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Prolegomena: Computer simulation

Computer simulation is a widely used method for studying complex systems, with applications in nearly every field of scientific study. 

The first truly programmable digital computer, the Electrical Numerical 

Integrator and Computer (ENIAC), was born in 1945.

Nicholas Metropolis and Stanislaw Ulam (under the encouragement of John Von 

Neumann and Edward Teller):  first computational model of a thermonuclear 

reaction.

This model was constructed from a mixture of well-established theoretical 

principles, physical insight, and clever mathematical tricks (as is paradigmatic in 

the physical sciences). They then transformed the model into a computable 

algorithm, which simulated the evolution of the system in question.

The history of Computer simulation is as long as that of the digital computer itself, beginning in the United States during World War II.

ENIAC: Electronic Numerical Integrator And Computer

 ~ 500 Flop/s

~100  m2    30 tons  18,000 vacuum tubes

Apple iPhone 12 ~ 11 TFlop/s
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Computational science is an essential part of modern 
science, and scientists must be able to exploit the power of 
computers effectively. 

Modelling complex systems with computers is far more 
than simply crunching numbers. 

Successful computational scientists draw on a balanced 
mix of analytical, intuitive, and numerical skills to solve 
problems that would otherwise be intractable.

Starting since those early days…
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The born of Computational Theoretical Physics
In 1974 the seminal paper by Ken Wilson (1982 Nobel Prize in Physics)   “Confinement of Quarks”  paved the way to 

the study of fundamental interactions from first principles.

10 E FF ECTIVE ACTION FOR COMPOSITE OPERATORS

{1973); S. Weinberg, iMd. 7, 2887 {1973);R. Jackiw,
Ref. 4.

t~The analysis of the physical interpretation. of Z{P, G)I,~„,
is an adaptation to the present context of the correspond-
ing argument for P5)~„,,„.. That discussion is due to
K. Symanzik, Commun. Math. Phys. 16, 48 {1970). We

learned it from S. Coleman, in proceedings of the
Lectures given at the International Summer School of
Physics "Ettore Majorana, " 1973 {unpublished).

~oR. Dashen, B. Hasslacher, and A. Neveu, Phys. Rev.
D {tobe published).

PHYSICAL REVIEW D VOLUME 10, NUMBER 8 15 0C TOB ER 1974

Confinement of qnarks*

Kenneth G. %ilson
Laboratory of nuclear Studies, Cornell University, Ithaca, iVevv York l4850

{Received 12 June 1974)

A mechanism for total confinement of quarks, similar to that of Schwinger, is defined which requires
the existence of Abelian or non-Abelian gauge fields. It is shown how to quantize a gauge field theory
on a discrete lattice in Euclidean space-time, preserving exact gauge invariance and treating the gauge
fields as angular variables {which makes a gauge-fixing term unnecessary). The lattice gauge theory has
a computable strong-coupling limit; in this limit the binding mechanism applies and there are no free
quarks. There is unfortunately no Lorentz (or Euclidean) invariance in the strong-coupling limit. The
strong-coupling expansion involves sums over all quark paths and sums over all surfaces {on the lattice)
joining quark paths. This structure is reminiscent of relativistic string models of hadrons.

I. INTRODUCTION

The success of the quark-constituent picture
both for resonances and for deep-inelastic elec-
tron and neutrino processes makes it difficult to
believe quarks do not exist. The problem is that
quarks have not been seen. This suggests that
quarks, for some reason, cannot appear as sep-
arate particles in a final state. A number of
speculations have been offered as to how this
might happen. '
Independently of the quark problem, Schwinger

observed many years ago' that the vector mesons
of a gauge theory can have a nonzero mass if vacu-
um polarization totally screens the charges in a
gauge theory. Schwinger illustrated this result
with the exact solution of quantum electrodynamics
in one space and one time dimension, where the
photon acquires a mass -e' for any nonzero charge
e [e has dimensions of (mass)'~' in this theory J.
Schwinger suggested that the same effect could oc-
cur in four dimensions for sufficiently large cou-
pllngs.
Further study of the Schwinger model by Lowen-

stein and Swieca' and Casher, Kogut, and Suss-
kind' has shown that the asymptotic states of the
model contain only massive photons, not elec-
trons. Nevertheless, as Casher clat. have shown
in detail, the electrons are present in deep-in-
elastic processes and behave like free pointlike

particles over short times and short distances.
The polarization effects which prevent the ap-
pearance of electrons in the final state take place
on a longer time scale (longer than 1/m&, where
rn& is the photon mass).
A new mechanism which keeps quarks bound

will be proposed in this paper. The mechanism
applies to gauge theories only. The mechanism
will be illustrated using the strong-coupling limit
of a gauge theory in four-dimensional space-time.
However, the model discussed here has a built-in
ultraviolet cutoff, and in the strong-coupling limit
all particle masses (including the gauge field
masses) are much larger than the cutoff; in con-
sequence the theory is far from covariant.
The confinement mechanism proposed here is

soft (long-time scale). However, in the model dis-
cussed here the cutoff spoils the possibility of
free pointlike behavior for the quarks.
The model discussed in this paper is a gauge

theory set up on a four-dimensional Euclidean lat-
tice. The inverse of the lattice spacing a serves
as an ultraviolet cutoff. The use of a Euclidean
space (i.e., imaginary instead of real times) in-
stead of a Lorentz space is not a serious re-
striction; the energy eigenstates (including scat-
tering states) of the lattice theory can be deter-
mined from the "transfer-matrix" formalism as
has been discussed by suri' and reviewed by
Wilson and Kogut. ' A brief discussion of the

~ ""g7
VO1.UME 20, NUMBER 2 Aran. , 1948

Space- . . ime A~~~iroac. i 1:o .5 on-. le. .a1:ivistic
4 uantuns .V. :ec.zanies

R. P. I EvNMAN
Cornell University, Ithaca, Veto York

Non-relativistic quantum mechanics is formulated here in a different way. It is, however,
mathematically equivalent to the familiar formulation. In quantum mechanics the probability
of an event which can happen in several different ways is the absolute square of a sum of
complex contributions, one from each alternative way. The probability that a particle will be
found to have a path x(t) lying somewhere within a region of space time is the square of a sum
of contributions, one from each path in the region. The contribution from a single path is
postulated to be an exponential whose (imaginary) phase is the classical action (in units of h)
for the path in question. The total contribution from all paths reaching x, t from the past is the
wave function P(x, t). This is shown to satisfy Schroedinger's equation. The relation to matrix
and operator algebra is discussed. Applications are indicated, in particular to eliminate the
coordinates of the field oscillators from the equations of quantum electrodynamics.

I. INTRODUCTION
; 'I is a curious historical fact that modern
& - quantum mechanics began with two quite
di8'erent mathematical formulations: the differ-
ential equation of Schroedinger, and the matrix
algebra of Heisenberg. The two, apparently dis-
similar approaches, were proved to be mathe-
matically equivalent. These two points of view
were, destined to complement one another and
to be ultimately synthesized in Dirac's trans-
formation theory.
This paper will describe what is essentially a

third formulation of non-relativistic quantum
theory. This formulation was suggested by some
of Dirac's' ' remarks concerning the relation of

classical action' to quantum mechanics. A proba-
bility amplitude is associated with an entire
motion of a particle as a function of time, rather
than simply with a position of the particle at a
particular time.
The formulation is mathematically equivalent

to the more usual formulations. There are,
therefore, no fundamentally new results. How-
ever, there is a pleasure in recognizing old things
from a new point of view. Also, there are prob-
lems for which the new point of view offers a
distinct advantage. For example, if two systems
A and 8 interact, the coordinates of one of the
systems, say 8, may be eliminated from the
equations describing the motion of A. The inter-

' P. A. M. Dirac, The Principles of Quantum 3Eeohanics
(The Clarendon Press, Oxford, 1935), second edition,
Section 33; also, Physik. Zeits. Sowjetunion 3, 64 (1933).' P. A. M. Dirac, Rev. Mod. Phys. 1'7, 195 (1945).

3 Throughout this paper the term "action" will be used
for the time integral of the Lagrangian along a path.
%'hen this path is the one actually taken by a particle,
moving classically, the integral should more properly be
called Hamilton's 6rst principle function.

