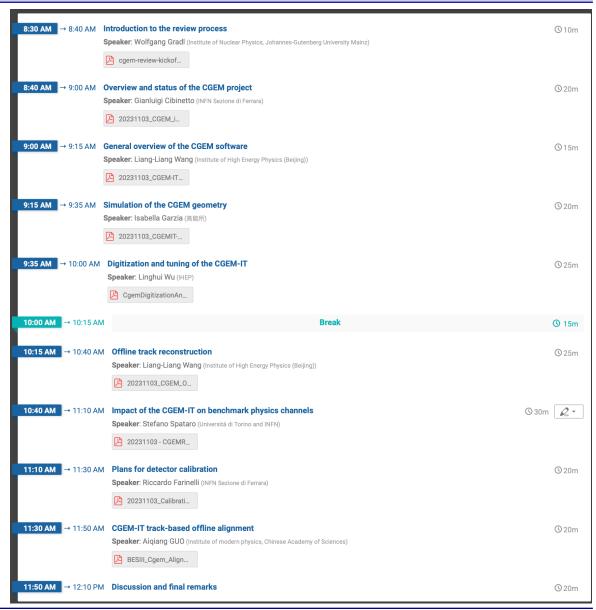


CGEM software review

Stefano Spataro for the CGEM software & analysis groups

BESIII Italia – Ferrara – 06/11/2023

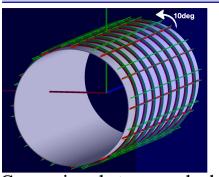

The first match

Friday, 3rd November 2023

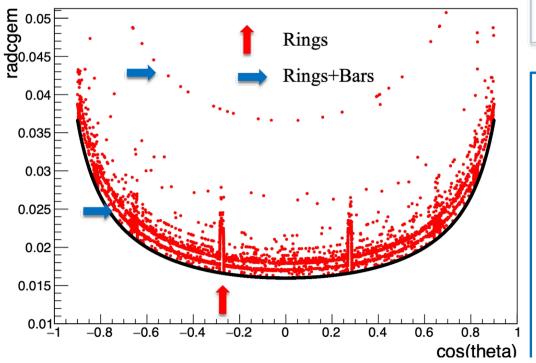
https://indico.ihep.ac.cn/event/20839/

The Basic Concept

Offline software (p)review


\wedge	Geometry	Implementation of the definitive design of the complete CGEM detector Estimation of the radiation length, and of possible effects on the EMC							
	Digitization	Complete description of the MC signal modelling, from ionization to the electronics readout response Comparison of simulation with real data from 2-layer cosmics data (run 17)							
HH	Global Tracking	Complete reconstruction of charged trac Characterization of tracking performance particle gun, comparison with standard N	es (resolution, efficiency) with						

Geometry

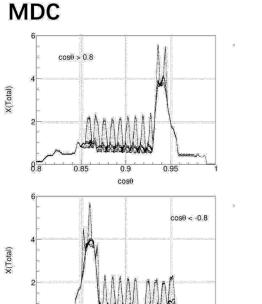


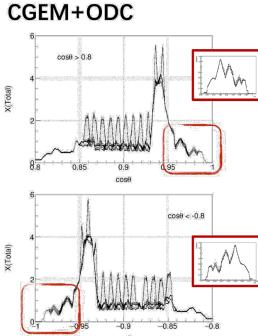
Task completed

GEANT4

Comparison between calculation and simulation

• without holes and strips simulation

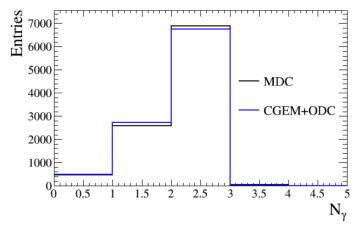


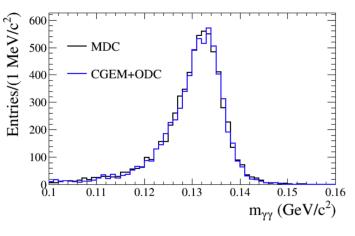

- with gridswithout grids
- SIMULATION: $0.015958 X_0$ $gas+air = 0.00051 X_0$ $tot sim = 0.0155 X_0$

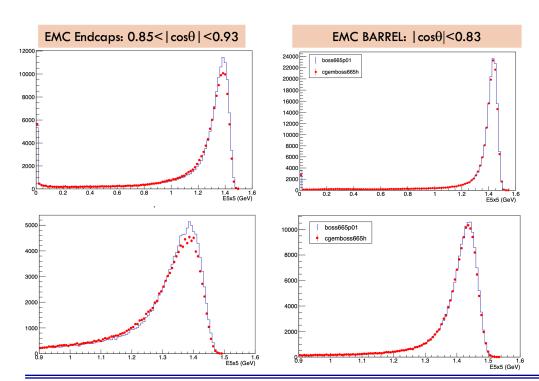
 $@ \theta = 90 \deg$

CALCULATION (with effective density) = $0.015559 X_0$

Good agreement




Geometry

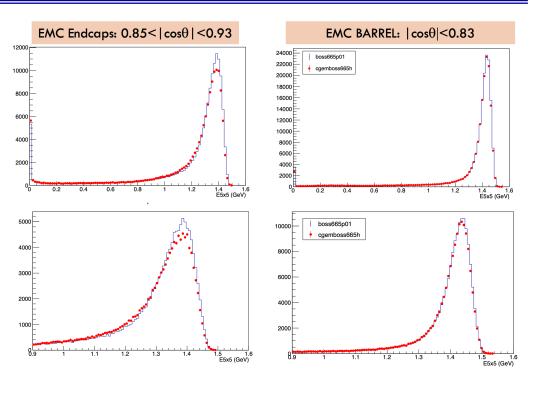

Simulated sample: $\pi^0(\rightarrow \gamma \gamma)$ with momentum 0-1 GeV/c, $\cos \theta$ in (-1,1)

