pm} 0.12 {\pm} 2.71$	7.0.7
4840	$4843.07{\pm}0.20{\pm}0.31$	$525.16{\pm}0.12{\pm}2.78$	
4914	$4918.02{\pm}0.34{\pm}0.34$	$207.82{\pm}0.08{\pm}1.10$	
4946	$4950.93{\pm}0.36{\pm}0.38$	$159.28{\pm}0.07{\pm}0.84$	

How

The study will make use of the 12 datasets @√s > 4.6 GeV

No Z_c(4430) **signal** was observed in the **mono-energetic datasets**^[11], so the main idea is to merge all the data $@\sqrt{s} > 4.6 \text{ GeV}$ to use the whole statistics

^[2] Phys. Rev. D **91**, 112007 ^[3] Phys. Rev. D **104**, 052012 ^[4] J. Phys. G **35**, 075008 (2008) ^[5] Phys. Lett. B **665**, 26-29 ^[6] Phys. Rev. D **89**, 114010 ^[7] Phys. Rev. D **88**, 074026 ^[8] Phys. Rev. Lett. **112**, 222002 ^[9] Phys. Rev. D **96**, 032004 ^[10] Phys. Rev. Lett **110**, 252001 ^[11] Phys. Rev. D **104**, 052012

BESIII Italia - November 2023

Event Selection

Event Selection Topology-dependent Kinematic Fits

6-constraint (6C) kinematic fit

1C on the $M_{J/\psi}$ 1C on the $M_{\psi(2S)}$ 4C on the $p_{Tot} = (\sqrt{s^* sin(0.011)}, 0, 0, M_{s})$

The $\pi\pi$ couples are selected via the best χ^2

$2\ell 3\pi$

2-constraint (2C) kinematic fit

1C on the $M_{J/\psi}$ 1C on the $M_{\psi(2S)}$ $[p_{Tot} = (\sqrt{s*sin(0.011)}, 0, 0, M_{s})]$

 $\pi\pi$ and $\pi\pi_{Miss}$ couples are selected by minimising $M^{Reco}_{\psi(2S)}$ - $M^{PDG}_{\psi(2S)}$

> $^{*}\pi_{Miss}$ either from prompt production or from $\psi(2S)$ decay, but not from $Z_c(4430)$

