

Phase Summary

Prof. Francesca De Mori

Intro

- The aim of the "task force" is to join the efforts and share the available expertise inside BESIII
- The "first mission" is to create a "fertile environment" to make these analyses blooming and to reach common good practices and to stimulate dedicated discussion to validate the results.
- The group meetings are scheduled usually once a month
- They have started in March 2021.
- The list and material of the meetings are available @ https://indico.ihep.ac.cn/category/820/
- These analyses both in Tau-Qcd and Charmonium

Numbers

- Many channels with ongoing analysis.
- One published result
- 3 RC
- 3 AG

Channels

J/psí scan

- (5pí,etapí+pí~,mumu) (YADI)
- ppbar (Marco)
- Σ⁺antí-Σ⁻ (Jaíjun)
- $\Sigma^0 \overline{\Sigma}^0$ (Muzaffar)
- Phí eta (Yurí et al)
- K+K-(Francesca, TBR)
- Lambda/Lambdabar+X(Qu)

Psí(2s) scan

- ppbar (Yanan/Yadí)
- $\Sigma^0 \overline{\Sigma}^0$ (Muzaffar)
- Arbar
- Xí+Xí-bar (Congyu Lí)
- K+K⁻ (Yadí)
- Omega⁺Omega⁻(Zequíng)
- Omega pí^o (Baoxín)
- Pípýpsí (Gíulío)

Two observables can be checked:

- The Born xs far from the resonance
- the BF

What is expected?

$$\delta \mathcal{B} = 2 \sqrt{\frac{\sigma_0}{\sigma_{\psi}}} A_s \sin \varphi.$$

nonresonant cross section

$$\sigma_{\psi} = (12\pi/m^2)\mathcal{B}(\psi \to e^+e^-),$$

Impact of the interference between the resonance and continuum amplitudes on vector quarkonia decay branching fraction measurements

Y. P. Guo and C. Z. Yuan Phys. Rev. D **105**, 114001 – Published 2 June 2022

> "....depends on the relative size and phase between the resonance and continuum amplitudes. Two ratios are defined to estimate the size of these effects, the ratio of the contribution of the interference term to the resonance term and that to the continuum term. We find that the first could be as large as a few percent for narrow resonances, and both could be large for broad resonances. This indicates that the interference effect is crucial for the measurements of the branching fractions aiming at the percent level or better precision and needs to be measured or estimated properly."

Measurement of the phase between strong and electromagnetic amplitudes of *J/\u03c4* decays(5pí,etapí+pí-,mumu) (YADI)

		μ^{-}	$^+\mu^-$			5π	
No.	N_i	$\epsilon_i(\%)$	$\sigma_i^{\rm obs}$ (nb)	N_i	$\epsilon_i(\%)$	$\sigma_i^{ m obs}$ (nb)
1	76553 ± 2	54.52 ± 0	.16 9.411±0.034=	-0.217	734 ± 29	23.60 ± 1.28	$0.211 {\pm} 0.008 {\pm} 0.01$
2	76058 ± 2	$276 54.53 \pm 0$.16 9.261±0.034=	0.213	723 ± 28	23.88 ± 1.43	$0.204{\pm}0.008{\pm}0.01$
3	81532±2	$286 53.30 \pm 0$.16 8.794±0.031=	0.202	765 ± 29	23.54 ± 1.25	$0.189{\pm}0.007{\pm}0.01$
4	21584 ± 1	147 53.74 ± 0	$.16 8.42 \pm 0.06 =$	-0.20	180 ± 14	24.31 ± 3.02	$0.158{\pm}0.012{\pm}0.02$
5	63674 ± 2	252 52.76 ± 0	.16 7.758±0.031=	0.177	$858{\pm}30$	25.16 ± 1.27	$0.222{\pm}0.008{\pm}0.01$
6	51677 ± 2	227 51.12 ± 0	.16 6.780±0.030=	20.155	1434 ± 39	26.09 ± 1.02	$0.373 {\pm} 0.010 {\pm} 0.02$
7	15929 ± 1	126 58.84 ± 0	$.16 12.63 \pm 0.10 =$	±0.30 4	4962 ± 71	28.69 ± 0.60	$8.16 \pm 0.12 \pm 0.53$
8	52001 ± 2	63.23 ± 0	$.17 45.28 \pm 0.20 =$	± 1.07 18	$8120 {\pm} 140$	28.37 ± 0.40	$35.59 \pm 0.27 \pm 2.26$
9	154741 ± 3	63.87 ± 0	$.15 113.47 \pm 0.29 =$	2.67 52	$2380 {\pm} 230$	28.42 ± 0.35	$87.4\pm~0.4~\pm5.5$
10	281713 ± 3	63.99 ± 0	$.16 212.8 \pm 0.4 =$	5.1 90	$0560 {\pm} 310$	28.19 ± 0.31	$157.1\pm~0.5~\pm9.9$
11	155118 ± 3	64.07 ± 0	$.16 109.90 \pm 0.28 \pm$	2.60 43	$3520 {\pm} 210$	28.32 ± 0.36	$70.57 \pm 0.34 \pm 4.47$
12	26646 ± 1	163 62.62 ± 0	.15 56.29± 0.35 =	1.39 6	6424 ± 81	28.41 ± 0.52	$30.3\pm~0.4~\pm2.0$
13	21893 ± 1	148 60.51 ± 0	$.15 22.44 \pm 0.15 =$	± 0.54 3	$3440 {\pm} 60$	26.57 ± 0.68	$8.13 \pm 0.14 \pm 0.54$
14	20184 ± 1	142 58.74 ± 0	$.16 16.32 \pm 0.12 =$	-0.38 2	$2468 {\pm} 50$	27.89 ± 0.79	$4.25 \pm 0.09 \pm 0.29$
15	$ 13173 \pm 1$	$115 57.72 \pm 0$	$.16 13.27 \pm 0.12 =$	-0.32	$1160 {\pm} 35$	26.72 ± 1.11	$2.55 \pm 0.08 \pm 0.19$
16	8550 ± 9	56.40 ± 0	$.16 11.99 \pm 0.13 =$	-0.29	623 ± 26	26.63 ± 1.43	$1.87 \pm 0.08 \pm 0.15$
		$\eta \pi^+$	π^{-}				
No.	N_i	$\epsilon_i(\%)$	$\sigma_i^{\rm obs}$ (nb)				
1	32 ± 6	21.16 ± 0.11	$0.045 \pm 0.009 \pm 0.009$	006			
2	24 ± 6	21.08 ± 0.11	$0.034 \pm 0.008 \pm 0.00$	004			
3	34 ± 6	20.78 ± 0.10	$0.042 \pm 0.008 \pm 0.00$	006			
4	8±3	21.07 ± 0.11	$0.037 \pm 0.015 \pm 0.0$	05			
5	25 ± 6	21.11 ± 0.11	$0.033 \pm 0.007 \pm 0.00$	004			
6	15 ± 5	21.14 ± 0.11	$0.0216 {\pm} 0.0064 {\pm} 0.00$	0025			
7	10 ± 4	21.25 ± 0.11	$0.100 \pm 0.039 \pm 0.000$	13			
8	19 ± 7	20.94 ± 0.11	$0.218 \pm 0.076 \pm 0.0$	27			
9	60 ± 11	21.00 ± 0.11	$0.59\pm~0.11~\pm0.0$)7			
10	118 ± 15	20.79 ± 0.10	$1.21\pm~0.15~\pm0.1$.5			
11	74 ± 11	20.83 ± 0.10	$0.709 \pm 0.105 \pm 0.00$)88			
12	22 ± 6	20.50 ± 0.10	$0.63\pm~0.16~\pm0.0$)8			
13	12 ± 4	20.84 ± 0.10	$0.155 \pm 0.056 \pm 0.06$	020			
14	7±3	20.71 ± 0.10	$0.072 \pm 0.034 \pm 0.034$	009			
15	5 ± 3	20.58 ± 0.10	$0.057 \pm 0.036 \pm 0.036$	007		T	·
16	6 ± 3	20.63 ± 0.10	$0.094 \pm 0.045 \pm 0.000$	012		t i	wst and
							.