367

This paper is fundamentally based on 

the seminal work of Richard Feynman, 

who introduced the path integral 

formulation of quantum mechanics 

and quantum field theory.
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https://www.claymath.org/millennium-problems/

If there is a mass gap, there 
cannot be free massless 
gluons which would have no 
lower bound on their energy. 
Hence, a mass gap implies 
confinement. 

Color confinement 
is still an unsolved 
problem
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Color confinement is an unsolved problem, but Ken Wilson's paper opened the possibility 

of investigating many aspects of the strong interactions ab initio (i.e., starting directly 

from the Lagrangian of the theory).

Lattice QCD and High Performance Computing

QCD 
becomes 
strongly 
coupled at 
the 
hadronic 
scale 1 GeV 
or 1 fm 
(10-13 cm)

Asymptotic 
Freedom

Quantum Chromo Dynamics, the theory to describe 

the strong interactions in the Standard Model of 

elementary particles, is amenable to a perturbative 

treatment only at high energies. 


The growth of the gauge coupling in the infrared, 

requires the use of non-perturbative methods to 

determine the low energy properties of QCD. 


Lattice gauge theory, proposed by K. Wilson in 1974 

provides such a method. 

Dirac matrices

quark-field spinor for a quark of flavor q and mass mq

a color index running from a=1 to Nc=3

gluon fields

generators of the SU(3) group

QCD coupling constant

field tensor

�µ

 q,a

FA
µ⌫ = @µAA

⌫ � @⌫AA
µ � gsfABCAB

µAC
⌫

gs

C = 1, . . . , N2
c � 1 = 8AC

µ

[tA, tB] = ifABCtc tCab ⌘ �C
ab/2

αs =
g2

s

4π

<latexit sha1_base64="01TNmbWKWNKwoC8OmpgNVpr85aE="></latexit>

L =
X

q

 ̄q,a(i�
µ@µ�ab � gs�

µtCabAC
µ � mq�ab) q,b �

1

4
FAµ⌫F

Aµ⌫

35 9. Quantum Chromodynamics

more than three jets in the final state. A selection of results from inclusive jet [429, 443, 600–605],
dijet [451], and multi-jet measurements [385, 387, 388, 429, 606–610] is presented in Fig. 9.3, where
the uncertainty in most cases is dominated by the impact of missing higher orders estimated through
scale variations. From the CMS Collaboration we quote for the inclusive jet production at

Ô
s = 7

and 8 TeV, and for dijet production at TeV the values that have been derived in a simultaneous
fit with the PDFs and marked with “*” in the figure. The last point of the inclusive jet sub-field
from Ref. [605] is derived from a simultaneous fit to six datasets from di�erent experiments and
partially includes data used already for the other data points, e.g. the CMS result at 7 TeV.

The multi-jet –s determinations are based on 3-jet cross sections (m3j), 3- to 2-jet cross-section
ratios (R32), dijet angular decorrelations (RdR, RdPhi), and transverse energy-energy-correlations
and their asymmetry (TEEC, ATEEC). The H1 result is extracted from a fit to inclusive 1-, 2-,
and 3-jet cross sections (nj) simultaneously.

All NLO results are within their large uncertainties in agreement with the world average and
the associated analyses provide valuable new values for the scale dependence of –s at energy scales
now extending up to almost 2.0 TeV as shown in Fig. 9.4.

αs(MZ2) = 0.1179 ± 0.0009

August 2021

α s
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2 )
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τ decay (N3LO)
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HERA jets (NNLO)
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Figure 9.4: Summary of measurements of –s as a function of the energy scale Q. The respective
degree of QCD perturbation theory used in the extraction of –s is indicated in brackets (NLO:
next-to-leading order; NNLO: next-to-next-to-leading order; NNLO+res.: NNLO matched to a
resummed calculation; N3LO: next-to-NNLO).

11th August, 2022
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reticolo ipercubico isotropo
lungo le d dimensioni

sito del reticolo:
xy = any , ny � Z 1 < xy < Ly

V = L1 × L2× L3 × L4

xy nya

�(x) �(na)
Z
d4x a4

X

n

#y� dy�(x)v
1

a
(�(x+ aŷ)c �(x))

D�
Y

n

d�(na)

Tabella di conversione

continuo reticolo

S =
X

x

a4

(
1

2

4X

y=1

(dy�(x))
2 +

1

2
m2�2(x) +

x

4!
�4(x)

)
Esempio: azione discretizzata per la teoria �4

adimensionali

definiamo quantità adimensionali su reticolo (rescaling in unita’
di lattice spacing in base alle rispettive dimensioni canoniche): 

�(x) = a�(x) m= am

volume del reticolo:

S =
X

x

(
1

2

4X

y=1

(dy�(x))
2 +

1

2
m2�

2
(x) +

x

4!
�
4
(x)

)

LATTICE  QCD

Ken Wilson (1974)   —>  space-time discretisation —> lattice regularization of QCD —> 


non-perturbative calculations by numerical evaluation of the Feynman path integral that defines the theory

hyper cubic lattice

18. Lattice QCD 3

Figure 18.1: Sketch of a two-dimensional slice through the µ − ν plane of a
lattice, showing gluon fields lying on links and forming either the plaquette product
appearing in the gauge action or a component of the covariant derivative connecting
quark and antiquark fields.

as long as one chooses β = 6/g2
lat for the lattice coupling. In this expression, glat is

the bare coupling constant in the lattice scheme, which can be related (by combining
continuum and lattice perturbation theory) to a more conventional coupling constant
such as that in the MS scheme (see Sec. 18.3.4 below).

In practice, the lattice spacing a is non-zero, leading to discretization errors. In
particular, the lattice breaks Euclidean rotational invariance (which is the Euclidean
version of Lorentz invariance) down to a discrete hypercubic subgroup. One wants to
reduce discretization errors as much as possible. A very useful tool for understanding
and then reducing discretization errors is the Symanzik effective action: the interactions
of quarks and gluons with momenta low compared to the lattice cutoff (|p| " 1/a)
are described by a continuum action consisting of the standard continuum terms (e.g.
the gauge action given in Eq. (18.2)) augmented by higher dimensional operators
suppressed by powers of a [5]. For the Wilson lattice gauge action, the leading

corrections come in at O(a2). They take the form
∑

j a2cjO
(j)
6 , with the sum running

over all dimension-six operators O
(j)
6 allowed by the lattice symmetries, and cj unknown

coefficients. Some of these operators violate Euclidean rotational invariance, and all of
them lead to discretization errors of the form a2Λ2, where Λ is a typical momentum
scale for the quantity being calculated. These errors can, however, be reduced by adding
corresponding operators to the lattice action and tuning their coefficients to eliminate the

October 1, 2016 19:59

hO(U, q, q̄)i = (1/Z)

Z
[dU ]

Y

f

[dqf ][dq̄f ]O(U, q, q̄)e�Sg[U ]�
P

f q̄f (D[U ]+mf )qf

Z =

Z
[dU ]e�Sg[U ]

Y

f

det(D[U ] + mf)