Background Rejection

Index (i)	Decay tree	N_{Evts}	\sum_{i}^{Tot}
1	$e^+e^- \rightarrow \pi^+\pi^-\psi', \psi' \rightarrow \pi^+\pi^- J/\psi, J/\psi \rightarrow \mu^+\mu^-$	3389	33
2	$e^+e^- ightarrow \pi^+\pi^-\psi', \psi' ightarrow \pi^+\pi^-J/\psi, J/\psi ightarrow e^+e^-$	2983	63
3	$e^+e^- \rightarrow \pi^+\pi^-\psi'\gamma^I, \psi' \rightarrow \pi^+\pi^-J/\psi, J/\psi \rightarrow \mu^+\mu^-$	2875	92
4	$e^+e^- ightarrow \pi^+\pi^-\psi', \psi' ightarrow \pi^+\pi^-J/\psi, J/\psi ightarrow \mu^+\mu^-$	2528	11'
5	$e^+e^- \rightarrow \pi^+\pi^-\psi'\gamma^I, \psi' \rightarrow \pi^+\pi^-J/\psi, J/\psi \rightarrow e^+e^-$	2499	142
6	$e^+e^- \rightarrow \pi^+\pi^-\psi', \psi' \rightarrow \pi^+\pi^-J/\psi, J/\psi \rightarrow e^+e^-$	2313	16
7	$e^+e^- ightarrow \pi^+\pi^-\psi', \psi' ightarrow \pi^+\pi^- J/\psi, J/\psi ightarrow \mu^+\mu^-$	1346	179
8	$e^+e^- ightarrow \pi^+\pi^-\psi', \psi' ightarrow \pi^+\pi^-J/\psi, J/\psi ightarrow e^+e^-$	1249	19
9	$e^+e^- ightarrow \pi^+\pi^-\psi', \psi' ightarrow \pi^+\pi^- J/\psi, J/\psi ightarrow \mu^+\mu^-$	1037	202
10	$e^+e^- \rightarrow \pi^+\pi^-\psi', \psi' \rightarrow \pi^+\pi^-J/\psi, J/\psi \rightarrow e^+e^-$	907	21
11	$e^+e^- \rightarrow \pi^+\pi^-\psi', \psi' \rightarrow \pi^+\pi^- J/\psi, J/\psi \rightarrow \mu^+\mu^-$	307	214
12	$e^+e^- \rightarrow \pi^+\pi^-\psi', \psi' \rightarrow \pi^+\pi^-J/\psi, J/\psi \rightarrow e^+e^-$	289	21'
13	$e^+e^- ightarrow \pi^+\pi^-\psi', \psi' ightarrow \pi^+\pi^- J/\psi, J/\psi ightarrow \mu^+\mu^-$	276	219
14	$e^+e^- \rightarrow \pi^+\pi^-\psi', \psi' \rightarrow \pi^+\pi^-J/\psi, J/\psi \rightarrow e^+e^-$	245	222
15	$e^+e^- \rightarrow \pi^+\pi^-\psi', \psi' \rightarrow \pi^+\pi^- J/\psi, J/\psi \rightarrow \mu^+\mu^-$	240	224
16	$e^+e^- ightarrow \pi^+\pi^-\psi', \psi' ightarrow \pi^+\pi^-J/\psi, J/\psi ightarrow e^+e^-$	197	220
17	$e^+e^- ightarrow \pi^+\pi^-\psi', \psi' ightarrow \pi^+\pi^- J/\psi, J/\psi ightarrow \mu^+\mu^-$	188	228
18	$e^+e^- ightarrow \pi^+\pi^-\psi', \psi' ightarrow \pi^+\pi^- J/\psi, J/\psi ightarrow \mu^+\mu^-$	161	230
19	$e^+e^- \rightarrow \pi^+\pi^-\psi', \psi' \rightarrow \pi^+\pi^-J/\psi, J/\psi \rightarrow e^+e^-$	156	23
20	$e^+e^- \rightarrow \pi^+\pi^+\pi^-\pi^-\pi^-\pi^-$	144	23
21	$e^+e^- \rightarrow \pi^+\pi^-\psi', \psi' \rightarrow \pi^+\pi^-J/\psi, J/\psi \rightarrow \mu^+\mu^-$	132	234
22	$e^+e^- \rightarrow \pi^+\pi^-\psi', \psi' \rightarrow \pi^+\pi^-J/\psi, J/\psi \rightarrow e^+e^-$	109	23
23	$e^+e^- ightarrow \pi^+\pi^-\psi', \psi' ightarrow \pi^+\pi^- J/\psi, J/\psi ightarrow \mu^+\mu^-$	104	23
24	$e^+e^- \rightarrow \pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\gamma^I$	103	23'
25	$e^+e^- \rightarrow \pi^+\pi^-\psi', \psi' \rightarrow \pi^+\pi^-J/\psi, J/\psi \rightarrow \mu^+\mu^-$	96	238
26	•••		

From 1.3 billion inclusive MC events, 28136 **survive**, with a survival rate of ~O(10ppm)

Virtually only the hadron component is surviving after the selection criteria

Out of 28136 total **IncMC events**, the events are from

- > 90% Non-resonant $\pi\pi\psi(2S)$ signal
- < 10% Multi- π states

After Selection Comparison Inclusive MC / Signal MC [no Zc] / Data

Extraction of the $\sigma(e^+e^- \longrightarrow \pi^+\pi^-\psi(2S))$

Study of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ at $\sqrt{s} > 4.6$ GeV and search for the $Z_c(4430)^{\pm}$ - Marco Scodeggio