 https://www.sciencedirect.com/ science/article/pii/S0370269319 301558

First and last phase paper published by BESIII

	$\Phi_{g,\mathrm{EM}}$	$\mathcal{B}_{5\pi}\left(\% ight)$	χ^2/ndf
Solution I	$(84.9 \pm 3.6)^{\circ}$	4.73 ± 0.44	11.62/12
Solution II	$(-84.7 \pm 3.1)^{\circ}$	4.85 ± 0.45	11.62/12

```
The branching fraction of J/\psi \rightarrow \eta \pi + \pi -
is (3.78±0.68)×10-4, which is more accurate than the existing world average value of (4.0±1.7)×10-4
```

the branching fraction of J/ψ decays to 5π is measured to be (4.73 ± 0.44)% or (4.85 ± 0.45)%, which is consistent with the world average value of (4.1±0.5)%

 Yadí & co stanno preparando un artícolo che descríve la funzione analítica di fit..poi sara' disponibile per la collaborazione.

Measurement of the phase between strong and electromagnetic amplitudes of $J/\psi \rightarrow ppbar$ (MARCO)

- $\sigma_{cont} = 9.91 \text{ pb} \pm 0.63 \text{ pb},$
- $B_{out} = (2.103 \pm 0.030) \cdot 10^{-3}$,

• $\varphi = 95.1^\circ \pm 2.8^\circ$,

- $\sigma_{cont} = 9.91 \text{ pb} \pm 0.40 \text{ pb},$ In RC
- $B_{out} = (1.918 \pm 0.022) \cdot 10^{-3},$

Comparisons with the literature

xs(3050 MeV)=(10.1±1.1±0.6 pb)

at 3.0 GeV σ_B =(9.9±0.9)pb (MARCO)and σ_B (9.2±1.0±0.3 pb) (Phys. Rev. Lett. 124, 042001 (2020)) In agreement

$\mathcal{B}(J/\psi \to p\bar{p})$ $\mathcal{B}(\psi(2S) \to p\bar{p})$	(2.33 ± 0.08) (3.14 ± 0.28)	\pm 0.09) × 10 ⁻³ , \pm 0.18) × 10 ⁻⁴	https://doi.org/10.1103/PhysRevD.88.072009 untagged			
2.950-3.000 3.000-3.200	$\begin{array}{c} 29\pm7\pm2\\ 25\pm12\pm9\\ \end{array}$	0.170 ± 0.005 0.168 ± 0.008	8.57 36.19	$20 \pm 5 \pm 2$ $4.2 \pm 2.0 \pm 1.6$	tagged	
$\mathcal{B}(J/\psi ightarrow p)$ $\mathcal{B}(\psi(2S) ightarrow p)$	$ar{p}) = (2.04 \pm 0.07)$ $(p\bar{p}) = (2.86 \pm 0.51)$	$\pm 0.07) \times 10^{-3},$ $\pm 0.09) \times 10^{-4}.$	https://do	i.org/10.1103/Physl	RevD.87.092005	
$B_{out} = (2$	$2.103 \pm 0.030) \cdot 10^{-10}$	$)^{-3},$	• B _{out}	$= (1.918 \pm 0.022)$	-10^{-3} , MARC	0

 $J/\psi \rightarrow \Sigma^+ anti-\Sigma^- decay (Jaijun)$

$$\sigma[pb] = \left| \sqrt{3\pi\Gamma^2 B_{in}} \left[\frac{\hbar c}{W}\right]^2 \cdot 10^{10} \cdot \frac{\sqrt{B_{out}}}{(M_{\psi} - W) - i\Gamma/2} + C \right|^2$$

Solution	$\Phi_{3g,\gamma}(^{\circ})$	$\sigma_{ m cont.}(3.000~{ m GeV})~{ m pb}$	$\mathcal{B}_{\text{out}}(J/\psi \to \Sigma^+ \bar{\Sigma}^-)$	χ^2/ndf
Ι	107.9 ± 24.9	15.4 ± 3.1	$(1.14 \pm 0.02) \times 10^{-3}$	17.4/24
II	-107.6 ± 24.3	15.4 ± 3.1	$(1.19 \pm 0.02) \times 10^{-3}$	17.4/24

@RC

In RC Jaijun changed experiment (still trying to finish)

Literature comparisons

Problem with BF

Solution	$\Phi_{3g,\gamma}(^{\circ})$	$\sigma_{ m cont.}(3.000~{ m GeV})~{ m pb}$	$\mathcal{B}_{\rm out}(J/\psi \to \Sigma^+ \bar{\Sigma}^-)$	χ^2/ndf
Ι	107.9 ± 24.9	15.4 ± 3.1	$(1.14 \pm 0.02) \times 10^{-3}$	17.4/24
II	-107.6 ± 24.3	15.4 ± 3.1	$(1.19 \pm 0.02) \times 10^{-3}$	17.4/24

Table 2. The numbers of signal events, detection efficiencies and branching fractions of $\Psi \to \Sigma^+ \overline{\Sigma}^-$, where the uncertainties are statistical only.