Good photon selection: Barrel ($|\cos\theta|$ <0.8), E₂>25 MeV Endcaps $(0.84 < |\cos\theta| < 0.92)$, E>50 MeV

 $N_{\pi 0}(CGEM+ODC)/N_{\pi 0}(MDC)-1=(-2.30 +/-0.98)\%$ Mass resolution comparable

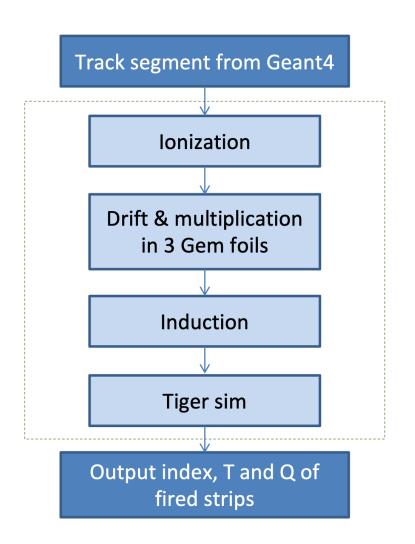
Substantially no effects on EMC

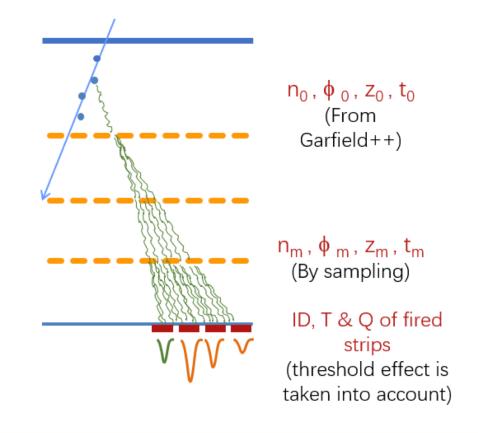
Geometry: questions, remarks...



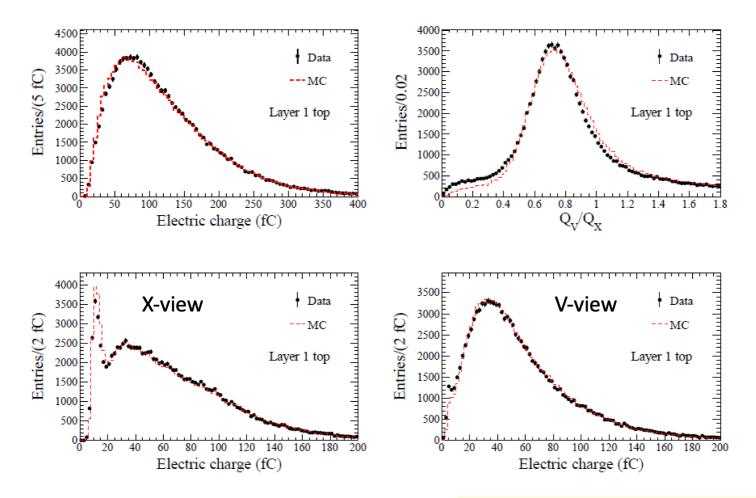
Is EMC recalibrated for CGEM design? NO, and we (CGEM) cannot do it, we expect with new calibration better agreement

How much CPU time? We need to measure it, anyway not so much


Comparison with MDC radiation length A waste of time, but fine...



Digitization


- A service package (CgemDigitizerSvc) has been developed to implement the digitization of CGEM-IT in CgemBoss
- Paper published: Radiation Detection Technology and Methods (2020) 4:174–181

Digitization

Consistency between data and MC is good after tuning

Paper published: JINST 18 P05027

Digitization: questions, remarks

What about TIGER noise?

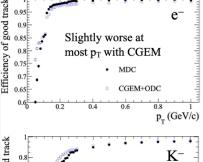
Not yet implemented On silicon negligible (< 0.5 fC), on strips...? I believe we should provide an answer

Anyway, the tuning includes the shaping of the noise, then it should not affect the final results

We should include also noisy hits as random signals according to noise rate

Dummy questions about gain and Garfield...

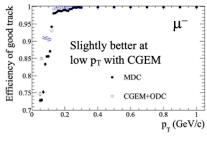
Not worth to mention

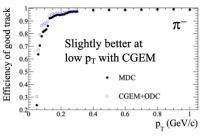


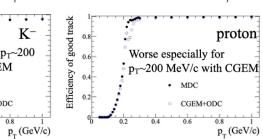
Tracking

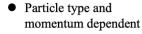
Efficiency of good track

- $\bullet \quad \text{Global tracking with } \\ \textbf{Hough Transform} \text{ for CGEM+ODC} \quad \bullet \quad \text{Good track: } \\ V_{xy} < 1 \text{ cm, } |V_z| < 10 \text{ cm, } |\cos\theta| < 0.93, \text{ correct charge} \\ \textbf{Operators} \quad \text{Correct charge} \quad \text{C$
- Default tracking for MDC (PAT + TSF etc.)