Events/5.00 MeV/*c*² 16 14 BESIII NeV/C Data @√s = 4612 MeV I Data @√s = 4640 MeV Fit result - --- Signal Signal Background @√s = 4.610 GeV Background 12 10 8 6 Events/5.00 80 60 40 20 3.64 3.66 3.72 3.74 3.62 3.68 $M(\pi^+\pi^-J/\psi)$ (GeV/c²) MeV/C₂ 250 Events/5.00 MeV/c² BESIII 30 ▲ Data @√s = 4680 MeV I Data @√s = 4740 MeV 25 signa @√s = 4.680 GeV ---- Backgroun Backgroun 00 20ŀ Events/5.0 15E 50H **0**<u>-</u> 3.74 (GeV/*c*²) 3.64 3.66 3.7 3.72 3.66 3.62 3.68 М $M(\pi^+\pi^-J/\psi)$ (GeV/c²) vents/5.00 MeV/c² BESIII MeV/c 50F ▲ Data @√s = 4780 MeV Data @ s = 4914 MeV Fit result Signal ---- Signal @√s = 4.780 GeV ---- Background Background vents/5.00 30 20 Ш Ш 10F 3.72 3.74 M.... (GeV/c²) 3.64 3.66 3.66 3.68 3.64

 $M(\pi^+\pi^-J/\psi)$ (GeV/c²)

Study of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ at $\sqrt{s} > 4.6$ GeV and search for the $Z_c(4430)^{\pm}$ - Marco Scodeggio

Data Fits

For **each** \sqrt{s} , the $\pi\pi\psi(2S)$ contribution is extracted by fitting the $M(\pi\pi J/\psi)$ invariant spectrum

The **signal** is modelled with a **sum of Gaussian and Crystal Ball**

A **polynomial** function is used to describe the **background**

11

The Energy and Luminosity Update on BEPCII

Urgency from HEP

Future Physics Program of BESIII, Chin. Phys. C 44, 040001 (202)

Table 7.1: List of data samples collected by BESIII/BEPCII up to 2019, and the proposed samples for the remainder of the physics program. The most right column shows the number of required data taking days in current $(T_{\rm C})$ or upgraded $(T_{\rm U})$ machine. The machine upgrades include top-up implementation and beam current increase.

Energy	Physics motivations	Current data	Expected final data	$T_{\rm C}$ / $T_{\rm U}$
1.8 - 2.0 GeV	R values	N/A	0.1 fb^{-1}	60/50 days
	Nucleon cross-sections		(fine scan)	
2.0 - 3.1 GeV	R values	Fine scan	Complete scan	250/180 days
	Cross-sections	(20 energy points)	(additional points)	
J/ψ peak	Light hadron & Glueball	3.2 fb^{-1}	3.2 fb^{-1}	N/A
	J/ψ decays	(10 billion)	(10 billion)	
$\psi(3686)$ peak	Light hadron & Glueball	0.67 fb^{-1}	4.5 fb^{-1}	150/90 days
	Charmonium decays	(0.45 billion)	(3.0 billion)	
$\psi(3770)$ peak	D^0/D^{\pm} decays	$2.9 { m fb}^{-1}$	20.0 fb^{-1}	610/360 days
3.8 - 4.6 GeV	R values	Fine scan	No requirement	N/A
	XYZ/Open charm	(105 energy points)		
4.180 GeV	D_s decay	3.2 fb^{-1}	$6 {\rm fb}^{-1}$	140/50 days
	XYZ/Open charm			
	AYZ/Open charm	- 1		
4.0 - 4.6 GeV	Higher charmonia	16.0 fb^{-1}	30 fb^{-1}	770/310 days
	cross-sections	at different \sqrt{s}	at different \sqrt{s}	
46-49 GeV	Charmed baryon/XVZ	0.56 fb^{-1}	15 fb^{-1}	1490/600 days
	cross-sections	at 4.6 GeV	at different \sqrt{s}	
$4.74 { m GeV}$	$\Sigma_c^+ \bar{\Lambda}_c^-$ cross-section	N/A	$1.0 {\rm ~fb^{-1}}$	100/40 days
$4.91 \mathrm{GeV}$	$\Sigma_c \bar{\Sigma}_c$ cross-section	N/A	$1.0 {\rm ~fb^{-1}}$	120/50 days
$4.95~{\rm GeV}$	Ξ_c decays	N/A	$1.0 {\rm ~fb^{-1}}$	130/50 days

The Progress on the BEPCII Upgrade, LIU Y. D.