Channel	N_{sig}	$\epsilon_{cor}(\%)$	Branching fraction (10^{-4})
$J/\psi \to \Sigma^+ \overline{\Sigma}^-$	86976 ± 314	$24.1{\pm}0.7$	$10.61{\pm}0.04$
$\psi(3686) \to \Sigma^+ \overline{\Sigma}^-$	5447 ± 76	$18.6{\pm}0.5$	$2.52{\pm}0.04$

Both lower Than PDG!

Liang on psi/psi' sample

PDG: (1.50±0.24)*10⁻³

https://www.sciencedirect.com/science/article/pii/S0370269321000502?via%3Dihub

\sqrt{s} (GeV)	$\mathscr{L}(\mathrm{pb^{-1}})$	<i>€</i> _A (%)	<i>€</i> ₿(%)	$\sigma^{ m Born}\left({ m pb} ight)$	$ G_{\rm eff} (\times 10^{-2})$	$ G_E/G_M $	
2.3864	22.6	5.8	12.6	$58.2 \pm 5.9^{+2.8}_{-2.6}$	$16.5 \pm 0.9 \pm 0.9$	-	
2.3960	66.9	9.5	14.1	$68.6 \pm 3.4 \pm 2.3$	$15.0 \pm 0.4 \pm 0.5$	$1.83 \pm 0.26 \pm 0.24$	$e^+e^- ightarrow \Sigma^+ ar{\Sigma}^-$
2.5000	1.10	18.4	21.6	$130 \pm 29 \pm 11$	$14.0 \pm 1.6 \pm 0.6$	-	
2.6444	33.7	24.4	20.5	59.9 ± 3.6 ± 3.2	$8.6 \pm 0.3 \pm 0.2$	$0.66 \pm 0.15 \pm 0.11$	
2.6464	34.0	24.2	20.7	$58.9 \pm 3.5 \pm 2.4$	$8.5 \pm 0.3 \pm 0.2$		
*2.7500	2.04	25.0	19.7	36.9 ± 12.8 ± 3.2	$6.7 \pm 1.2 \pm 0.3$	-	
2.9000	105.	26.5	20.6	16.7 ± 1.2 ± 1.1	$4.5 \pm 0.2 \pm 0.2$	$1.06 \pm 0.36 \pm 0.09$	
*2.9884	65.2	25.5	21.4	12.4 ± 1.3 ± 1.3	$3.9 \pm 0.2 \pm 0.2$	-	

Solution	$\Phi_{3g,\gamma}(^{\circ})$	$\sigma_{ m cont.}(3.000~{ m GeV})~{ m pb}$	$\mathcal{B}_{\rm out}(J/\psi \to \Sigma^+ \bar{\Sigma}^-)$	χ^2/ndf
I	107.9 ± 24.9	15.4 ± 3.1	$(1.14 \pm 0.02) \times 10^{-3}$	17.4/24
II	-107.6 ± 24.3	15.4 ± 3.1	$(1.19 \pm 0.02) \times 10^{-3}$	17.4/24

Sigma born .. in agreement (large uncertainties)

 $e^+e^- \rightarrow \phi \eta$.

\sqrt{s} (MeV)	$\mathcal{L}(pb^{-1})$	N _{sig}	ε (%)	σ^{obs} (pb)
3000.000±0.200	15.850 ± 0.111	25.7±6.9	36.3±0.2	23.1±6.2
3020.000 ± 0.200	17.320 ± 0.120	22.0 ± 5.2	36.9 ± 0.2	17.8 ± 4.2
3049.658 ± 0.028	14.919±0.161	20.0 ± 5.0	37.3±0.2	18.6 ± 4.6
3058.709 ± 0.028	15.060 ± 0.161	28.0 ± 5.6	37.5 ± 0.2	25.6 ± 5.5
3080.000 ± 0.200	294.488 ± 2.302	497.4±23.3	37.5 ± 0.2	23.3±1.1
3082.512 ± 0.043	4.769 ± 0.055	7.1±3.8	37.9 ± 0.2	20.4 ± 10.8
3087.593±0.130	2.470 ± 0.020	8.0 ± 3.4	38.1±0.2	43.8±18.6
3088.870 ± 0.022	15.558 ± 0.165	28.3 ± 6.1	38.0 ± 0.2	24.7±5.3
3091.776 ± 0.025	14.910 ± 0.160	34.9 ± 6.1	38.2 ± 0.2	31.7±5.7
3094.713 ± 0.084	2.143 ± 0.025	34.5 ± 6.2	39.9 ± 0.2	209.1±37.6
3095.446 ± 0.081	1.816 ± 0.021	90.9±10.8	40.1±0.2	645.9 ± 78.7
3095.726 ± 0.080	2.920 ± 0.020	291.6±18.0	40.4 ± 0.2	1278.7 ± 78.8
3095.842 ± 0.075	2.135 ± 0.025	328.4 ± 18.8	40.2 ± 0.2	1979.3±113.4
3096.203 ± 0.070	4.980 ± 0.030	827.7±31.7	41.0 ± 0.2	2095.3 ± 80.0
3096.986 ± 0.080	3.100 ± 0.020	756.4 ± 29.5	41.3±0.2	3056.7±119.5
3097.226 ± 0.100	1.680 ± 0.010	418.0 ± 21.8	41.9 ± 0.2	3071.3±160.6
3097.229 ± 0.076	2.069 ± 0.026	473.3±22.0	41.1±0.2	2880.7±135.1
3097.654 ± 0.080	4.660 ± 0.030	861.0±31.8	41.8 ± 0.2	2288.9 ± 84.7
3098.356 ± 0.075	2.203 ± 0.025	230.0 ± 15.6	41.1±0.2	1314.2 ± 89.0
3098.728 ± 0.080	5.640 ± 0.030	335.5 ± 19.5	41.6 ± 0.2	739.8 ± 43.1
3099.058 ± 0.093	0.756 ± 0.011	23.0 ± 5.0	41.0 ± 0.2	384.4 ± 83.6
3101.375 ± 0.106	1.612 ± 0.021	13.0 ± 4.3	41.3±0.2	100.9 ± 33.7
3104.000 ± 0.080	5.720 ± 0.030	53.3±10.3	41.2±0.2	117.3 ± 22.5
3105.596 ± 0.090	2.106 ± 0.025	10.9 ± 3.4	40.4 ± 0.2	66.6 ± 24.0
3112.067 ± 0.093	1.720 ± 0.021	11.0 ± 3.7	39.9 ± 0.2	82.9 ± 29.4
3119.894±0.115	1.264 ± 0.016	3.0 ± 1.7	38.1 ± 0.2	32.3 ± 18.3

Yuri, Zequn

@J/psi

@AG

$$\sigma(s) = \mathcal{P}_{\phi\eta}(s) \cdot (\frac{\mathcal{F}}{s^{a_0}})^2 \cdot \frac{4\pi\alpha^2}{3s} \cdot |1 + \frac{3}{\alpha} \frac{s}{M} \frac{\Gamma_{ee} \cdot (1 + C \cdot e^{i\phi_{\gamma,3g}})}{(s - M^2) + iM\Gamma}|^2,$$

The positive phase is $(146.7^{+84.7}_{-17.2})^{\circ}$ and the negative case is $(214.4^{+17.1}_{-84.9})^{\circ}$.