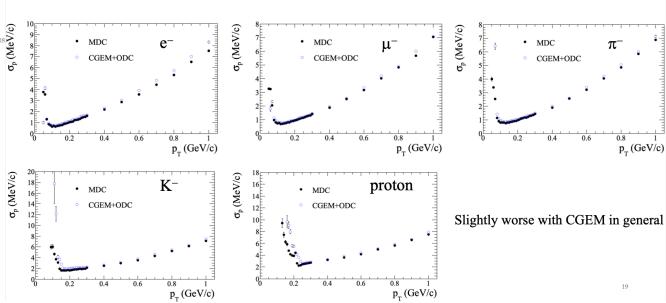



Slightly better at p_T~200


MeV/c with CGEM

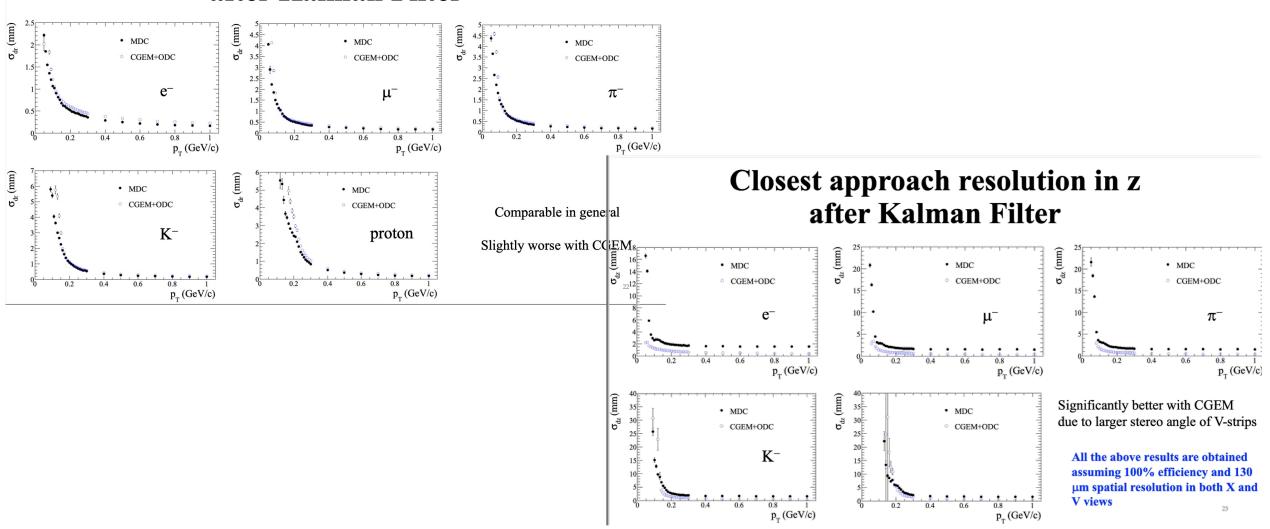

MDC

GEM+ODC



- Worse for low p_T proton ε expected
- Comparable in most p_T

Momentum resolution after Kalman Filter


p_T (GeV/c)

Tracking

Closest approach resolution in transverse plane after Kalman Filter

Tracking: questions, remarks...

Evaluate ghost tracks, clones

Not for single tracks, but for multi-track events

Check effect of nonhomogeneous materials, fixed low pt, efficiency vs theta

Estimate the effect of noise

We have the tools, it was done in the past but no real problematics, it will be redone

Effects of real efficiency and resolution After cosmics performance studies

Performances

Phase space events with 2-, 4- and 6-prong pions → Extension of single particle studies

$$e^+e^- \rightarrow p\bar{p} @ J/\psi \rightarrow 2$$
 tracks, high energy loss

$$e^+e^- \rightarrow \psi(2S) \rightarrow J/\psi \pi^+\pi^-, J/\psi \rightarrow \mu^+\mu^- \rightarrow 4$$
 tracks, low and high p_T

$$e^+e^- \to \psi(2S)\pi^+\pi^-, \psi(2S) \to J/\psi\pi^+\pi^- @ 4.612-4.946 \text{ GeV} \to 6 \text{ tracks, low and high p}_T$$

$$e^+e^- \rightarrow h_c(2P)\pi^+\pi^-, h_c(2P) \rightarrow DD^* \rightarrow 8 \text{ tracks, very low p}_T$$

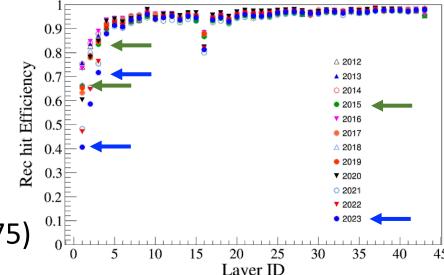
$$e^+e^- \rightarrow \Lambda \overline{\Lambda} @ \psi(2S) \rightarrow \text{displaced vertices}$$

The following variables will be studied and compared

- reconstruction efficiency
- > invariant mass resolution
- vertex resolution

The Software

CgemBoss665h for CGEM+ODC simulations


- Definitive CGEM geometry
- Toy MC clusters

(ε=100% and σ =130 μ m per view)

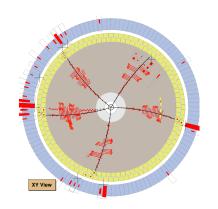
- Realistic Global Tracking
 - ✓ Hough Transform from ~2020
 - ✓ Local track finding under development (not used here)
- NO Background

BOSS665p01 for MDC simulations

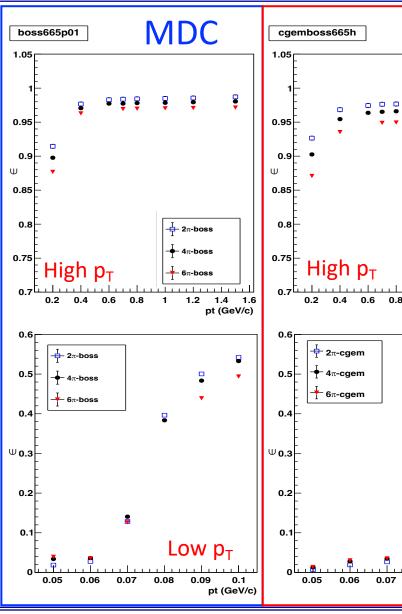
- Full MDC geometry
- Realistic Reconstruction
 - ✓ PAT + TSF + etc...
 - ✓ many years of tracking improvements
- NO Background

run number 43253 (2015) - Y(2175)

Particle Gun With High Track Multiplicity (INFN



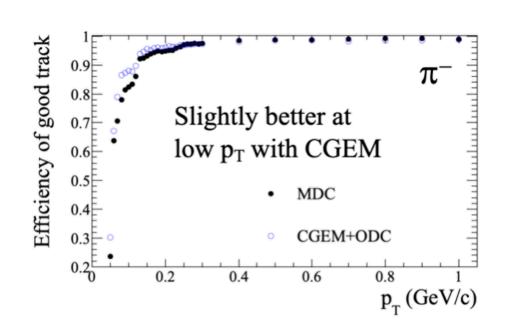
CGEM


Goal → check how the performances vary increasing the number of particles in the event