Vlat = N3
s ⇥ Nt

<latexit sha1_base64="D3NfCcV4i6i3bFBPox989qVG7tU=">AAACE3icbVDLSgMxFM3UV62vUZduokVwVWZ8oBuh4MaVVLAP6IxDJpO2oZkHyR2hDLP2C/wMt7pwJ279APFnTKddaOuBwMk59+bmHj8RXIFlfRmlhcWl5ZXyamVtfWNzy9zeaak4lZQ1aSxi2fGJYoJHrAkcBOskkpHQF6ztD6/GfvuBScXj6A5GCXND0o94j1MCWvLM/ZaXOX4sgkwQyHN8iW88dX+CHeAhU/oCnlm1alYBPE/sKamiKRqe+e0EMU1DFgEVRKmubSXgZkQCp4LlFSdVLCF0SPqsq2lE9CA3K1bJ8aFWAtyLpT4R4EL93ZGRUKlR6OvKkMBAzXpj8T+vm0Lvws14lKTAIjoZ1EsFhhiPc8EBl4yCGGlCqOT6r5gOiCQUdHqVIqLxozoNe3b3edI6rtlWzb49rdbPprmU0R46QEfIRueojq5RAzURRY/oGb2gV+PJeDPejY9JacmY9uyiPzA+fwDa7Z21</latexit><latexit sha1_base64="D3NfCcV4i6i3bFBPox989qVG7tU=">AAACE3icbVDLSgMxFM3UV62vUZduokVwVWZ8oBuh4MaVVLAP6IxDJpO2oZkHyR2hDLP2C/wMt7pwJ279APFnTKddaOuBwMk59+bmHj8RXIFlfRmlhcWl5ZXyamVtfWNzy9zeaak4lZQ1aSxi2fGJYoJHrAkcBOskkpHQF6ztD6/GfvuBScXj6A5GCXND0o94j1MCWvLM/ZaXOX4sgkwQyHN8iW88dX+CHeAhU/oCnlm1alYBPE/sKamiKRqe+e0EMU1DFgEVRKmubSXgZkQCp4LlFSdVLCF0SPqsq2lE9CA3K1bJ8aFWAtyLpT4R4EL93ZGRUKlR6OvKkMBAzXpj8T+vm0Lvws14lKTAIjoZ1EsFhhiPc8EBl4yCGGlCqOT6r5gOiCQUdHqVIqLxozoNe3b3edI6rtlWzb49rdbPprmU0R46QEfIRueojq5RAzURRY/oGb2gV+PJeDPejY9JacmY9uyiPzA+fwDa7Z21</latexit><latexit sha1_base64="D3NfCcV4i6i3bFBPox989qVG7tU=">AAACE3icbVDLSgMxFM3UV62vUZduokVwVWZ8oBuh4MaVVLAP6IxDJpO2oZkHyR2hDLP2C/wMt7pwJ279APFnTKddaOuBwMk59+bmHj8RXIFlfRmlhcWl5ZXyamVtfWNzy9zeaak4lZQ1aSxi2fGJYoJHrAkcBOskkpHQF6ztD6/GfvuBScXj6A5GCXND0o94j1MCWvLM/ZaXOX4sgkwQyHN8iW88dX+CHeAhU/oCnlm1alYBPE/sKamiKRqe+e0EMU1DFgEVRKmubSXgZkQCp4LlFSdVLCF0SPqsq2lE9CA3K1bJ8aFWAtyLpT4R4EL93ZGRUKlR6OvKkMBAzXpj8T+vm0Lvws14lKTAIjoZ1EsFhhiPc8EBl4yCGGlCqOT6r5gOiCQUdHqVIqLxozoNe3b3edI6rtlWzb49rdbPprmU0R46QEfIRueojq5RAzURRY/oGb2gV+PJeDPejY9JacmY9uyiPzA+fwDa7Z21</latexit><latexit sha1_base64="D3NfCcV4i6i3bFBPox989qVG7tU=">AAACE3icbVDLSgMxFM3UV62vUZduokVwVWZ8oBuh4MaVVLAP6IxDJpO2oZkHyR2hDLP2C/wMt7pwJ279APFnTKddaOuBwMk59+bmHj8RXIFlfRmlhcWl5ZXyamVtfWNzy9zeaak4lZQ1aSxi2fGJYoJHrAkcBOskkpHQF6ztD6/GfvuBScXj6A5GCXND0o94j1MCWvLM/ZaXOX4sgkwQyHN8iW88dX+CHeAhU/oCnlm1alYBPE/sKamiKRqe+e0EMU1DFgEVRKmubSXgZkQCp4LlFSdVLCF0SPqsq2lE9CA3K1bJ8aFWAtyLpT4R4EL93ZGRUKlR6OvKkMBAzXpj8T+vm0Lvws14lKTAIjoZ1EsFhhiPc8EBl4yCGGlCqOT6r5gOiCQUdHqVIqLxozoNe3b3edI6rtlWzb49rdbPprmU0R46QEfIRueojq5RAzURRY/oGb2gV+PJeDPejY9JacmY9uyiPzA+fwDa7Z21</latexit>

(Quantum Chromo Dynamics on a discrete space-time lattice)

Aspetti non perturbativi della QCD L. Cosmai 58

reticolo ipercubico isotropo
lungo le d dimensioni

sito del reticolo:
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Esempio: azione discretizzata per la teoria �4

adimensionali

definiamo quantità adimensionali su reticolo (rescaling in unita’
di lattice spacing in base alle rispettive dimensioni canoniche): 

�(x) = a�(x) m= am

volume del reticolo:

S =
X

x

(
1

2

4X

y=1
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2 +

1

2
m2�

2
(x) +

x
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�
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)

Equivalence with Classical Statistical Mechanics

Quantum Field Theory 
in  d space-time 
dimensions 

Classical Statistical Mechanics 
in d spatial dimensions
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Soon after the Ken Wilson’s seminal paper…

Early days of Lattice QCD

VOLUME 42, +UMBER 21 21 Mar 1979

Experiments with a Gauge-Invariant Ising System

Michael Creutz, Laurence Jacobs, and Claudio Rebbi
Physics Department, Brookhaven Nationa/' I.aboratory, Upton, Nese York 11973

(Received 19 March 1979)

Using Monte Carlo techniques, we evaluate the path integral for the four-dimensional
lattice gauge theory with a Z 2 gauge group. The system exhibits a first-order transition.
This is contrary to the implications of the approximate Migdal recursion relations but
consistant with mean-field-theory arguments. Our "data" agree well with a low-temper-
ature expansion and the exact duality between the high- and low-temperature phases.

Based on a non-Abelian gauge theory, the stan-
dard model of hadronic dynamics may simulta-
neously confine quarks in physical hadrons and
possess asymptotic freedom, a vanishing effec-
tive coupling at short distances. Central to an
understanding of this picture is the study of phase
transitions in lattice gauge theory.
Proposed by Wilson as a nonperturbative regu-

larization procedure, lattice gauge theory allows
a strong-coupling expansion which demonstrates
quark confinement for sufficiently large bare
coupling. ' Nevertheless, conventional weak-
coupling perturbation theory suggests a possible
electrodynamicslike nonconfining phase. Using
mean-field arguments, Balian, Drouffe, and
Itzykson have found evidence that in enough space-
time dimensions lattice gauge theories will in-
deed posses two distinct phases depending on the
coupling strength. ' It is essential for the stan-
dard model that four space-time dimensions be
insufficient for such a transition to occur with an
SU(3) gauge group.
Using renormalization-group transformations

with approximations based on bond moving,
Migdal has argued that four dimensions represent
a critical case for lattice gauge theory, just as
two dimensions are critical for phase transitions
in conventional spin systems with nearest-neigh-
bor interactions. ' Indeed, Migdal's relations are
identical for gauge theory in d dimensions and
spin systems in d/2 dimensions. Thus, the non-
existence of a phase transition in the O(3) Heisen-
berg model in two dimensions is touted as evi-
dence for the absence of a nonconfining phase in
non-Abelian gauge theories. Further, the inter-
esting and rather complicated phase structure of
the X-Y model in two dimensions has been corre-
lated with the possibility of avoiding confinement
in a lattice version of electrodynamics based on
a U(1) gauge group.
With Wilson's lattice cutoff, one can go beyond

the usual continuous Lie groups and consider the-
ories based on discrete groups. The simplest
such group is Z„ the addition of integers modulo

2. As discussed by Balian, Drouffe, and Itzykson,
this group provides a gauge-invariant version of
the Ising model. ' The Migdal recursion relation
suggests an analogous phase structure between
this model in four dimensions and the convention-
al Ising model in two dimensions. The latter
model is exactly solvable and exhibits a second-
order phase transition between a disordered and
a ferromagnetic state. The purpose of this Letter
is to present results, obtained by a Monte Carlo
simulation, which strongly indicate that the phase
transition in the four-dimensional Z, gauge the-
ory is of the first order. Thus, we find evidence
of a breakdown of the analogy between this model
and the two-dimensional Ising model.
Monte Carlo simulations have provided a useful

tool for studying statistical systems of lower di-
mensionality. ' In applying this method, one con-
structs by an iterative procedure a sequence of
configurations, Zy rX2 Z3 . , which eventually
simulates statistical equilibrium. Given any con-
figuration Z;, a new configuration Z, is obtained
from Z; by changing one of the statistical vari-
ables (spins) of the lattice. Z,.„is set equal to
Z; or to Z,. with a definite conditional probability,
P, which depends on the actions (or internal en-
ergies) of && and Z&'. This probability is chosen
so as to ensure that, when equilibrium is reached,
the states occur in the sequence with density pro-
portional to the Boltzmann factor. The procedure
is continued until all the spins of the lattice have
been tested many times and it has become clear
that equilibrium has been attained. The states
occurring- in the sequence then provide a good
sample of the correct statistical sum.
A difficulty in the application of the method to

four-dimensional systems resides in the large
number of spins one has to consider if one wants
to incorporate a reasonable number of lattice
sites in each linear dimension. To overcome this
problem we have developed a technique for proc-
essing simultaneously in a high-speed computer
all the lattice variables situated along a definite
direction, thus effectively reducing a four-dimen-