 $e^+e^- \rightarrow \phi \eta.$

1 A A

Stor.

	Positive phase	Negative phase	
$\phi_{\gamma,3g}$ (°)	$146.7^{+84.7}_{-17.2}$	$214.4^{+17.1}_{-84.9}$	PDG
$\mathcal{B}_{\phi\eta}~(imes 10^{-4})$	$8.6^{+0.6}_{-0.5}$	$9.0^{+0.5}_{-0.6}$	$(7.4\pm 0.6) imes 10^{-4}$
С	3.3 ± 0.4	3.3 ± 0.4	
S_E (MeV)	0.88 ± 0.03	0.88 ± 0.03	https://journals.aps.org/prd/pdf/10.1103/PhysRevD.76.092005
f	0.99 ± 0.04	0.99 ± 0.04	
M (MeV)	3096.8	89±0.03	Both higher!
Γ (keV)	92.6±0.1		
Γ_{ee} (keV)	5.53 ± 0.06		
χ^2/ndf	20.3/21	20.3/21	

https://journals.aps.org/prd/pdf/10.1103/PhysRevD.74.111103

Needed Born xs to compare

$J/\psi \to \Sigma^{\circ} \overline{\Sigma}^{\circ}$ Decay.

BESIII Analysis Memo

BAM-00612

June 26, 2022

https://docbes3.ihep.ac.cn/DocDB/0011/001118/005/Memo_jpsi.pdf

Muzaffar still working on it

W (MeV)	$N^{ m sig}$	ϵ (%)	$\mathcal{B}(\%)$	$\mathcal{L}(pb^{-1})$	$\sigma^{ m obs}$ (pb)
3000.000	16.37 ± 5.45	22.5	63.9	15.849 ± 0.111	$3.60 \pm 1.20 \pm 0.16$
3020.000	21.85 ± 6.36	22.6	63.9	17.315 ± 0.120	$4.39 \pm 1.27 \pm 0.27$
3049.665	20.24 ± 5.54	24.9	63.9	14.919 ± 0.161	$4.27 \pm 1.17 \pm 0.30$
3058.709	15.27 ± 4.77	25.4	63.9	15.060 ± 0.161	$3.12 \pm 0.99 \pm 0.21$
3079.647	45.28 ± 8.89	28.9	63.9	30.942 ± 0.341	$3.97 \pm 0.78 \pm 0.47$
3082.512	8.35 ± 3.37	30.5	63.9	4.769 ± 0.055	$4.50 \pm 1.81 \pm 0.55$
3088.870	59.72 ± 8.85	34.3	63.9	15.558 ± 0.165	$8.76 \pm 1.30 \pm 0.73$
3091.776	89.82 ± 11.07	36.2	63.9	14.910 ± 0.160	$13.0 \pm 1.60 \pm 0.70$
3094.713	250.6 ± 18.12	37.8	63.9	2.143 ± 0.025	$242.1 \pm 17.5 \pm 12.1$
3095.446	931.0 ± 34.56	37.7	63.9	1.816 ± 0.021	$1042.7 \pm 39.5 \pm 57.3$
3095.842	2589 ± 58.76	37.6	63.9	2.135 ± 0.025	$2524.0 \pm 57.3 \pm 136.3$
3097.229	4290 ± 74.87	37.4	63.9	2.069 ± 0.026	$4342.7 \pm 75.8 \pm 221.5$
3098.356	2170 ± 53.41	37.4	63.9	2.203 ± 0.025	$2058.5 \pm 50.7 \pm 115.3$
3099.058	289.2 ± 19.74	37.4	63.9	0.756 ± 0.011	791.9 ± 54.1 ± 42.8
3101.375	173.0 ± 14.90	36.8	63.9	1.612 ± 0.021	$228.3 \pm 19.7 \pm 12.3$
3105.596	108.8 ± 12.17	36.4	63.9	2.106 ± 0.025	$111.0 \pm 12.4 \pm 5.8$
3112.067	57.03 ± 8.76	34.6	63.9	1.720 ± 0.021	$74.9 \pm 11.5 \pm 3.8$
3119.894	16.91 ± 5.12	28.9	63.9	1.264 ± 0.016	$36.3 \pm 11.0 \pm 1.6$

Solution	$\Phi_{3g,\gamma}(^{\circ})$	$\sigma_{\rm cont.}$ (3.0000 GeV) pb	$\mathcal{B}_{\mathbf{out}}(J/\psi \to \Sigma^0 \bar{\Sigma}^0)$	χ^2/ndf
Ι	124.2 ± 14.7	4.07 ± 0.84	$(1.367 \pm 0.047) \times 10^{-3}$	8.31/15.0
II	-123.9 ± 14.6	4.07 ± 0.84	$(1.391 \pm 0.048) \times 10^{-3}$	8.31/15.0

\sqrt{s}	L	ε	1+δ	$N_{\rm obs}(N_{\rm U.L.})$	$\sigma^{\rm B}$ (pb)
(GeV)	$({ m pb}^{-1})$	(%)			

- **2.3864** 22.55 11.1 0.65 11.7 ± 5.8 17.6 ± 8.73 ± 1.58(<42.4) (<28.0)
- $\textbf{2.3960} \quad 66.87 \quad 7.7 \quad 0.75 \quad 45.1 \pm 11.2 \quad 28.6 \pm 7.10 \pm 3.26$
- **2.5000** 1.10 32.3 0.94 12.7 ± 6.4 59.6 ± 30.3 ± 7.15
- **2.6444** 33.72 47.1 1.10 221 ± 25 19.8 ± 2.23 ± 1.21
- **2.6464** 34.00 46.4 1.10 195 ± 24 17.6 ± 2.13 ± 1.20
- **2.9000** 105.23 40.2 1.44 116 ± 17 2.98 ± 0.45 ± 0.22
- **2.9884** 65.18 34.9 1.62 78.7 ± 13.9 3.34 ± 0.59 ± 0.20