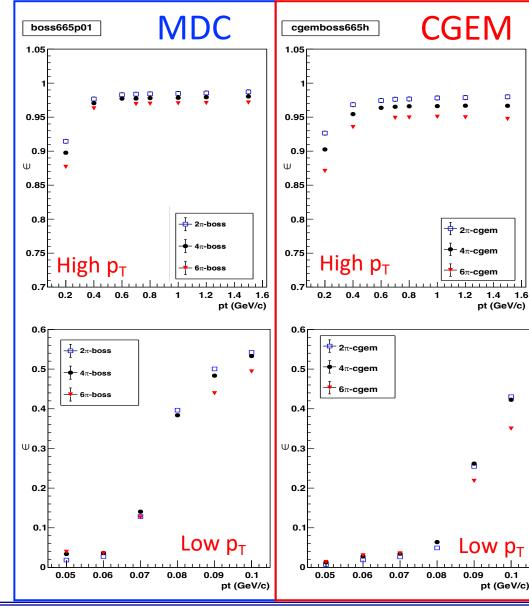
Generator

- $\nearrow \pi$ particle gun
- > 2, 4, 6 particles per event
- \triangleright Uniform $|\cos\theta| < 0.93$
- Uniform φ
- ightharpoonup Fixed p_T [0,05 1,5] GeV/c

- > By increasing the number of tracks, the single-track efficiency decreases for both MDC and CGEM
- > The CGEM efficiency decreases more

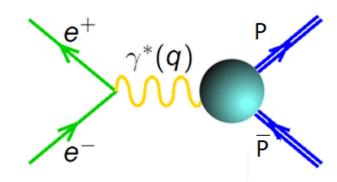


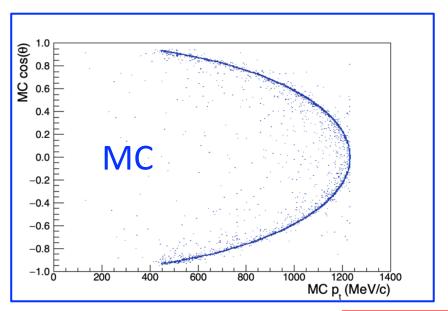
BC5 Particle Gun With High Track Multiplicity (INFN)

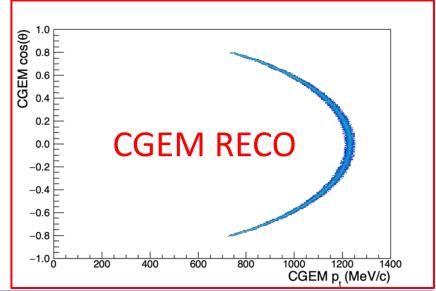


Not in agreement with single track studies for low pt

It has to be better understood

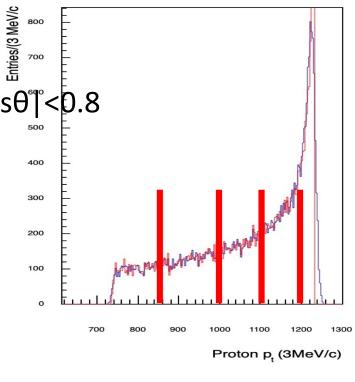

EESII Low Multiplicity - $e^+e^- \rightarrow p\bar{p}$ @ J/ψ

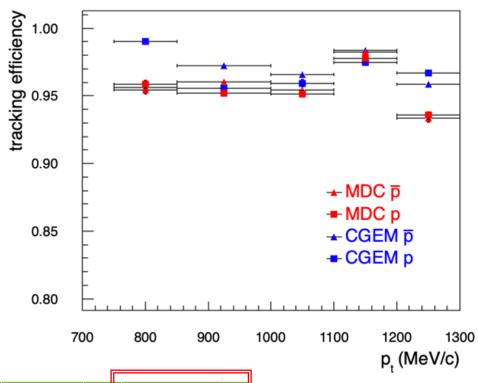

$$e^+e^- \rightarrow p\bar{p}$$
 (y)


Generator: KKMC + EVTGEN

Simple topology

- > Two high momentum tracks
- Back-to-back


$e^+e^- \rightarrow p\bar{p} @ J/\psi$



Selections

- $ightharpoonup R_{XY} < 1 \text{cm}, R_Z < 10 \text{ cm}, |\cos\theta| < 0.8$
- ➤ Opening angle > 178°
- > E/p < 0.5

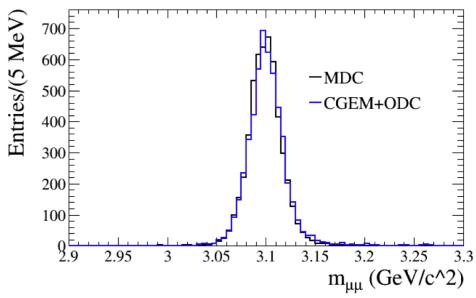
	GOOD	theta	vtxok	opening	E/p (p)	P range (3σ)	pid	TOT EFF
CGEMBOSS	43958	36686	35030	33935	33903	32397		(64.8+-0.2)%
BOSS	42455	35259	34645	33639	33611	32489		(65.0+-0.2)%

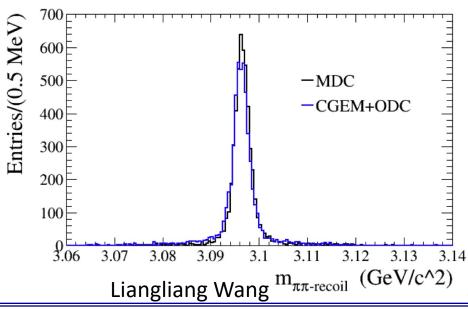
Comparable reconstruction efficiency

Francesca De Mori

$e^+e^- \rightarrow \psi(2S) \rightarrow J/\psi\pi^+\pi^-$

$$e^+e^- \rightarrow \psi(2S) \rightarrow J/\psi \pi^+\pi^-, J/\psi \rightarrow \mu^+\mu^-$$