1390 1979 The American Physical Society
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Monte Carlo study of aphelian lattice gauge theories

Michael Creutz, Laurence Jacobs, ~ and Claudio Rebbi
Physics Department, Brookhauen National Laboratory, Upton, New Fork 12973

{Received 21 June 1979)
' Using Monte Carlo techniques, we study the thermodynamics of four-dimensional Euclidean lattice gauge
theories, with gauge groups Z~ and U(1). For N & 4 the models exhibit a single first-order phase transition,
while for N ) 5 we observe two transitions of higher order. As N increases, one of these transitions moves
toward zero temperature, whereas the other remains at finite temperature and survives in the U(1) limit. The
behavior of the %'ilson loop factor is also analyzed for the Z, and Z, models.

I. INTRODUCTION

Lattice gauge theories currently provide one of
the most promising approaches toward a demon-
stration of quark confinement through an inter-
action with non-Abelian gauge fields. The lattice
formulation introduces a nonperturbative ultra-
violet cutoff rendering the theory well defined.
Wilson's expansion in terms of strings shows con-
finement for strong coupling~; however, ordinary
perturbation theory via a spin-wave expansion
suggests a possible unconfined phase for weak
coupling. According to conventional lore, four
space-time dimensions represent a critical case
where the spin-wave phase never appears for non-
Abelian continuous gauge groups, but does appear
for the Abelian group U(1) describing conventional
electrodynamics. This parallels the critical nature
of two dimensions for systems of spins interacting
through nearest-neighbor couplings; the Heisen-
berg model based on the non-Abelian symmetryo(3}
has only a disordered phase in two dimensions, s

whereas with the Abelian group U(l) there, is also
a low-temperature phase with correlation func-
tions behaving as a power of separation at large
distances.
Balian, Drouffe, and Itzykson suggested the

study of discrete gauge groups as a practice ground
for understanding the phase structure of lattice
gauge theories. ' Particularly interesting is the
group Z„, . the set of complex Nth roots of unity
with ordinary multiplication as the group operation.
For N =2 we have a gauge-invariant generalization
of the Ising model, e while when K goes to infinity
we obtain U(1), the group of relevance to electro-
dynamics. In an earlier paper we used Monte
Carlo techniques to argue that the Z2 model has a
first-order phase transition at the temperature
where the system is self-dual. In this article we
extend our investigation to the groups Z„and U(1).
Our results give evidence for a single, first-

order phase transition in the Z3 and Z4 theories,
at the self-dual temperatures. For larger values

II. THE MODELS

We formulate the theory on a four-dimensional
hypercubical lattice, Associated with each link
joining a pair of nearest-neighbor sites i and j is
an element U,.& of the group Z„defined by

~n=0, 1, . . . ,N —lj. (2.1)
This set forms an Abelian group under ordinary
multiplication. As N goes to infinity we obtain the
group U(1). The U„. are oriented on the links of
the lattice in the sense that we require

(2.2}
The action describing the interaction of these

of X, the Z„model appears instead to undergo
two phase transitions of higher order, at two tem-
peratures, the higher of which shows little N de-
pendence, whereas the other decreases for in-
creasing N as [1—cos (2v/N)] = O(1/N'). The former
transition survives the U(1) limit. This pattern
of phase transitions agrees nicely with recent the-
oretical arguments that for N large enough the Z„
theory should possess three phases, a disordered
one at high temperature, an ordered one similar
to that seen in the Z2 model at low temperature,
and a third intermediate phase mimicking the un-
confined phase of the U(1) theory. For the Z,
model, where the two transitions are separated
enough to delineate a clear intermediate phase
and yet the ordered phase extends to a tempera-
ture sufficiently high to allow for an efficient Monte
Carlo procedure, we have also studied the be-
havior of Wilson loops. ' They appear to decrease
exponentially with the area of the enclosed region
in the disordered phase and with the perimeter in
the intermediate- and low-temperature phases.
In Sec. II we define the models under consid-

eration. Section III reviews the Monte Carlo tech-
nique used to evaluate the statistical sums. Section
IV presents our results and Sec. V contains a few
closing remarks.
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er to the zero of t' and the data analysis will have
accompanying uncertainties.
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Using Monte Carlo techniques, we study pure SU(2) gauge fields in four and five space-
time dimensions and a compact SO(2) gauge field in four dimensions. Ultraviolet di-
vergences are regulated with Wilson' s lattice prescription. Both SU(2) in five dimen-
sions and SO(2) in four dimensions show clear phase transitions between the confining
regime at strong coupling and a spin-wave phase at weak coupling. No phase ch~~&e
is seen for the four-dimensional SU(2) theory.

The standard theory of hadronic interactions is
based on quarks interacting with non-Abelian
gauge fields. The viability of this picture depends
on the conjectured phenomenon of confinement,
wherein the only physically observable particles
are invariant under the gauge group. Thus far,
the only demonstration of this property is in the
strong-coupling limit and with a space-time lat-
tice regulating ultraviolet divergences. ' Approx-
imate renormalization-group arguments' suggest
that four space-time dimensions represent a cri-
ical case where confinement persists for all cou-
plings when the gauge group is non-Abelian. In
contrast, Abelian groups should exhibit a phase
transition to a nonconfining weak-coupling phase
containing massless gauge bosons. Thus arises

the conjecture that in our four-dimensional (4D)
world, the lattice formulation of electrodynamics
can avoid confinement of electrons, while the con-
tinuum limit of the strong-interaction gauge theo-
ry can exhibit asymptotic freedom, a vanishing
coupling at short distances.
Recent Monte Carlo results have given mixed

support for these arguments. For the four-di-
mensional gauge-invariant Ising model, the ob-
served transition is first order, contrary to the
approximate renormalization-group prediction of
a second-order transition analogous to that in the
conventional two-dimensional Ising model. ' How-
ever, for Z„with n~ 5 and SO(2) symmetries, the
predicted similarities between the four-dimen-
sional gauge models and the two-dimensional
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The phase structure of four-dimensional lattice gauge theories based on finite non-Abelian groups is
studied by Monte Carlo computations. All models examined exhibit a two-phase structure with a first-order
phase transition. In three systems where the gauge group is a discrete subgroup of SU(2) the critical
temperature moves toward zero as the order of the group increases and the high-temperature phase has
confining properties.

I. INTRODUCTION

The lattice formulation of a gauge field theory
offers a very powerful technique to study its
quantum properties. ' It provides a regulariza-
tion of the ultraviolet divergences and allows
strong- coupling expansions. The continuum
theory is recovered in the limit where the cor-
relation length becomes infinite; it is therefore
quite crucial to have a knowledge of the possible
phase transitions. Thus, the charge-confining
properties of non-Abelian gauge models are re-
lated to the absence of any phase transition. The
confinement observed in the strong-coupling re-
gime is believed to extend all the way to the zero-
temperature limit, where one recovers the con-
tinuum system. On the contrary, the existence
of free charges in quantum electrodynamics re-
quires a phase transition, separating a strong-
coupling, confining phase from a low-tempera-
ture, spin-wave phase in the corresponding lat-
tice theory.
Very recently numerical methods based on the

Monte Carlo technique have been used to obtain
information about the phase structure of a, var-
iety of gauge models. ' ' The results have proven
quite encouraging and agree nicely with the con-
clusions of other analyses, based on perturbative
or semiclassical expansions. ' ' More specif-
ically, in Refs. 2 and 3 Abelian gauge theories
have been investigated, while in Refs. 4 and 5
the non-Abelian system with gauge group SU(2)
has been studied.
A rema, rkahle feature of lattice gauge theories
is that discrete gauge groups may also be con-
sidered. Thus, together with the model with
U(1) gauge group, one may study the whole cat-
egory of systems with the finite, Abelian groups
Z~. In the limit A'-~ one expects to recover
the properties of the U(1) theory. Indeed, one of
the main results of the numerical analysis of