PDG $(1.172 \pm 0.031) \times 10^{-3}$,

Both higer!

https://doi.org/10.1016/j.physletb.2022.137187

In agreement (large uncertainties)

$(\psi(2S) \rightarrow \Sigma^0 \overline{\Sigma}^0)$

W (GeV)

W [MeV]	$N^{ m sig}$	ϵ [%]	${\mathcal B}\left[\% ight]$	Int. $L [pb^{-1}]$	$\sigma^{ m obs}$ [pb]
3581.54	3.1 ± 2.9	24.3	63.9	84.604 ± 0.082	$0.12 \pm 0.11 \pm 0.01$
3670.16	5.8 ± 3.7	25.9	63.9	83.582 ± 0.084	$0.21 \pm 0.13 \pm 0.02$
3680.14	34.9 ± 7.2	28.5	63.9	83.060 ± 0.083	$1.16 \pm 0.24 \pm 0.08$
3682.75	111.1 ± 12.5	29.3	63.9	28.175 ± 0.049	$10.5 \pm 1.2 \pm 0.53$
3684.22	615.5 ± 29.0	29.2	63.9	27.840 ± 0.048	$59.3 \pm 2.8 \pm 3.0$
3685.26	1372 ± 43.3	29.3	63.9	25.342 ± 0.046	$145.0 \pm 4.6 \pm 8.4$
3686.50	1475 ± 44.9	29.4	63.9	24.481 ± 0.045	$160.3 \pm 4.9 \pm 8.3$
3691.36	336.3 ± 21.2	28.9	63.9	68.647 ± 0.076	$13.3 \pm 0.84 \pm 0.73$
3709.76	66.8 ± 11.3	23.5	63.9	69.326 ± 0.077	$3.21 \pm 0.55 \pm 0.22$

Muzaffar

IN AG review

Solution	$\Phi_{3g,\gamma}[^\circ]$	$\sigma_{\rm cont}$ [3.582 GeV] pb	S_E [MeV]	$B_{\rm out} \; (\psi' \to \Sigma^0 \bar{\Sigma}^0)$	χ^2/ndf
Ι	88.6 ± 25.7	0.13 ± 0.11	1.36 ± 0.006	$(2.66 \pm 0.10) \times 10^{-4}$	2.71/5.0
II	-87.9 ± 25.4	0.13 ± 0.11	1.36 ± 0.006	$(2.73 \pm 0.10) \times 10^{-4}$	2.73/5.0

PDG $(2.35 \pm 0.09) \times 10^{-4}$

Lower!!

YADI

 $\Phi_{g,EM} = (113.4 \pm 7.6)^{\circ}$ and $\Phi_{g,EM} = (-109.6 \pm 6.5)^{\circ}$.

@RC

 $\mathcal{B} = (7.67 \pm 0.31) \times 10^{-5}$ and $\mathcal{B} = (11.33 \pm 0.37) \times 10^{-5}$.

Large relative difference btw the values

PDG VALUE

 $(7.5\pm 0.5) imes 10^{-5}$

Lower!!!

Phase fitting

Yanan ψ (3686) \rightarrow ppbar

FCN=	0.0306933 FH	ROM MINOS ST	TATUS=PROBLEMS	3139 CALL	S 3901 TOTAL	(qr	0.24	
FUT	DADAWETED	EDM=3.85145	5e-05 STRAT	EGY= 1 ER	ROR MATRIX ACCURATE	n (r	0.22	—— data
EAI	PARAMETER		PARABOLIC	MINUS ER	RORS	ē	0.20 E	
NO.	NAME	VALUE	ERROR	NEGATIVE	POSITIVE	CF.	0.10 E	——— fit
1	MJ	3.68600e+00	constant			se	0.18 E	
2	C+	2 04000- 04				\$	0.16 E	
2	GC	2.94000e-04	constant			S	ALE	$\gamma^2/ndf = 4.34/12$
3	Ge	2.33000e-06	constant			Ċ	0.14 E	X
4	Sp	1.11922e-03	4.04749e-04	-3.37926e-04	4.38446e-04	-	0.12	
5	Phi	1.78687e+02	1.36217e+02	at limit	at limit		0.10 🗐	
6	ATE	9.54853e+00	1.53761e+01	-6.13937e+00			0.08 E	
7	FF	3.09084e-01	5.29992e-01		4.07732e-01		0.06 E	
8	FE	1.00000e+00	constant				0.04	

Preparing memo

Measurement of the branching fractions of $J/\psi \rightarrow \Lambda/\bar{\Lambda} + X$

Z. H. Qu^a, P. Guo^a, and B. Zheng^a, J. J. Qin^a, J. J. Liu^a, and Y. D. Wang^b

$$\sigma^{0}(W) = \left(\frac{\mathcal{A}}{s}\right)^{2} \frac{4\pi\alpha^{2}}{s} \left|1 + \left(1 + Ce^{i\Phi}\right) \times \frac{3s\sqrt{\Gamma_{ee}\Gamma_{\mu\mu}}}{\alpha M} \frac{1}{s - M^{2} + iM\Gamma}\right|^{2}$$

https://docbes3.ihep.ac.cn/DocDB/0012/001234/002/Jpsi_to_ ambda_lambdabar%2BX_memo_V1_0.pdf

Table 5: Fit result on J/ψ lineshape.