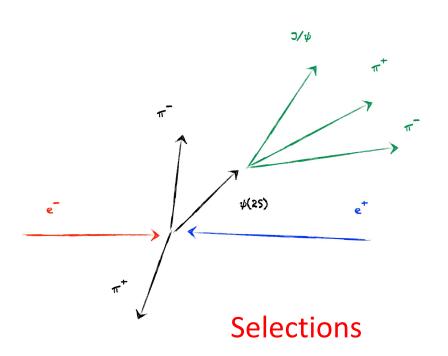

Four particles: 2 low momentum, 2 high momentum

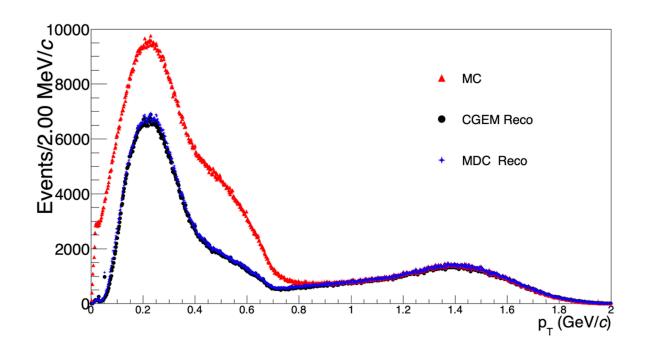

Selections

- $ightharpoonup R_{xy} < 1 \text{ cm}, R_7 < 10 \text{ cm}, |\cos\theta| < 0.93$
- \triangleright PID π: p < 0.8 GeV/c, μ: p > 0.8 GeV/c
- > Loose J/ψ mass cuts
- \rightarrow 4C Kinematic fit χ^2 <60

	MDC	CGEM+ODC
Efficiency	52.5% (PAT+TSF etc.)	44.1% (Hough Transform)

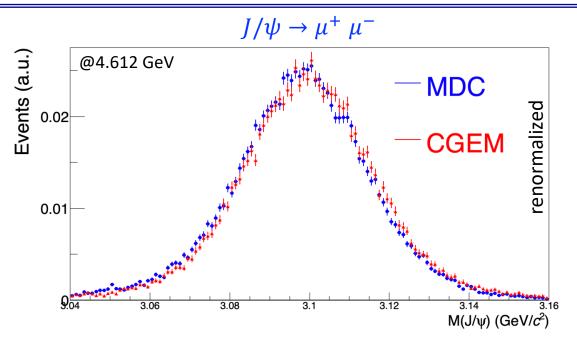
- Comparable mass resolution
- > Lower CGEM reconstruction efficiency

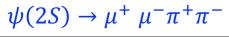


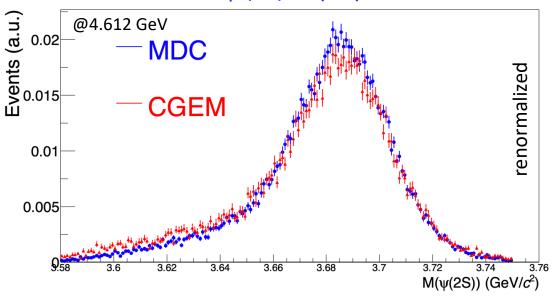

$e^+e^- \rightarrow \psi(2S)\pi^+\pi^-$

$$e^+e^- \rightarrow \psi(2S)\pi^+\pi^-, \psi(2S) \rightarrow J/\psi\pi^+\pi^- @ 4.612-4.946 \text{ GeV}$$

> Six particles, low and high momenta


- $ightharpoonup R_{XY} < 1 \text{ cm}, R_Z < 10 \text{ cm}, |\cos\theta| < 0.93$
- \triangleright PID π: p < 0.85 GeV/c, e, μ: p > 1 GeV/c, E/p
- ➤ 6C Kinematic fit


Marco Scodeggio



$e^+e^- \rightarrow \psi(2S)\pi^+\pi^-$

	$J/\psi ightarrow e^+ e^-$
Events (a.u.)	— MDC
Event 0.015	DO MDC — CBEM
0.01	
0.005	- " " " " " " " " " " " " " " " " " " "
Q	98 3 3.02 3.04 3.06 3.08 3.1 3.12 3.14 3 M(J/ψ) (GeV/c ²

√s = 4.612 GeV	Resolution (CGEM) [MeV]	√s = 4.612 GeV	Resolution (Boss) [MeV]
Muons (J/ψ)	17	Muons (J/ψ)	16
Electrons (J/ψ)	18	Electrons (J/ψ)	18
Muons (ψ(2S))	17	Muons (ψ(2S))	17
Electrons (ψ(2S))	19	Electrons (ψ(2S))	18
√s = 4.946 GeV	Resolution (CGEM) [MeV]	√s = 4.946 GeV	Resolution (Boss) [MeV]
Vs = 4.946 GeV Muons (J/ψ)	Resolution (CGEM) [MeV]	Vs = 4.946 GeV Muons (J/ψ)	Resolution (Boss) [MeV]
Muons (J/ψ)	17	Muons (J/ψ)	16