Ref. 3 consists in the observation, for & large
enough, of a three-phase structure in the ~N
models, with two phase transitions, one of which
disappears at zero temperature, while the other
survives in the U(1) limit. Considerations about
this limit have also formed the main ingredient
in the study of the Z„models. of Ref. 6.
The interrelations between the properties of

lattice gauge theories with discrete and continuum
groups motivated this work, where we present
Monte Carlo results obtained for a variety of
gauge systems with finite, non-Abelian groups.
The main emphasis will be placed on models
where the gauge group is a subgroup of SU(2).
Three of these systems, with gauge groups of
8, 24, and 48 elements, respectively, have been
analyzed: All exhibit a single, very clear phase
transition, which definitely moves toward zero
temperature as the order of the group increases.
Internal energy and disorder parameters (Wilson
loop factors) of the high-temperature phase ag-
ree almost up to the transition point with those
already determined for SU(2).'
Contrary to the case of U(l), the manifold of

SU(2) cannot be filled with points of discrete sub-
groups which become dense in a suitable limit.
Only a finite number of nontrivial subgroups of
SU(2), related to the symmetries of the regular
polyhedra, exists. But this is a limitation only
in principle. %e recall from Ref. 3 that the two
phase transitions in the &„models are well sep-
arated already for W=8, with one transition es-
sentially where it is observed in the U(1) theory,
the other at a temperature low enough to approach
the limit of reliability of the computation. The
model with a 48-element group considered here
has the same energy (or action) gap as &8 (which
is contained as a subgroup) and the only phase
transition has already moved to a, temperature
lower than that for the Z8 theory. Thus our re-
sults, we believe, corroborate strongly the notion
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Wilson's lattice gauge model is presented as a canonical Hamiltonian theory. The structure of the
model is reduced to the interactions of an infinite collection of coupled rigid rotators. The
gauge-invariant configuration space consists of a collection of strings with quarks at their ends. The
strings are lines of non-Abelian electric flux. In the strong-coupling limit the dynamics is best described
in terms of these strings. Quark confinement is a result of the inability to break a string without
producing a pair.

I. INTRODUCTION

The quark model has systematized a very large
amount of information concerning the hadron spec-
trum. However, free isolated quarks do not ap-
pear to exist. In order to confine quarks into bar-
yons and me sons, one is then led to suppose that
the field-theoretic coupling between quarks be-
comes strong at large distances. This explanation
is, however, somewhat perplexing because the
forces between quarks at small distances appear
to be weak. Such behavior can in principle be
found in renormalizable field theories in which
effective coupling constants can change from one
size scale to the next. Clearly, in order to under-
stand the successes of the quarkless quark model
we need a theory in which weak short-distance
forces give rise to strong long-range forces. The
only theory in which this behavior appears possi-
ble is one containing non-Abelian (Yang-Mills}
gauge fields ~

It is instructive to recall why this behavior does
not occur in conventional formulations of Abelian
vector-gluon theories (electrodynamics, for ex-
ample). Consider a static free charge of magni-
tude e inserted into the vacuum of quantum elec-
trodynamics. As is well known, the electrodynam-
ic vacuum is an ordinary dielectric, ' so the free
charge creates a polarization charge of opposite
sign. The polarization charge is distributed in
the vicinity of the free charge. Therefore, the
total charge contained within a sphere of radius
r is eZ(r), where Z(r) is a fraction less than l
which decreases as r increases. The factor Z(r)
causes the intensity of electromagnetic interac-
tions to be dependent on the distance scales in-
volved. ' In fact, if we are only interested in long-
wavelength phenomena in electrodynamics, we

can ignore all the short-distance fluctuations of
the theory and replace the bare electric charge e
by the screened or renormalized charge. More
precisely, long-wavelength phenomena are insen-
sitive to a cutoff at length A. if the bare charge is
replaced by eZ(A). Since Z(A} decreases as A in-
creases, this theory has just the reverse behavior
of what we want.
In theories with Yang-Mills fields the interac-

tion between a pair of static charges is also gov-
erned. by an effective coupling constant gZ(r} As.
in electrodynamics, a cutoff version of Yang-
Mills theory must replace g bygZ(A). This time
it is found, however, that Z(A) can be an increas-
ing function of A, . The implication is that the ef-
fective couplings between the low-momentum
modes of the theory may become very strong al-
though the shorter-distance behavior may not in-
volve strong coupling.
In this paper we shall be interested in the large-

distance properties of a non-Abelian theory as-
suming that the effective coupling g(A) is sufficient-
ly large to use Wilson's strong-coupling methods. 4
An ultraviolet cutoff is introduced into the theory
through a spatial lattice. This construction de-
stroys most of. the space -time symmetries of rel-
ativistic field theories. For this reason the the-
ory discussed here is not a realistic Yang-Mills
theory. However, following Wilson, 4 we are main-
ly interested in determining the special effects of
exact gauge invariance in strongly coupled gauge
theories. As a result of this study, we find that
quarks can be confined in locally gauge-invariant
theories. The confining mechanism is the appear-
ance of one-dimensional electric flux tubes which
must link separated quarks. ' The appropriate de-
scription of the strongly coupled limit consists of
a theory of interacting, propagating strings.

Discrete space 

but continuous time
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hyper cubic lattice

18. Lattice QCD 3

Figure 18.1: Sketch of a two-dimensional slice through the µ − ν plane of a
lattice, showing gluon fields lying on links and forming either the plaquette product
appearing in the gauge action or a component of the covariant derivative connecting
quark and antiquark fields.

as long as one chooses β = 6/g2
lat for the lattice coupling. In this expression, glat is

the bare coupling constant in the lattice scheme, which can be related (by combining
continuum and lattice perturbation theory) to a more conventional coupling constant
such as that in the MS scheme (see Sec. 18.3.4 below).

In practice, the lattice spacing a is non-zero, leading to discretization errors. In
particular, the lattice breaks Euclidean rotational invariance (which is the Euclidean
version of Lorentz invariance) down to a discrete hypercubic subgroup. One wants to
reduce discretization errors as much as possible. A very useful tool for understanding
and then reducing discretization errors is the Symanzik effective action: the interactions
of quarks and gluons with momenta low compared to the lattice cutoff (|p| " 1/a)
are described by a continuum action consisting of the standard continuum terms (e.g.
the gauge action given in Eq. (18.2)) augmented by higher dimensional operators
suppressed by powers of a [5]. For the Wilson lattice gauge action, the leading

corrections come in at O(a2). They take the form
∑

j a2cjO
(j)
6 , with the sum running

over all dimension-six operators O
(j)
6 allowed by the lattice symmetries, and cj unknown

coefficients. Some of these operators violate Euclidean rotational invariance, and all of
them lead to discretization errors of the form a2Λ2, where Λ is a typical momentum
scale for the quantity being calculated. These errors can, however, be reduced by adding
corresponding operators to the lattice action and tuning their coefficients to eliminate the
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Problem:   numerical evaluation of the path integral expectation value for a given operator  

representing a given physical observable (e.g. a hadron mass)

𝒪(U, q, q̄)

After space-time discretisation the path integral becomes (if we consider only a finite space-time volume) 

a multidimensional ordinary integral, but with a huge number of integrations variables

Example:   

SU(3) pure gauge theory (8 real numbers for a SU(3) matrix) 

Consider a  finite hypercubic lattice:   links (SU(3) matrices)


The number of integration variables is then:  


404 4 × 404

8 × 4 × 404 = 81,920,000

If we want to evaluate the integral with a standard numerical integration algorithm 
(e.g. Gauss) and we suppose to consider 10 evaluations for each integration 
variable:


the number of times the integrand should be evaluated is      
108×4×404 = 1081,920,000
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IMPORTANCE SAMPLING

⟨𝒪⟩N =
∑N

i=1 𝒪(Ci) p−1(Ci) e−S(Ci)

∑N
i=1 p−1(Ci) e−S(Ci)

p(Ci) =
1
Z

e−S(Ci)
statistical weight of a given 

field configuration Ci

⟨𝒪⟩N =
1
N

N

∑
i=1

𝒪(Ci)

The calculation of the expectation value of a given observable 

on a lattice is equivalent to averaging the physical observable 

over a finite subset of all possible field configurations, weighted 

by the partition function Z of the field theory under 

consideration.