Extraction of the $\sigma(e^+e^- -> \pi^+\pi^-\psi(2S))$ $\pi\pi\psi(2S)$ cross-section

$$\sigma_{\mathrm{Born}} = rac{N_{\mathrm{Obs}}}{\mathcal{L}(1+\delta)rac{1}{|1-\Pi^2|}\epsilon\mathcal{B}}$$

The observed **cross-section** is **compatible** with the previous result of **Ref. [11]**

Results from BELLE and BaBar are reported too, further confirming the compatibility of this thesis' results with the published literature

[11] Phys. Rev. D **104**, 052012

Study of the invariant masses profiles Inclusive MC / Non-resonant MC / Data

Study of the Intermediate States

Study of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ at $\sqrt{s} > 4.6$ GeV and search for the $Z_c(4430)^{\pm}$ - Marco Scodeggio

Study of the Intermediate States

Extraction of the $\sigma(f_0(980) \psi(2S))$ $f_0(980)$ contribution

For **each** \sqrt{s} , the **f**₀(980) contribution is extracted by fitting the M($\pi\pi$) and M($\pi\psi$ (2S)) invariant distributions

The signal is a **Flatté smeared by a Gauss(0, σ)** multiplied by a threshold function

$$BW(s) = \frac{1}{s - M^2 + i(g_1 \rho_{\pi\pi}(s) + g_2 \rho_{KK}(s))}$$

The $f_0(500)$ contribution is modelled with

$$BW(s) = \frac{1}{s - M_0^2 + i\sqrt{s}\Gamma}$$

with an energy-dependent width à la E791...

$$\Gamma(s) = \sqrt{1 - \frac{4m_{\pi^{\pm}}^2}{s}\Gamma}$$

Extraction of the $\sigma(f_0(980) \psi(2S))$ f₀(980) contribution

For **each \sqrt{s}**, the **f₀(980)** contribution is extracted by ______fitting the M($\pi\pi$) and M($\pi\psi$ (2S)) invariant distributions

The signal is a **MS shape smeared by a Gauss(0, \sigma)**

The **f**₀(500) and **PHSP** contributions are modelled too by a **MS shape**

Extraction of the $\sigma(f_0(980) \psi(2S))$ $f_0(980)$ contribution

Study of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ at $\sqrt{s} > 4.6$ GeV and search for the $Z_c(4430)^{\pm}$ - Marco Scodeggio

No particular structures

can be recognised

Within the statistical uncertainty, $\sigma_{Born} \mathbf{X} \mathbf{B}$ is **flat** wrt $\sigma_{Born}(\pi \pi \psi(2S))$

The hypothesis of the **Y(4660)** being an **f₀(980) - ψ(2S) molecule**^[12] cannot be confirmed

[12] Phys. Lett. B 665, 26-29 (2008)

Systematic Uncertainties on the Cross-sections

- Luminosity: 1% as from Ref. [13]
- Vacuum polarisation: 0.5% from Ref. [14]
- ISR radiative corrections: Difference in the $(1 + \delta)$ between the last two iterations
- Tracking efficiency: 1.0% per track^[10], 2.0% (leptons) and 3.5% (average of 2 pion-topologies) • Intermediate states branching fractions: from PDG
- Lepton separation, trigger efficiency, and FSR: 1.0% from Ref. [11]

[10] Phys. Rev. Lett **110**, 252001 [11] Phys. Rev. D **104**, 052012 [13] Chin. Phys. C 46, 11, 113003 [14] Sov. J. Nucl. Phys **41**, 466-472