	Fit	phase angle	BF(%)
	(a)	99.40±3.78	2.42 ± 0.22
$J/\psi \to \Lambda + \Lambda$	(b)	260.80 ± 3.72	2.52 ± 0.23
$J/\psi ightarrow ar{\Lambda} + X$	(c)	97.90 ± 2.40	2.48 ± 0.15
	(d)	262.30 ± 2.36	2.57 ± 0.16

summed branching fractions of J/ ψ exclusive decays containing $\Lambda/ \ \Lambda$ is less than 1.7%

$J/\psi \rightarrow \Lambda + X$

Jianyong Zhang

$e^+e^- \rightarrow \Lambda \Lambda bar using \psi' \overline{s}can data$

- ✓ By studying the relative phase between strong and electromagnetic amplitude , one can deeply understand the dynamic mechanism of quarkonium decay
- ✓ So far, no theory can give a satisfactory explanation for the origin or constraint of the phase between electromagnetic and strong decay

Event selection

- | cosθ | <0.93, Ngood≥2
- •PID, TOF and dE/dx
 - P: prob(P)>prob(π), prob(P)>prob(K)
 - π : prob(π)>prob(P), prob(π)>prob(K)
- •Good photon

Ngam=0

M_{BC} method is used

Preliminary results

Only one phase angle

• Optimization of event selection and systematic uncertainty are in progress

No elements to compare xs and BF

Phase measurement in $e^+e^- \rightarrow \Xi^-\overline{\Xi}^+$ using $\psi(2S)$ scan data

$$\sigma^{B} = \frac{N_{obs}}{2 \mathcal{L}(1+\delta) \frac{1}{|1-\Pi|^{2}} \epsilon \mathcal{B}(\Xi \to \pi \Lambda) \mathcal{B}(\Lambda \to p\pi)},$$

$$\sigma^{obs} = rac{N_{obs}}{2\mathcal{L}\in\mathcal{B}(\Xi\to\pi\Lambda)\mathcal{B}(\Lambda\to p\pi)},$$

(

Congyu Li, Jingxu Zhang, Xiongfei Wang

√ s (MeV)	<i>L</i> (<i>pb</i> ⁻¹)	$\frac{1}{ 1-\Pi ^2}$	$1 + \delta_{\rm ISR}$	N _{obs}	ε	$\sigma^{obs} (pb)$	$\sigma^{B}\left(pb ight)$
3581	85.7	1.04	0.97	$22.5^{+5.2}_{-4.3}$	32.8	0.6 ^{+0.3} _{-0.2}	$0.6^{+0.3}_{-0.2}$
3670	84.7	0.99	1.03	$34.0^{+6.8}_{-5.9}$	27.4	$1.1^{+0.5}_{-0.4}$	$0.6^{+0.3}_{-0.2}$
3680	84.8	0.89	1.08	$44.5^{+7.1}_{-6.2}$	26.6	$1.5^{+0.5}_{-0.4}$	$1.6^{+0.5}_{-0.4}$
3682	28.7	1.00	1.04	$78.0^{+9.8}_{-8.9}$	26.4	$8.1^{+2.0}_{-1.8}$	$7.8^{+1.9}_{-1.8}$
3684	28.7	1.00	1.03	$486.0^{+23.0}_{-22.1}$	26.6	$49.9^{+4.7}_{-4.5}$	$48.4_{-4.4}^{+4.6}$
3685	26	1.00	1.03	$850.5^{+29.6}_{-29.7}$	26.2	$97.8^{+6.8}_{-6.8}$	$95.0^{+6.6}_{-6.6}$
ψ(2S)	668.6	1.00	1.18	45709.0 ^{+220.0}	28.0	$191.3^{+1.8}_{-1.8}$	$155.9^{+1.5}_{-1.5}$
3686	25.1	1.00	1.04	983.0 ^{+32.3} -31.4	26.2	$117.1^{+7.7}_{-7.5}$	$95.4_{-6.1}^{+6.3}$
3691	69.4	1.25	0.86	$183.5^{+14.0}_{-13.1}$	26.8	$7.7^{+1.2}_{-1.1}$	$7.2^{+1.1}_{-1.0}$
3709	70.3	1.09	1.03	$41.5^{+6.9}_{-6.0}$	25.6	$1.8^{+0.6}_{-0.5}$	$1.7^{+0.6}_{-0.5}$

1.38164e-02

9.47626e+00

-1.00123e-02

-8.51760e+00

1.49140e-01 -1.48171e-01

9.58385e-03

1.48163e-01

9.43444e+00

1.65208e-01

1.73751e-01

1.23043e+02

Only one phase angle

No elements to compare xs and BF

 $\sigma^{obs}(e^+e^-\rightarrow \Xi \overline{\Xi}^+)$ (fb)

BfKsX

phase

hs

5

6

Zeqing Mu, Xiongfei Wang

Study of $e^+e^- \rightarrow \Omega^-\overline{\Omega}^+$ using $\psi(2S)$ scan data

\sqrt{s} (MeV)	3650	3670	3684	3685	$\psi(2S)$	3686	3691	3709	
N _{obs}	1^{+2}_{-0}	1^{+2}_{-0}	12^{+4}_{-3}	25^{+6}_{-4}	644^{+26}_{-25}	27^{+6}_{-5}	9^{+4}_{-2}	2^{+2}_{-1}	
$\mathcal{L}(1/\mathrm{pb})$	43.88	84.7	28.7	26.0	668.55	25.1	69.4	70.3	
N _{cut}	6806	7721	7698	7700	24508	7771	7900	6756	
E	6.806%	7.721%	7.698%	7.700%	6.127%	7.771%	7.900%	6.756%	
$B(\Omega^- \to K^- \Lambda)$				67.	8%				
$B(\Lambda \rightarrow p\pi^{-})$	63.9%								
$\sigma^{obs}({ m pb})$	$0.773^{+1.546}_{-0}$	$0.353^{+0.706}_{-0}$	$12.537^{+4.179}_{-3.134}$	28.823 ^{+6.918} -4.612	$36.289^{+1.465}_{-1.409}$	$31.951^{+7.100}_{-5.917}$	$3.789^{+1.684}_{-0.842}$	$0.972\substack{+0.972 \\ -0.486}$	

No elements to compare xs and BF

Only one phase angle

Fitting results(First iteration)

Measurements of $\psi(3686) \rightarrow \omega \pi^0$

LIU Baoxin¹, KANG Xiaosheng², GONG Li², ZHANG Zhenyu¹, ZHOU Xiang¹

¹Wuhan University ²Liaoning University

(a) Total uncertainty

(b) Statistical uncertainty

Parameter	Result (total uncertainty)	Result (statistic uncertainty)	Result (stat.±sys.)
M(MeV)	3685.93 ± 0.32	3685.92 ± 0.30	$3685.93 \pm 0.30 \pm 0.11$
$\Gamma_{\omega\pi^0}(imes 10^{-9})$	5.84 ± 0.35	5.88 ± 0.15	$5.84 \pm 0.15 \pm 0.30$
$\phi(rad)$	0.29 ± 0.43	0.25 ± 0.42	$0.29 \pm 0.42 \pm 0.09$

 $\sigma(s) = rac{4\pilpha^2}{3s} rac{\Gamma_{\omega\,\pi^0}}{\Gamma_{ee}} \left| 1 + rac{3\sqrt{s}\Gamma_{ee}}{lpha \left(s - M^2 + iM\Gamma
ight)} e^{i\phi}
ight|^2.$

The middle values are different between the total uncertainty result and statistic result. Use the relative statistic uncertainty to take the total uncertainty apart.