MARKOV CHAIN MONTE CARLO

Algorithms for sampling from probability distributions. It works by 

constructing a Markov chain that has the desired distribution as its 

equilibrium distribution. 

C0 → C1 → C2 → … → CN

After the chain has reached equilibrium, the samples drawn from 

the chain will be samples from the desired distribution.
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Since the early days of lattice gauge theory, the INFN community has played a 
leading role in developing and promoting this new computational strategy for 
fundamental interactions
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ON THE MASSES OF THE GLUEBALLS IN PURE SU(2) LATTICE GAUGE THEORY 
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and 1NFN, Laboratori Nazionali di Frascati, Italy 
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Using a Monte Carlo method to measure the correlation functions of different quantities, the mass spectrum of the glue- 
ball is investigated for an SU(2) gauge model in an 8 'I lattice. 

One of  the main purposes of  Monte Carlo like sim- 
ulations of  field theories is to compute the mass spec- 
trum of the theory. This is normally done by measur- 
ing the correlation function G of  an appropriate local 
operator: 

G ( x )  = ( O ( x ) O ( O ) )  - ( O ( x  ))(O(O))  . (1) 

Indeed we know that when in four-dimensional 
euclidean theories Ix l-~ oo 

G ( x )  ~ ( m + l / 2 / I x  I +3/2) e x p ( - m  tx I), (2) 

where m is the mass of  the lowest state Is) such that 
(0lOis> :~ 0, i.e. the lightest state with the same quan- 
tum numbers of  O(if  we neglect accidental cancella- 
tions). I f  the correlation function is measured in the 
conventional way, i.e. using its definition (1), the mea- 
surement of  the mass may be rather problematic, es- 
pecially for composite states: we need to know the 
correlation function in the large-x region where G is 
very small: unfortunately the statistical error on G ( x )  
is roughly speaking independent of  the distance and 
proportional at the best to ( 0 2 ( O ) ) / N + l / 2 , N  being 
the number of  Monte Carlo steps. 

In spite o f  these difficulties some estimates have 
been obtained for the glueball mass in four dimensions, 
either by measuring the correlation functions with 
high statistics [1] ,  or by using a slightly modified ver- 

sion of  this method (the finite scaling [2, 3] ) which is 
unfortunately unable (at least in the presently used 
version with untwisted boundary conditions) to dis- 
tinguish among particles with different spin-parity.  
However, it is difficult to make further progress in this 
direction. 

A possible alternative would be to use an indirect 
algorithm to compute the correlation functions in 
order to decrease the statistical errors of  many orders 
of  magnitude. This has been accomplished in a few 
cases [ 3 - 6 ] ,  but it is not  evident if the method can be 
successfully applied to glueballs. 

An other alternative, which has been suggested by 
Wilson [7],  consists in trying to extract the masses us- 
ing the correlation functions of  the theory at small 
and not at large distance. This can be done by measur- 
hag correlations o f  many operators. Let us explain 
Wilson's proposal. 

We introduce on our lattice a time axis t, and we 
construct a list of  operators, Oa(t)  having the same 
quantum numbers. These operators are local in time, 
but non local in space; they are constructed by sum- 
ming and multiplying fields defined at the same time 
slice. In lattice gauge theories a convenient form for 
the operators would be the trace of  a Wilson loop of  
different shapes. Using the transfer matrix formalism 
the validity of  the Kgllen-Lehmann representation 
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PRELIMINARY EVIDENCE FOR UA(1) BREAKING IN QCD FROM 
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We suggest a simple definition of the topological charge density Q(x) in the lattice 
Yang-Mills theory and evaluate A :-- fd4x~Q(x)Q(O)) in SU(2) by Monte Carlo simulation. The 
"data" interpolate well between the strong and weak coupling expansions, which we compute to 
order g -  ~2 and g6 respectively. After subtraction of the perturhative tail, our points exhibit the 
expected asymptotic freedom behaviour giving A I / 4  ~ (0.11 ± 0.02)K 1/2, K being the SU(2) 
quarkless string tension. Although a larger value for AI/4K 1/2 would be preferable, we are led to 
conclude (at least tentatively) that the UA(1 ) problem of QCD is indeed solved perturbatively in 
the quark loop expansion. 

1. Introduction 

In the last  couple  of years the idea [1] that  a non- t r iv ia l  topologica l  charge in 
Q C D  can solve its U(1) p rob lem [i.e., expl ici t ly  b reak  the U(1) axial  symmetry]  has 
been made  more  precise and quant i ta t ive  [2, 3] through the use of expans ions  of the 
l l / N  type. The  si tuat ion,  which can be summar ized  in terms of a s imple effective 
lagrangian [4], is as follows: 

(i) In massless QCD,  at  the one-quark  loop level (or, a l ternat ively,  at leading order  
in 1/Ncolour ), a set of  L 2 unmixed  Go lds tone  bosons  %j(i ,  j = u , d , s .  • • ) occurs  as a 
result  of the spontaneous  b reak ing*  of U ( L ) ® U ( L )  chiral  symmet ry  down to 
U(L)vector ( L  is the number  of massless flavours). 

392 
• Several arguments for the necessity of such breaking have been given under different (reasonable) 

assumptions [5, 6]. 

Nuclear Physics B180(FS2] (1981) 369-377 
8 North-Holland Publish@ Company 

A PROPOSAL FOR MONTE CARLO SIMULATIONS 
OF FERMIONIC SYSTEMS 
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We suggest a possible extension of the Monte Carlo technique to systems with fermionic 
degrees of freedom. We study in detail the application to an elementary example. 

1. Introdnction 

Monte Carlo simulations have recently emerged as one of the most powerful 
methods for obtaining information on pure gauge theories [ 11. If this technique is to 
be used for a direct computation of properties of known particles, however, the 
effect of fermions must be properly included. 

In the Feynman path integral formulation, fermions are described by anticom- 
muting variables. N anticommuting variables span an algebra with 2N generators: 
even for fairly small values of N, the amount of space needed to store a single 
element of this algebra exceeds by far the memory capacity of any possible 
computer. 

Anticommuting variables must be avoided in computer simulations. In many 
physically interesting cases, this can be accomplished by using the Matthews-Salam 

’ On leave from Brookhaven National Laboratory, Upton, NY, USA. 
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Numerical Estimates of Hadronic Masses in a Pure SU(3) Gauge Theory

H. Hamber
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In lattice quantum chromodynamics, the hadronic mass spectrum is evaluated by com-
puter simulations in the approximation where closed quark loops are neglected. Chir31
symmetry is shown to be spontaneously broken and an estimate of the pion decay con-
stant is given.
PACS numbers: 12.70.+q, 11.10.Np, 11.30.Jw, 12.40.Cc

In this Letter we present results of a computa-
tion of the mass spectrum of the 1.ighter hadrons
in the SU(3) lattice gauge theory in the approxi-
mation of neglecting internal quark loops. Al-
though these effects will have to be taken into ac-
count in a full calculation, we shall see that rea-
sonable results for the spectrum can be obtained
within this framework. This approximation en-
forces the Zweig rule for all the flavors, be-
comes exact in the limit K- ~, and can easily be
justified for the mass spectrum with phenomeno-
logical arguments. Some numerical simulations
of two-dimensional lattice gauge models also sug-
gest that it might be a reasonable simplification. '
We have found some evidence for this to be true
also in the present case. In this approximation
nonet symmetry holds: Closed quark loops are
crucial to remove the g-p degeneracy. Similar
computations not including the baryons and with
only one form of the fermionic action (the Kogut-
Susskind action) for the group SU(2) will be pub-
lished elsewhere. '
The mass spectrum of the lighter hadrons can

be computed by studying the decay at infinity of
the correlation functions of composite operators.
The key formulas we use are