Comparable invariant mass resolution

$e^+e^- \rightarrow \psi(2S)\pi^+\pi^-$

√s = 4.612 GeV	Subdivision	Events (MDC)	Events (MDC)	Efficiency [%]	√s = 4.612 GeV	Subdivision	Events (CGEM)	Events (CGEM)	Efficiency [%]
NTot		300000			NTot		300000		
NCutCh		245441		81,81	NCutCh		226623		75,54
NCutGoodCh		204497		68,17	NCutGoodCh		180740		60,25
	<u>Electron</u>		97035	64,69		<u>Electron</u>		83903	55,94
	<u>Muon</u>		107462	71,64		<u>Muon</u>		96837	64,56
NCut_6trks		91255		30,42	NCut_6trks		59425		19,81
	<u>Electron</u>		39015	26,01		<u>Electron</u>		24223	16,15
	<u>Muon</u>		52240	34,83		<u>Muon</u>		35202	23,47
NCut_Alltrks		140852		46,95	NCut_Alltrks		101275		33,76
	<u>Electron</u>		60505	40,34		<u>Electron</u>		41340	27,56
	<u>Muon</u>		80347	53,56		<u>Muon</u>		59935	39,96
√s = 4.946 GeV	Subdivision	Events (MDC)	Events (MDC)	Efficiency [%]	√s = 4.946 GeV	Subdivision	Events (CGEM)	Events (CGEM)	Efficiency [%]
NTot		300000			NTot		300000		
NCutCh									
		249799		83,27	NCutCh		231838		77,28
NCutGoodCh		249799 204271		83,27 68,09	NCutCh NCutGoodCh		231838 182552		77,28 60,85
	Electron		97248	-		Electron		85215	_
	Electron Muon		97248 107023	68,09		Electron <u>Muon</u>		85215 97337	60,85
				68,09 64,83					60,85 56,81
NCutGoodCh		204271		68,09 64,83 71,35	NCutGoodCh		182552		60,85 56,81 64,89
NCutGoodCh	Muon	204271	107023	68,09 64,83 71,35 31,22	NCutGoodCh	Muon	182552	97337	60,85 56,81 64,89 21,01
NCutGoodCh	Muon Electron	204271	107023 40407	68,09 64,83 71,35 31,22 26,94	NCutGoodCh	Muon Electron	182552	97337 25687	60,85 56,81 64,89 21,01 17,12
NCutGoodCh NCut_6trks	Muon Electron	93651	107023 40407	68,09 64,83 71,35 31,22 26,94 35,50	NCutGoodCh NCut_6trks	Muon Electron	182552 63030	97337 25687	60,85 56,81 64,89 21,01 17,12 24,90

MDC

CGEM

Decrease in global event reconstruction efficiency ~10%

Marco Scodeggio

(corresponding to 5% single track CGEM efficiency less than MDC)

$e^{+}e^{-} \to h_{c}(2P)\pi^{+}\pi^{-}, h_{c}(2P) \to DD^{*}$ INFN

$$e^+e^- \to \pi^+\pi^-h_c(2P)$$
 @ 4.640-4.660 GeV

$$h_c(2P) \to D^{*+}D^{-} + \text{c.c.}$$

$$D^- \to K^+ \pi^- \pi^- (9.4\%)$$

$$D^{*+} \rightarrow \pi^{+} D^{0} (67.7\%)$$

$$D^0 \to K^- \pi^+ (3.9\%)$$
 and $K^- \pi^+ \pi^0 (14.4\%)$

Selections

➤ MM selections, or 4C/5C KF chi2 cuts

- Eight particles
- > Very low momentum pion

$$K^+K^-\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-$$
 (2K6 π) and

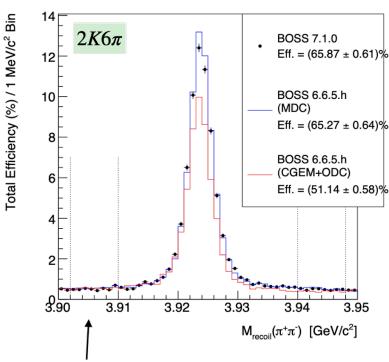
Plotting MC Truth **Kinematics** for accepted events

otal Efficiency (%) / 5 MeV/c Bi $2K6\pi$ BOSS 7.1.0 Eff. = $(2.09 \pm 0.08)\%$ BOSS 6.6.5.h 0.5 (MDC) Eff. = $(1.84 \pm 0.08)\%$ 0.4 BOSS 6.6.5.h (CGEM+ODC) 0.3 Eff. = $(0.31 \pm 0.03)\%$ 0.2 0.1 0.10

 $e^+e^- \to \pi^+\pi^-h_c(2P)$ at 4640 and 4660 MeV [2K6 π]

Rvan Mitchell

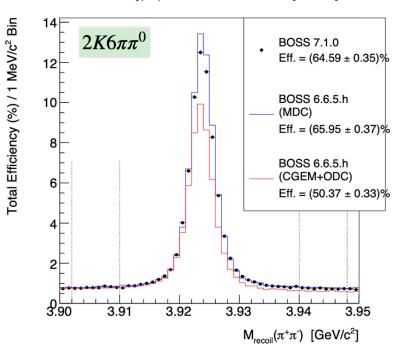
MC TRUTH $p_{\underline{}}$ of $\pi^{\underline{}}$ from $D^{\underline{}}$ Decay [GeV/c]



$e^+e^- \rightarrow h_c(2P)\pi^+\pi^-$

$$e^+e^-\to\pi^+\pi^-h_c(2P)$$

 $e^+e^- \to \pi^+\pi^-h_c(2P)$ at 4640 and 4660 MeV [2K6 π]

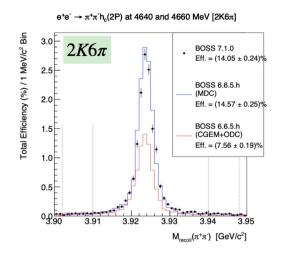

Subtract left and right sidebands when calculating efficiencies, since combinatorial backgrounds are larger in the inclusive $\pi^+\pi^-$ case.