Only positive phase

Results of branching ratio

Because
$$\mathcal{B}(\psi(2S)
ightarrow \omega \pi^0) = \Gamma_{\omega \pi^0} / \Gamma$$
,
 $\mathcal{B}(\psi(2S)
ightarrow \omega \pi^0) = (1.99 \pm 0.12) imes 10^{-5}$

Only one value (????)

Liu Baoxin (WHU)		2023-7-27	45 / 108

The cross sections between 3.65-3.71 GeV have been measured.

\sqrt{s} GeV	$N^{ m obs.}$	$\mathcal{L}(\mathrm{pb}^{-1})$	ϵ	$\sigma^{Exp.} \pm stat. \pm sys.(pb)$
3.65	937 ± 33	410 ± 4.10	0.10	$22.15 \pm 0.83 \pm 1.18$
3.67016	154 ± 10	83.58 ± 0.08	0.10	$18.18 \pm 1.67 \pm 1.01$
3.68014	165 ± 14	83.06 ± 0.08	0.10	$20.59 \pm 1.75 \pm 1.12$
3.682	670 ± 28	404 ± 4.04	0.10	$18.84 \pm 0.81 \pm 0.90$
3.68275	47 ± 7	28.18 ± 0.05	0.10	$15.21 \pm 2.88 \pm 0.94$
3.68422	59 ± 8	27.84 ± 0.05	0.10	$20.38 \pm 2.80 \pm 1.17$
3.68526	101 ± 11	25.34 ± 0.05	0.10	$33.93 \pm 3.14 \pm 2.00$
3.686	18566 ± 146	3400 ± 34.00	0.10	$41.35 \pm 0.36 \pm 2.18$
3.68650	137 ± 12	24.45 ± 0.05	0.11	$42.83 \pm 4.49 \pm 2.53$
3.69136	172 ± 14	68.65 ± 0.08	0.10	$23.85 \pm 2.17 \pm 1.29$
3.70976	170 ± 14	69.33 ± 0.08	0.09	$22.28 \pm 2.34 \pm 1.15$

Table: Cross sections of $e^+e^- \rightarrow \omega \pi^0$.

Needed Born xs to compare......

$e^+e^- \rightarrow \pi \pi J/\psi$ with $\psi(2S)$ scan data

chi2 is 233.901								
BR	=	0.401	0.401214 +/- 0.00174886					
phase = 180 +/- 133.937								
cont(3.	8Ge\	/)	=	0.000128093 +/- 0.000530082				
spread		=	0.001	132747 +/- 8.55279e-06				

Giulio ce ne parla...

Comments:

- Continuum compatible with 0 at 3.8 GeV
- Error on the phase very large!
- BR higher than PDG

	•			
\sqrt{s}/MeV	3807.7 ± 0.6	3867.408 ± 0.031	3871.31 ± 0.06	3896.2 ± 0.8
$\int \mathcal{L} dt/pb^{-1}$	50.5 ± 0.5	108.9 ± 1.3	110.3 ± 0.8	52.6 ± 0.5
$(1 + \delta)$	0.895	0.895	0.895	0.895
$N_{\rm obs}^{e^+e^-}$	19 ± 5	30 ± 7	24 ± 6	16 ± 5
$\epsilon^{e^+e^-}/\%$	31.78 ± 0.08	31.34 ± 0.08	31.29 ± 0.08	31.68 ± 0.08
$\sigma^{e^+e^-}/{ m pb}$	22.0 ± 6.4	16.4 ± 3.6	12.7 ± 3.3	17.0 ± 5.2
$N_{\rm obs}^{\mu^+\mu^-}$	18 ± 5	40 ± 8	29 ± 6	17 ± 5
$e^{\mu^+\mu^-}/\%$	45.38 ± 0.10	44.90 ± 0.09	44.72 ± 0.09	45.14 ± 0.10
$\sigma^{\mu^+\mu^-}/{ m pb}$	14.8 ± 4.0	15.3 ± 2.9	10.9 ± 2.4	13.4 ± 4.1
$\sigma^{\ell^+\ell^-}/\mathrm{pb}$	16.9 ± 3.4	15.7 ± 2.3	11.6 ± 1.9	15.0 ± 3.2

PRD 107 (2023), 3,032007 cont

Which channels would be interesting to investigate?

Few years ago.....

Símone & Alessío

Table 1. Comparison of the experimental measurements (\mathcal{B}_{pdg}) [5] and phenomenological calculations (\mathcal{B}_{cal}) [3, 4] for the branching fractions of J/ψ decays to baryon octet final states, where $\Delta(\sigma)$ is the difference in terms of the total uncertainty. Dash (-) represents no experimental measurement.

$B\overline{B}$	$\mathcal{B}_{ m pdg}(10^{-3})$	$\mathcal{B}_{ ext{cal}}(10^{-3})$	$\Delta(\sigma)$
$\Sigma^0 \overline{\Sigma}^0$	1.164 ± 0.004	1.160 ± 0.041	~ 0.09
$\Lambda\overline{\Lambda}$	1.943 ± 0.003	1.940 ± 0.055	~ 0.05
$\Lambda \overline{\Sigma}^0 + \text{c.c.}$	0.0283 ± 0.0023	0.0280 ± 0.0024	~ 0.06
$p\overline{p}$	2.121 ± 0.029	2.10 ± 0.16	~ 0.1
\overline{nn}	2.09 ± 0.16	2.10 ± 0.12	~ 0.04
$\Sigma^+\overline{\Sigma}^-$	1.50 ± 0.24	1.110 ± 0.086	~ 1
$\Sigma^-\overline{\Sigma}^+$	_	0.857 ± 0.051	_
$\Xi^0\overline{\Xi}^0$	1.17 ± 0.04	1.180 ± 0.072	~ 0.09
$\Xi^{-}\overline{\Xi}^{+}$	0.97 ± 0.08	0.979 ± 0.065	~ 0.06

TABLE VIII. Non-resonant $e^+e^- \rightarrow \mathcal{B}\overline{\mathcal{B}}$ Born cross sections at $q^2 = M_{J/\psi}^2$.

TABLE VII. Moduli of sub-amplitudes $S_{\mathcal{B}\overline{\mathcal{B}}}$, $\mathcal{A}_{\mathcal{B}\overline{\mathcal{B}}}^{\gamma}$ and phase $\varphi_{\mathcal{B}\overline{\mathcal{B}}}$, defined in Eq. (6).