21

Final Born Cross-sections Results

E_{CoM} (MeV)	$\sigma_{\rm Born}^{e^+e^- \to \pi^+\pi^-\psi(2S)}$	$\sigma_{\rm Born}^{e^+e^- \to f_0(980)\psi(2S)} \times \mathcal{B}(f_0(980) \to \pi^+\pi^-)$
4.612	$17.51 \pm 3.37 \pm 0.68$	$2.21 \pm 2.78 \pm 0.09$
4.626	$20.40^{+1.83}_{-1.70}\pm0.80$	$15.07 \pm 1.41 \pm 0.58$
4.640	$25.28^{+1.99}_{-1.87}\pm0.99$	$19.47 \pm 1.38 \pm 0.75$
4.660	$25.81 \pm 1.92 \pm 1.01$	$14.96 \pm 1.25 \pm 0.58$
4.680	$20.39^{+0.95}_{-0.91}\pm0.80$	$13.53 \pm 0.60 \pm 0.53$
4.700	$21.67^{+1.75}_{-1.75}\pm0.85$	$15.28 \pm 1.15 \pm 0.59$
4.740	$14.42^{+2.73}_{-2.34} \pm 0.57$	$13.90\pm1.63\pm0.54$
4.750	$13.57^{+1.59}_{-1.41} \pm 0.54$	$11.07 \pm 0.88 \pm 0.43$
4.780	$10.50^{+1.25}_{-1.13} \pm 0.42$	$5.19\pm0.84\pm0.21$
4.840	$8.48^{+1.16}_{-1.03}\pm0.34$	$5.54 \pm 1.03 \pm 0.22$
4.914	$5.89^{+1.55}_{-1.24} \pm 0.24$	$0.00\pm0.65\pm0.00$
4.946	$10.01^{+2.61}_{-2.18}\pm0.39$	$0.00\pm2.59\pm0.00$

Study of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ at $\sqrt{s} > 4.6$ GeV and search for the $Z_c(4430)^{\pm}$ - Marco Scodeggio

Signal MC Shape Extraction

٧s [Ge\/]	W _{Normalised} =
	(σ x ∠)/(σ x ∠) 4.680
4.612	0.05
4.626	0.31
4.640	0.41
4.660	0.40
4.680	1.00
4.700	0.34
4.740	0.07
4.750	0.15
4.780	0.16
4.840	0.13
4.914	0.04
4.946	0.05

Z_c Signal MC sample 300k events

MC Signal Shape

In accordance with Ref.[11] and the Dalitz plots only f_0 contributions are considered

Yield is 0 \pm 4, hence no evident Z_c(4430) contribution is present

Bayesian U.L. @90% C.L. is set

 $R = \frac{\sigma_{\rm Born}(e^+e^- \to \pi^{\pm}Z_c(4430)^{\mp} \to \pi^+\pi^-\psi(2S))}{\sigma_{\rm Born}(e^+e^- \to \pi^+\pi^-\psi(2S))} < 1.1 \%$

Production Ratio Estimation

When **compared with the paper**^[10] used as motivation for this analysis, the $Z_{c}(4430)^{\pm}$ state production in the $e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\psi(2S)$ channel is suppressed by at least 20 times with respect to that of the $Z_c(3900)^{\pm}$ hadron in $e^+e^- \rightarrow \pi^+\pi^- J/\psi$

Drawing from the f₀(980) study, the the **M**(ππ) and **M**(πψ(2S)) invariant distributions are **fitted without Z_c(4430)** contribution

The two f₀ states are described by analytical shapes, with the f₀(980) being a weighted sum of 12 Flattés

All the other shapes are taken from MC simulation

Adding $Z_c(4430)$ contribution does not improve the fit significantly

N(f₀(980))

 $N(f_0(500))$

N(PHSP)

Study of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ at $\sqrt{s} > 4.6$ GeV and search for the $Z_c(4430)^{\pm}$ - Marco Scodeggio