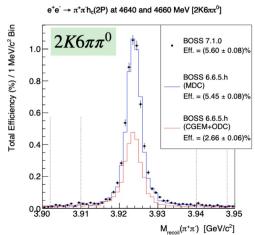
> Comparable invariant mass resolution

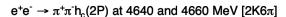
> ~15% lower CGEM reconstruction efficiency

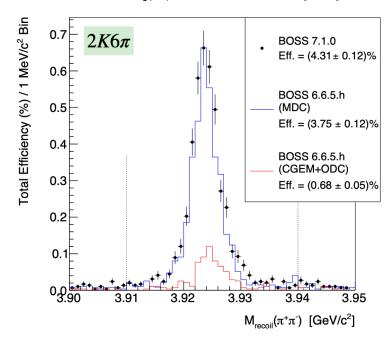
$\pi^+\pi^-$ inclusive analysis (to avoid the low momentum pion)

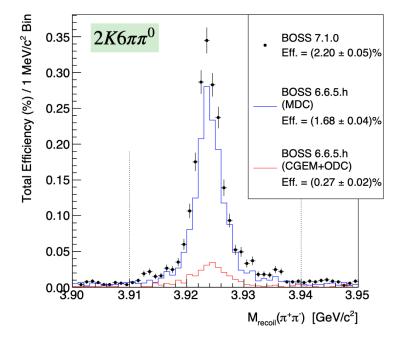
 $e^+e^- \to \pi^+\pi^- h_c(2P)$ at 4640 and 4660 MeV [2K6 $\pi\pi^0$]


Tracking efficiency seems suffering crowded events Ryan Mitchell


$e^{+}e^{-} \to h_{c}(2P)\pi^{+}\pi^{-}, h_{c}(2P) \to DD^{*}$ INFN



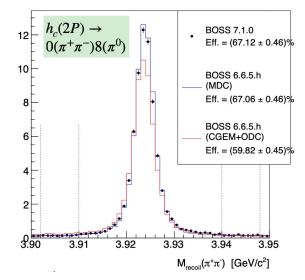

Miss the π^+ (cuts on D^- , D^0 , and D^{*+} (using recoil mass))



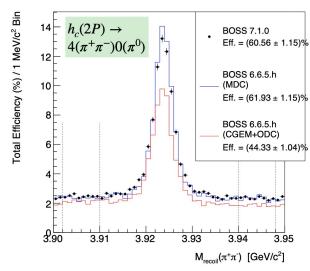
All eight particles combinations (all the D and D* mass cuts, 4C/5C Kinematic Fit)

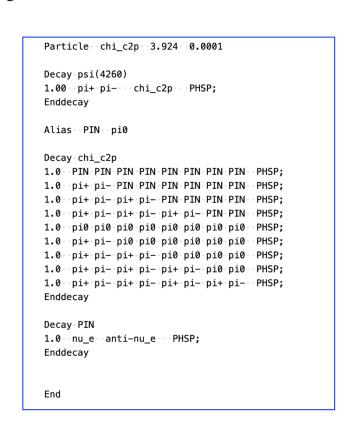
 $e^+e^- \to \pi^+\pi^-h_c(2P)$ at 4640 and 4660 MeV [2K6 $\pi\pi^0$]

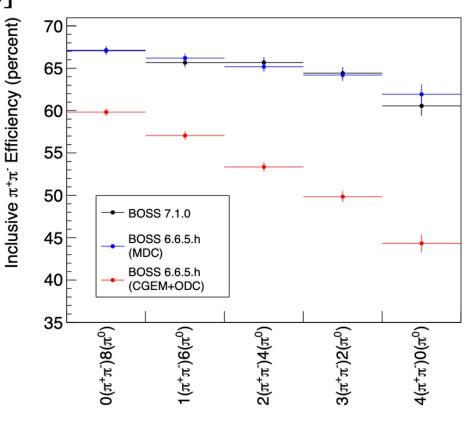
Ryan Mitchell



$e^+e^- \to h_c(2P)\pi^+\pi^-, h_c(2P) \to 8\pi$ (INFN)




 $e^+e^- \rightarrow \pi^+\pi^-h_c(2P)$ at 4660 MeV [NTK0]


 $e^+e^- \rightarrow \pi^+\pi^-h_c(2P)$ at 4660 MeV [NTK8]

 $h_c(2P) \to N(\pi^+\pi^-)M(\pi^0)$ [8 π]

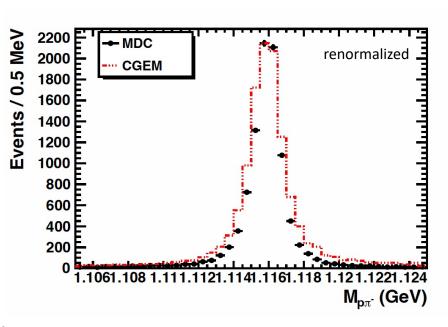
 $e^+e^- \rightarrow \pi^+\pi^-h_c(2P)$ at 4660 MeV

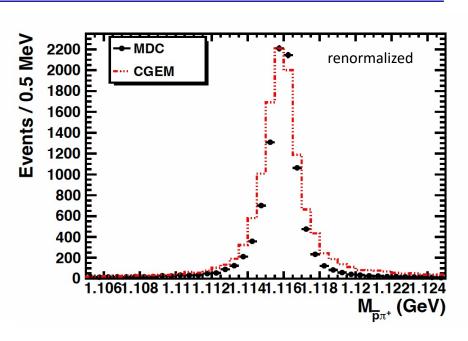
h_a(2P) Decay Mode

CGEM Tracking not optimized for multiple tracks events Efficiency decreases with increasing track multiplicity