$\mathcal{B}\overline{\mathcal{B}}$	$ \mathcal{S}_{\mathcal{B}\overline{\mathcal{B}}} imes 10^3$	$ {\cal A}^{\gamma}_{{\cal B}\overline{{\cal B}}} imes 10^4$	$\varphi_{\mathcal{B}\overline{\mathcal{B}}}$
$\Sigma^0 \overline{\Sigma}^0$	4.987 ± 0.065	4.52 ± 0.19	arphi
$\Lambda\overline{\Lambda}$	6.483 ± 0.065	4.52 ± 0.19	$\pi - arphi$
$\Lambda \overline{\Sigma}^0 + { m c.c.}$	0	7.83 ± 0.33	arphi
$p\overline{p}$	5.74 ± 0.14	12.43 ± 0.65	φ
$n\overline{n}$	6.351 ± 0.037	9.04 ± 0.38	$\pi - arphi$
$\Sigma^+\overline{\Sigma}^-$	4.50 ± 0.12	12.43 ± 0.65	arphi
$\Sigma^-\overline{\Sigma}^+$	4.50 ± 0.12	3.39 ± 0.65	$\pi - arphi$
$\Xi^0\overline{\Xi}^0$	5.867 ± 0.037	9.04 ± 0.38	$\pi - arphi$
$\Xi^-\overline{\Xi}^+$	5.30 ± 0.13	3.39 ± 0.65	$\pi - \varphi$

https://doi.org/10.48550/arXiv.1905.01069

Long time ago.....

Table 3: J/ψ Vector + Pseudoscalar (a).

Decay	Amplitude	PDG $[10^{-4}]$	Fit $[10^{-4}]$	$\Delta \chi^2$
$ ho^0 \pi^0$	$ge^{i\varphi} + e$	169.0 ± 15.0	133.00	1.13
$K^{*+}K^{-}$	$ m g(1-s)e^{iarphi}+e$	51.2 ± 3.0	51.5	0.01
$\mathrm{K}^{*0}\mathrm{K}^{0}$	$ m g(1-s)e^{iarphi}$ -2e	43.9 ± 3.1	48.5	0.48
$\omega\eta$	$(\mathrm{gX+d})\mathrm{e}^{iarphi}\mathrm{+eX}$	17.4 ± 2.0	18.5	0.06
$\phi\eta$	$(g(1-2s)Y+d)e^{i\varphi}-2eY$	7.5 ± 0.8	3.9	4.02
$\rho\eta$	$3\mathrm{eX}$	1.9 ± 0.2	2.2	0.30
$\omega\pi$	$3\mathrm{e}$	4.5 ± 0.5	4.1	0.11
$\omega \eta'$	$(gX'+d')e^{i\varphi}+eX'$	7.0 ± 7.0	11.9	0.10
$\phi\eta'$	$(g(1-2s)Y' + d')e^{i\varphi}-2eY'$	4.0 ± 0.7	6.1	1.87
$ ho\eta$	$3 \mathrm{eX'}$	1.1 ± 0.2	1.1	0.04

https://docbes3.ihep.ac.cn/DocDB/0003/000327/001/psip_scan_note.pdf

BR7 proposed

Decay	Continuum [pb]	$\psi(3770) \text{ [pb]}$	Sign	
$\rho\pi$	13.1 ± 2.8	$7.4{\pm}1.3$	-	CLEOc, PRD 73(2006)012002
$\phi\eta$	$2.1{\pm}1.6$	$4.5 {\pm} 0.7$	+	CLEOc, PRD 73(2006)012002
p ar p	$0.74{\pm}0.08$	$0.4{\pm}0.02$	-	BESIII Y.Liang, Nov (2012)

Table 6: ψ' Vector + Pseudoscalar (a).

Decay	Amplitude	PDG $[10^{-4}]$	Fit $[10^{-4}]$	$\Delta \chi^2$
$ ho^0 \pi^0$	$ge^{i\varphi} + e$	0.32 ± 0.13	0.28	0
$K^{*+}K^{-}$	$ m g(1-s)e^{iarphi}+e$	0.17 ± 0.08	0.19	0
$K^{*0}K^0$	$ m g(1-s)e^{iarphi}$ -2e	1.09 ± 0.20	1.15	0.04
$\omega\eta$	$(gX+d)e^{i\varphi}+eX$	0.00 ± 0.11	0.08	0.06
$\phi\eta$	$(g(1-2s)Y+d)e^{i\varphi}-2eY$	0.28 ± 0.90	0.24	0.10
$ ho\eta$	$3\mathrm{eX}$	0.22 ± 0.06	0.15	0.22
$\omega\pi$	3e	0.21 ± 0.06	0.26	0.10
$\omega\eta'$	$(gX'+d')e^{i\varphi}+eX'$	0.32 ± 0.25	0.03	0.23
$\phi\eta'$	$(g(1-2s)Y' + d')e^{i\varphi}-2eY'$	0.31 ± 0.16	0.29	0.02
$ ho\eta$	$3 \mathrm{eX'}$	0.19 ± 0.17	0.08	0.11

BR7 proposed....

What else?

	$J/\psi(1S)$	$I^G(J^{PC})$ = $0^-(1^{})$
Γ_8	ρπ	$(1.69 \pm 0.15)\%$
	$\omega\eta$	$(1.74\pm 0.20) imes 10^{-3}$
	$\pi^+\pi^-$	$(1.47\pm0.14) imes10^{-4}$
	$K^0_S \; K^0_L$	$(1.95\pm0.11) imes10^{-4}$
	$\Lambda\overline{\Lambda}$	$(1.89\pm 0.09) imes 10^{-3}$
5	$\Xi^0\overline{\Xi}^0$	$(1.17\pm 0.04) imes 10^{-3}$
Γ_{67} \overline{I}	$\overline{K}K^*(892)$ +c.c. $ ightarrow K^0_S \; K^{\pm}\pi^{\mp}$	$(5.0\pm 0.5) imes 10^{-3}$
$\Gamma_{68} \qquad \qquad K^+K^*(8)$	92) ⁻ + c.c.	$(6.0^{+0.8}_{-1.0}) imes 10^{-3}$

 $\psi(2S)$ $I^G(J^{PC})$ = 0-(1--)

One/ two order of magnitude lower

 $K_1(1270)^\pm K^\mp$

K*(892)0K0

 $(1.00\pm 0.28) imes 10^{-3}$

4 particles final state K+K-pi+pi-