Value

 988 ± 29

 384 ± 29

 248 ± 41

Conclusions and Outlook

- ^{*} The **results found** in this analysis **confirm Ref.[11]** and
- clearly **highlight** the **f**₀ contributions to the $\pi^+\pi^-\psi(2S)$ cross-section
- $^{\circ}$ A search for the Z_c(4430) exotic state @vs < 4.7 GeV is performed via the $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ reaction, but **no evident Z_c(4430)** is found
 - ^{*} The e⁺e⁻ $\rightarrow \pi^+\pi^-\psi(2S)$ reaction is studied @vs > 4.7 GeV and
- two different generators (ISR and VP corrections) are tested and found to be comparable
 - The **Z_c(4430)** 2D-fit with all the datasets does not show any exotic contribution
- MEMO is almost ready, with the caveat of the $Z_c(4430)$ fit to be finalised (i.e., Upper Limit)

Thanks for your attention!

DECCards

Z_cResonant

 $Z_{c}(4430)$ $M_{Zc} = 4478^{+15}_{-18} \text{ MeV}$ $\sigma_{Zc} = 181 \pm 31 \text{ MeV}$

BOSS Release 7.0.x

non-Resonant

Particle vpho 4.6812 0.0

Decay vpho 1.0000 ConExc -2 100443 211 -211; Enddecay

```
Decay vhdr
 1.0000 psi(2S) pi+ pi- VVPIPI;
Enddecay
```

```
Decay psi(2S)
1.000 J/psi pi+ pi- JPIPI;
Enddecay
```

```
Decay J/psi
 0.5000 e+ e- PHOTOS VLL;
  0.5000 mu+ mu- PHOTOS VLL;
Enddecay
```

```
End
```


Goodness Cuts

Vertex: R_{xy} < 1cm & R_z < 10 cm

Polar angle: $|\cos \theta| < 0.93$

Signal MC Studies

0.6

Goodness Cuts

Vertex: R_{xy} < 1cm & R_z < 10 cm

Polar angle: $|\cos \theta| < 0.93$

Signal MC Studies

Goodness Cuts

Vertex: R_{xy} < 1cm & R_z < 10 cm

Polar angle: $|\cos \theta| < 0.93$

Signal MC Studies E/p Selection

Signal MC Studies **Charged Particles Momentum Comparison**

S(Sig_{MC} Z_c)/B(Inc_{MC}) optimisation $\forall \sqrt{s}$ and using only MC datasets

√s	p _{ch} [GeV/c]	√s	p _{ch} [GeV/c]
4.612	0.71	4.740	0.71
4.626	0.73	4.750	0.82
4.640	0.74	4.780	0.85
4.660	0.75	4.840	0.86
4.680	0.77	4.914	0.96
4.700	0.79	4.946	0.97

Event Selection Charged Particles Momentum Optimisation

Event Selection Signal Windows Definition

BESIII Italia - November 2023

√s [GeV]	WNormalised = (σ x ∠)/(σ x ∠) 4.680	Resolution [MeV/ <i>c</i> ²]
4.612	0.04	
4.626	0.28	2.33
4.640	0.32	0.77
4.660	0.35	0.69
4.680	1.00	0.67
4.700	0.27	0.74

Signal MC Shape Extraction

Z_c Signal MC sample 300k events

MC Signal Shape

Extraction of the $\sigma(e^+e^- \rightarrow \pi^+\pi^-\psi(2S))$ $\pi\pi\psi(2S)$ cross-section

$$\sigma_{\mathrm{Born}} = rac{N_{\mathrm{Obs}}}{\mathcal{L}(1+\delta)rac{1}{|1-\Pi^2|}\epsilon\mathcal{B}}$$

The observed **cross-section** is **compatible** with the previous result of **Ref. [11]**

Results from BELLE and BaBar are reported too, further confirming the compatibility of this thesis' results with the published literature

[11] Phys. Rev. D **104**, 052012

E_{CoM} (MeV) $\mathbf{N}_{e^+e^- \rightarrow}$ 4.6122 4.626 15204.640 2024.660 4.680 51174.700 3^{\prime} 4.74074.75084 4.780 4.840 6 4.9141 24.946