Ryan Mitchell

$e^+e^- \rightarrow \Lambda \overline{\Lambda} @ \psi(2S)$



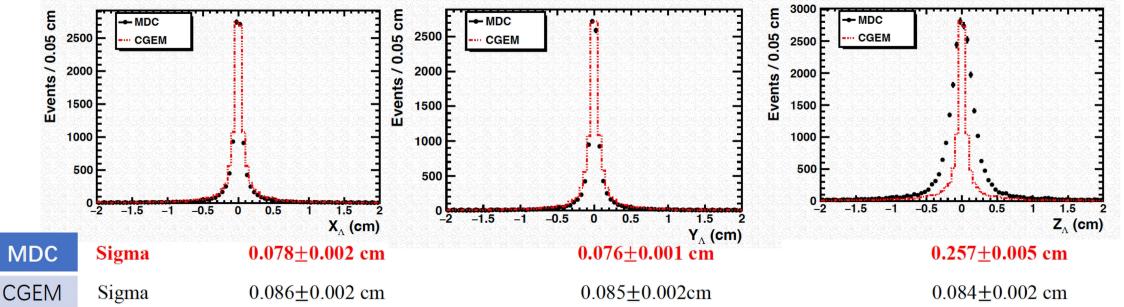


- > Four particles
- Displaced vertices

Selections

- $> |\cos\theta| < 0.93$
- ightharpoonup PID π: p < 0.6 GeV/c, p: p > 0.8 GeV/c
- > Secondary vertex fit
- \triangleright 4C Kinematic Fit χ^2 < 200

	Λ	$\overline{\Lambda}$
σMDC	1.11 ± 0.02 MeV/c	1.09 ± 0.02 MeV/c
σ CGEM+ODC	$1.41 \pm 0.04 \text{ MeV/c}$	$1.40 \pm 0.04 \text{ MeV/c}$


Slightly worse mass resolution

Jianing Guo, Liang Yan

$e^+e^- \rightarrow \Lambda \overline{\Lambda} @ \psi(2S)$

	CGEM		MDC	
Total number	50000	100.00%	50000	100.00%
Good charged track	24341	48.68%	33478	66.96%
pppipi num	20597	84.62%	30680	91.64%
Lambda	18870	91.62%	29702	96.81%
Lambdabar	17204	91.17%	28686	96.58%
LL candidates	17204	100.00%	28686	100.00%
Kinematic Fit	13237	76.94%	25978	90.56%
Total Efficiency	-	26.47%	-	51.96%

- ➤ Much better Z resolution
- ➤ Slightly worse XY resolution
- ➤ Lower reconstruction BUT Hough not efficient for displaced vertices

(local track finding under development)

Jianing Guo, Liang Yan

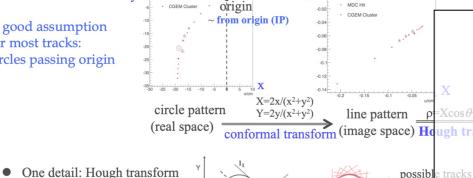
Optimizing tracking parameters?

Stereo wire

Track dircle

Circle finding with Hough transform

- Circle finding with all X-view hits
- Use 2D histogram to find peaks in parameter space (number of bins optimized with single μ^-)
- Get track parameters from peak position : $(\tilde{\rho}, \tilde{\theta}) \Leftrightarrow (\varphi_0, \kappa)$


ρ 👸 3 GEM X-clusters

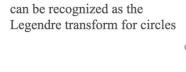
Associate X-view hits to the track candidate (selection criteria studied with single μ^-)

possible tracks

Hough transform (Legendre transform) Several parameters for hit association and cell binning too loose

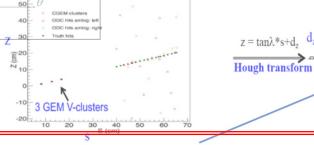
A good assumption for most tracks: circles passing origin

V-view hits association


• For each circle candidate, the intersected V-view hits can be represented in a s-z plane

>z coordinate can be calculated by tangency between drift circle and track circle in x-y plane


>s is trajectory length in the transverse plane


 V-view hits belong to the same track are co-linear in s-z plane (image spcae)

• Use **Hough transform** to convert (s, z) pairs into lines in d_z -tan λ plane (parameter space)

of the drift circles of ODC hits

• The cell with the maximum votes (peak) => parameters dz, $tan\lambda$ (number of bins optimized with single μ^-)

• Associate V-view hits layer by layer (selection criteria studied with single μ^-)

Liangliang Wang

Status and Results

➤ The CGEM+ODC tracking code is ready for physics analysis

from the software point of view

- Momentum and invariant mass resolution comparable to MDC tracking
- Vertexing along Z much better for CGEM, XY almost comparable
- CGEM+ODC tracking suffers in many-tracks events,

efficiency becomes worse increasing the number of tracks in the event

Optimizing tracking parameters for many-tracks events

Test and validate the local track finding (displaced vertices, many-tracks...)

Benchmark: questions, remarks...

Is the dramatic efficiency drop connected to soft pions?

It seems not, from a preliminary investigation on numbers. We need to check with MonteCarlo truth, soft pion efficiency for high multiplicity events

Is it connected to higher material budget?

No, in case we should see this effect also in single track events

Worse resolution with $J/\psi \rightarrow e^+ \ e^-$

Bremsstrahlung is higher, but algorithms can be developed to recover (Panda, B2)

Check the maximum efficiency with ideal tracking

Good idea, we had not time, let's see in December

Benchmark: questions, remarks...

We will have higher energies, higher track multiplicities, higher background, more displaced vertices. We need additional benchmark channels with heavy baryons Good idea, please give us the manpower to analyze such channels (ask physics coordinators)

Do we have a strategy to recover for the efficiency loss?

Now we know what is going wrong, we have several ideas on what to improve, in December we will show our path towards the solution

Timeline?

Time schedule 2023-2024

year	20	23	3 2024								
	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.
			New	cosmic-ra	ay analysi	s (1-2 per	sons)				
New cosmic-				Calibr	ation (Ric	cardo)					
ray based study				CGEM A	lignment	(Aiqiang)					
J			Ι	Digitizatio	on tuning	(1 person)				
Global alignment of CGEM+ODC		est with simulated events nghui Wu and Han Miao)									
Track		nentation ng with C			Optimization of CA (L.L. Wang)						
reconstruction		nark chan Γ (several Stefano	colleague		Benchmark channel check based on CA					A	
Codes merging								OSS into Wu & L.		BOSS	

Ready for the 2nd round?