(y(x)q(x)q(0)q(0)) = fd„[A]G (x, 0;A)G(o, x;A),
g( )P(x)q( )q(0)q(0)q(0))
= f d„[~]G(,0;~)G(x, o;~)G(x, o;a),

where we have suppressed flavor, spinor, and
color indices, and G(x, 0;A) is the inverse of P
+m in a background A& gauge-field configuration.
D& is the covariant derivative and d„[A] is the
probability distribution of pure gauge fields.
These formulas hold for all operators that do not

have the flavor quantum numbers of the vacuum.
In the full theory with nf fermion flavors and vac-
uum polarization effects included we would have

d„[A]=e ~[det(P'+~)]"& dUH,

where SG is the Wilson action for lattice gauge
fields given by

and de is the Haar measure for the group SU(3)
for each link. The sum is over all elementary
squares in the four-dimensional hypercubic lat-
tice of spacing a, and U~ is a product of four
SU(3) group elements around each square. In this
Letter we will discuss results obtained by setting
the determinant equal to I (nz = 0), which is equiv-
alent to neglecting dynamic fermion loops. The
fields A can be extracted by using a standard
Monte Carlo simulation technique, while the in-
verse propagators are computed using iterative
matrix inversion methods. '
When we implement these methods on the space-

time lattice we have to make a choice regarding
the fermionic action. In general we can write' '

&(p, p) = g p„[(y„-r)q„,„—(y„+r)q„„]
n, p

If z = 0 the theory is chirally invariant in the M
—0 limit, ' ' but unfortunately describes sixteen
flavors instead of one. (These can be reduced to
four by an appropriate canonical transformation,
as discussed in Refs. 4 and 6.) If rc 0 only one
flavor is obtained in the continuum limit, but
chiral symmetry is lost on the lattice and can on-
ly be recovered in the continuum limit, as dis-
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A Monte Carlo computation of meson and hadron spectroscopy within lattice QCD ts made. 
We give a detailed discussion of the statistical and systematic errors of the results and analyze 
the present limitations of our approach. The results are in agreement with the observed spectrum. 
We also estimate the values of up, down and strange quark masses. 

1. Introduction 

After the first promising results of computer simulations of hadronic states in 
the quenched approximation [1] (no fermionic vacuum polarization diagrams) we 
have started a more detailed analysis in order to have both the systematic and 
statistical errors under control. 

The general pattern of this kind of computation consists of first finding the quark 
propagator in the presence of an external gauge field and building up from it various 
species of operator-operator correlations. In this paper we will not deal with all 
possible correlations which can be formed:  we have focused our  a t t en t ion  on  the 

t Partially supported by the A. Della Riccia Foundation. 
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We show that lattice QCD can be used to evaluate the matrix elements of four-fermion 
operators which are relevant for weak decays. A first comparison between the results obtained on 
the lattice and other determinations are also presented. 

1. Introduction 

With the advent  o f  more  powerful  computers ,  which allow the s tudy o f  gauge 
theories on large lattices (103 ×20 or larger), lattice Q C D  is becoming  a powerful  
tool in giving quanti tat ive predictions for  hadron ic  physics at low energy. 

In this paper  we show that  lattice Q C D  can be used to compute  the value o f  
matrix elements o f  four- fermion operators  which are relevant for weak interactions. 
The methods  developed here can be appl ied to the matrix elements o f  four-fermion 
operators  between boson ic  states using the same quark  propagators  used for hadron ic  
spectroscopy.  I f  the propagators  are available the computa t ion  can be carried out  
using a small amoun t  o f  computer  time. 

As a first appl icat ion o f  our  methods  we report  an evaluat ion o f  the matrix 
elements,  between pseudoscalar  states, o f  operators  o f  the form: 

OLc = [6, y~'½(l - Ys)~2] [63 %,~1 - Ys)~,], 

OLR = [6, y~'½(l -- ")'5)~b2] [63 Tt,½(l + 3~5)~b4]. (1) 

The effective weak hamil tonian including short-distance gluon effects, can be 
expressed as a combina t ion  o f  operators  o f  this form [1-5]. 

In the next section we outline the method  o f  computat ion.  In sect. 3 we describe 
the numerical  results based on 14 link configurat ions in a 103 x20  lattice, for which 

~ On leave from Dipartimento di Fisica, Universith di Roma "La Sapienza", and INFN, Sezione di 
Roma, Roma, Italy. 
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simulations performed using a VAX 11/780

(8 MB Ram  0.25 MFlop/s)
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Space&'me)la+ce) Processor)array)
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P3) P4)

Parallel to the development of lattice gauge theory (LGT), there have been equally 
remarkable advances in computer design and implementation.

It soon became clear that parallel assemblies of computing nodes offered the most 
effective route to the highest computational performance.

figure from: http://
www.int.washingto
n.edu/talks/

ideal case of the parallel 
computation paradigm !

Locality: (property of the field theoretic 
description of fundamental interactions) 


the numerical operations at a site n can be 
carried out independently of  those at a site m                        
unless the pair is within the limited 
neighborhood of each other;

calculations by a given processor can be carried 
out independently of those by the other 
processors, except that the processors with 
overlapping boundaries have to exchange 
values of fields in the boundaries before and/or 
after the calculations in each sub lattice;

for a fixed lattice size, the computation time can 
be reduced by a factor NP , and for a fixed sub-
lattice size, one can enlarge the total lattice size 
proportionately to the number of processors NP 
without increasing the computation time. 

Data for a single lattice site or block of 

sites may be stored in the local memory 

of each processor and the four-

dimensional lattice mapped down to 

the network of the machine. Generally 

this can be done so that only nearest-

neighbour data communication is 

required in the generation of gauge 

field configurations.
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Lattice QCD and parallel computers building

name year authors peak speed
Columbia 1984 Christ-Terrano –
Columbia-16 1985 Christ et al 0.25 GFlop/s
APE1 1988 Cabibbo-Parisi 1 GFlop/s
Columbia-64 1987 Christ et al 1 GFlop/s
Columbia-256 1989 Christ et al 16 GFlop/s
ACPMAPS 1991 Mackenzie et al 5 GFlop/s
QCDPAX 1991 Iwasaki-Hoshino 14 GFlop/s
GF11 1992 Weingarten 11 GFlop/s
APE100 1994 APE Collab. 0.1 TFlop/s
CP-PACS 1996 Iwasaki et al 0.6 TFlop/s
QCDSP 1998 Christ et al 0.6 TFlop/s
APEmille 2000 APE Collab. 0.8 TFlop/s
apeNEXT 2004 APE Collab. 10 TFlop/s
QCDOC 2005 Christ et al 10 TFlop/s
PACS-CS 2006 Ukawa et al 14 TFlop/s
QCDCQ 2011 Christ et al 500 TFlop/s
QPACE 2012 Wettig et al 200 TFlop/s

Apart from contributing to the first seminal papers in LQCD, INFN emerged 
as a key player on the international stage in the development of dedicated 
hardware. This significant undertaking, known as the APE project, spanned 
from 1988 to 2004.

APE computers 
were also 
installed at INFN - 
Bari

APE100

APEmille
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A look at computing resources for INFN-TH over the last 30 years

BC2S was as a precursor to ReCaS Bari
—> Moore’s law (empirical observation) —> 
the number of transistors in an integrated 
circuit doubles about every two years.
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Cineca was born in 1969, and this means that 
2019 is a very important anniversary for us: the 
50th year of important milestones reached in the 
field of Advanced Scientific computing.
The idea of an innovative centralised 
infrastructure for supporting computational 
research dates back to 1967 when four Italian 
Universities (Bologna, Florence, Padua and 
Venice) signed an agreement for creating an 
inter-university consortium for the management 
of a computing centre in the north-east of Italy. 
The original meaning of the acronym CINECA is 
in effect: Consorzio Interuniversitario del Nord 
Est per il Calcolo Automatico (Interuniversity 
Consortium in the North-East for Automatic 
Computing).
The statute papers were approved in late 1969 
and few months later, in February 1970, they 
were published on the Italian Official Gazette, 
thus starting the incredible adventure that goes 
until today.
The first computer acquired by the Consortium 
was a CDC 6600, generally considered the first 
supercomputer, with performance of up to 
three MegaFlops.
Over the years Cineca continued to acquire very 
powerful computers, such as the Cray X-MP in 
1985, that was the fastest computer at the time 
with a dual processor system and a performance 
of 800 MegaFlops.
Another important milestone was in 1995 
when the new massively parallel architecture 
took place with Cray-T3D. It consisted of 64 
Processing Elements, connected by a three-

dimensional torus network. The performance 
increased by one order of magnitude, reaching 
9.6 GigaFlops.
Less than 20 years after, in 2012, the top machine 
was FERMI, an IBM BlueGene/Q system 
that, thanks to its 160 thousand processing 
elements, was able to increase the performance 
of 200 thousand times. The system was the 
7th more powerful system worldwide with a 
peak performance of 2 million GigaFlops (2 
PetaFlops), near 1 billion times more powerful 
than the first CDC supercomputer. 
Today Cineca hosts the Marconi system, a 20 
PetaFlops cluster based of conventional and 
scale-out processors, as described later in this 
report. For the next near future, we expect 
a new large increase toward the exascale 
computing, with the EuroHPC initiative that 
is expected to bring here Leonardo, a new pre-
exascale accelerated computer that will be part 
of the new pan-European supercomputing 
infrastructure.