$\sigma(e^+e^- - > \pi^+\pi^-\psi(2S)) vs \sigma(f_0(980) \psi(2S))$ **Number of Events**

$\pi^+\pi^-\psi(2S)$	$\mathbf{N}_{e^+e^- \to f_0(980)\psi(2S)}$
6 ± 5	$16{\pm}4$
6^{+14}_{-13}	$107{\pm}10$
3^{+16}_{-15}	$155{\pm}11$
$2{\pm}15$	$120{\pm}10$
8^{+24}_{-23}	$337{\pm}15$
$3{\pm}14$	$120{\pm}9$
7^{+7}_{-6}	$34{\pm}4$
7^{+9}_{-8}	$63{\pm}5$
4^{+10}_{-9}	$43{\pm}7$
6^{+9}_{-8}	$43{\pm}8$
9^{+5}_{-4}	$0{\pm}2$
3^{+6}_{-5}	$0{\pm}6$

41

Systematic Uncertainties on the Cross-sections

$\pi\pi\psi(2S)$ cross-section

$\sqrt{s} \; [\text{GeV}]$	Lumi.	Vacuum Polarization	ISR Corrections	Tracking Efficiency	Other Sources	Final States \mathcal{B}	Total
4.612	0.18	0.09	0.00	0.61	0.18	0.16	0.68
4.626	0.20	0.10	0.00	0.71	0.20	0.18	0.80
4.640	0.25	0.13	0.00	0.88	0.25	0.22	0.99
4.660	0.26	0.13	0.00	0.90	0.26	0.23	1.01
4.680	0.20	0.10	0.02	0.71	0.20	0.19	0.80
4.700	0.22	0.11	0.07	0.76	0.22	0.20	0.85
4.740	0.14	0.07	0.03	0.50	0.14	0.15	0.57
4.750	0.14	0.07	0.01	0.47	0.14	0.14	0.54
4.780	0.10	0.05	0.01	0.37	0.10	0.12	0.42
4.840	0.08	0.04	0.01	0.30	0.08	0.10	0.34
4.914	0.06	0.03	0.01	0.21	0.06	0.07	0.24
4.946	0.10	0.05	0.00	0.35	0.10	0.10	0.39

Systematic Uncertainties on the Cross-sections

$f_0(980) \psi(2S)$ cross-section

$\sqrt{s} \; [\text{GeV}]$	Lumi.	Vacuum Polarization	ISR Corrections	Tracking Efficiency	Other Sources	$\begin{array}{c} {\rm Final \ States} \\ {\cal B} \end{array}$	Total
4.612	0.02	0.01	0.00	0.08	0.02	0.02	0.09
4.626	0.15	0.08	0.00	0.53	0.15	0.10	0.58
4.640	0.19	0.10	0.00	0.68	0.19	0.14	0.75
4.660	0.15	0.07	0.01	0.52	0.15	0.12	0.58
4.680	0.14	0.07	0.01	0.47	0.14	0.11	0.53
4.700	0.15	0.08	0.00	0.53	0.15	0.12	0.59
4.740	0.14	0.07	0.00	0.49	0.14	0.12	0.54
4.750	0.11	0.06	0.02	0.39	0.11	0.10	0.43
4.780	0.05	0.03	0.00	0.18	0.05	0.06	0.21
4.840	0.06	0.03	0.00	0.19	0.06	0.05	0.22

Study of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ at $\sqrt{s} > 4.6$ GeV and search for the $Z_c(4430)^{\pm}$ - Marco Scodeggio

$M(\pi \pm \psi(2S))$ Comparison

Instead of looking at the whole πψ(2S) mass spectrum, could be worthwhile to check the M_{Max}(πψ(2S)) as it was done for the Z_c(3900)

Drawing from the **f**₀(**980**) study, the the M($\pi\pi$) and M($\pi\psi$ (**2S**)) invariant distributions are fitted

Fit is again inconclusive... parameters have ~100% uncertainties