In year 2013 Cineca merged the other Italian 
consortia for scientific computing (CILEA 
in Milan and CASPUR in Rome) to give rise 
to a large supercomputing centre for high 
performance computing with a national scope. 
The European dimension is guaranteed by the 
PRACE initiative (Partnership for Advanced 
Computing in Europe). Since 2009 Cineca is 
one of the main partners of PRACE by hosting 
on its supercomputing systems the numerical 
projects of the European scientists.

50 years of HPC milestones
Elda Rossi
Cineca

CDC 
6600

1 core
Leonardo

1969 1985 1995 2012 2019 future

3 
MFlops

800 
MFlops

9.6 
GFlops

2 
PFlops

20 
PFlops

CRAY-
XMP

2 core

CRAY-
T3D

64 core

FERMI

160000 
core

Marconi

400000 
core

Towards
ExaFlops

400 
MFlops/

core

50,000 
MFlops/

core

Example: timeline of the computing power  @Cineca 

12,500 
MFlops/

core

Not only brute force…
Developing computational strategies requires combining physical insight with 
an understanding of modern numerical mathematics and the capabilities of 
massively parallel computers.
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Lattice QCD
13 12. CKM Quark-Mixing Matrix
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Figure 12.2: Constraints on the fl̄, ÷̄ plane. The shaded areas have 95% CL.

and the Jarlskog invariant is J =
!
3.08+0.15

≠0.13
"

◊ 10≠5. The parameters in Eq. (12.3) are

sin ◊12 = 0.22500 ± 0.00067 , sin ◊13 = 0.00369 ± 0.00011 ,

sin ◊23 = 0.04182+0.00085
≠0.00074 , ” = 1.144 ± 0.027 . (12.28)

Fig. 12.2 illustrates the constraints on the fl̄, ÷̄ plane from various measurements, and the global
fit result. The shaded 95% CL regions all overlap consistently around the global fit region. This
reverts a change in the 2020 edition, when the shown CL of each region was increased to 99%,
because of poor consistency (primarily due to changes in |Vud|), which is no longer the case.

If one uses only tree-level inputs (magnitudes of CKM elements not coupling to the top quark
and the angle “), the resulting fit is almost identical for ⁄ in Eq. (12.26), while the other pa-
rameters’ central values can change by about a sigma and their uncertainties double, yielding
⁄ = 0.22507 ± 0.00068, A = 0.805 ± 0.028, fl̄ = 0.166+0.026

≠0.024, and ÷̄ = 0.370+0.029
≠0.028. This illustrates

how the constraints can be less tight in the presence of BSM physics.

12.5 Implications beyond the SM
The e�ects in B, Bs, K, and D decays and mixings due to high-scale physics (W , Z, t, H in

the SM, and unknown heavier particles) can be parameterized by operators composed of SM fields,

11th August, 2022

Precision studies of flavor physics, within and beyond the Standard ModelStudy of QCD in extreme conditions

The development of numerical algorithms is crucial: 
over the history of lattice gauge theory calculations, the 
improvement from algorithm development has been similar 
to the gain from Moore’s law.

A large number of computing nodes is required (up to 

 cores.  On the largest scales the challenge lies in 
efficiently and effectively exchanging data among the 
processors or nodes  —>  MPI, MPI+OpenMP.

𝒪(105)

Lattice QCD is an essential tool for obtaining precise model-free 
theoretical predictions of the hadronic processes underlying many key 
experimental searches.

As experimental measurements become more precise, lattice QCD will 
play an increasingly important role in providing the necessary 
matching theoretical precision.

Achieving the needed precision requires simulations on lattices with 
significantly increased resolution.
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Similar to experiments (where data are first collected and and 
later analyzed) the Lattice QCD workflow can be factorized 
into:

GENERATION

Gauge-field configurations are generated by means of 
Markov chain Monte Carlo techniques

A certain number of configurations (each consisting of a 
fixed number of complex numbers) are stored on disk for 
subsequent analysis.

MEASUREMENT

Measurement of physical observables are computed from 
the configurations.

ANALYSIS

Averaging of the measurements over configurations, 
extrapolations to certain limits.

Possible comparison of the outcome of these calculations 
with experimental results.

Lattice QCD as an extraordinary tool for understanding Nature

With a large cache capacity one projects that for standard Krylov algorithms, the interconnect re-
quirement is proportional to the local cache bandwidth. The coe�cient is 1

L and typically O( 1
16) which

can lead to exceedingly high interconnect requirements, that are comparable to local high-speed memory
bandwidths.

Algorithmic research in advanced MCMC sampling algorithms that both avoid critical slowing down
and improve the performance on realistic computer networks is required to deliver many of the physics
results that support the experimental program discussed above.

2.3 Sample simulation parameters and costs

In addition to the above common physics goals, we discuss some specific ambitions and computational
costs for simulations with chiral (or domain wall) fermions. The ambitions for improved staggered-fermion
simulations are very similar.

Present chiral fermion lattice calculations use simulation volumes up to 963 ⇥ 192 and use the most
powerful supercomputers presently available to the Department of Energy. Improved staggered-fermion
simulation volumes are currently as large as 1443 ⇥ 288 and are expected to grow to 1923 ⇥ 384.

Our physics goals require calculations with ensembles of gauge fields with physical volumes large enough
to ensure that finite-volume e↵ects are under control. Such simulations require increased lattice sizes.

A number of specific simulations, Table 2.3, have been proposed with estimated costs in a Snowmass
white paper [10], and the same methodology can be used to estimate the requirements of the ideal ensemble
for flavor physics.

The final entry is associated with physics in the B-meson system indicated in Snowmass white paper [9].
A 2563 ⇥ 512 lattice at a lattice spacing a = 0.04 fm (a�1 ⇠ 5 GeV) would allow us to simulate up/down,
strange, charm, and bottom quarks at their physical mass in a 10 fm box with m⇡L = 7.

These simulation goals clearly demonstrate a need for computers at least 10x more capable than the
coming Exaflop computers. Since the performance is required to be delivered on a real-code performance
basis, and e�ciency will not be 100%, more than an order of magnitude improvement, perhaps, from both
algorithms and computing are required.

Lattice volume a
�1 GeV Exaflop hours

323 ⇥ 64 1.4 1.5
403 ⇥ 96 1.7 3.5
483 ⇥ 64 2.1 7.5
483 ⇥ 96 1.8 7.54
643 ⇥ 128 2.4 25
963 ⇥ 192 2.8 120
643 ⇥ 256 2.4 50
963 ⇥ 384 2.8 250
1283 ⇥ 512 1500
1283 ⇥ 512 5.0 12000

Table 2: Proposed lattice volumes and cost estimates in sustained Exaflop hours, scaled from current
simulations on Cori (NERSC) and Summit (ORNL). Volumes and estimates are proposed in Snowmass
white paper [10], while the final entry uses the same methodology to estimate the cost of the most expensive
proposed B-physics capable simulation.

7

Lattice simulations on upcoming exascale computers
arXiv:2204.00039

physical volumes large enough to ensure that finite-volume effects 
are under control. 

lattice size , 

lattice spacing 

L = 10 fm mπL = 7
a = 0.04 fm

 floating 
point operations
∼ 1025

lattice spacing —> continuum limit 



Leonardo Cosmai - INFN Sezione di Bari 19

Computational Theoretical Physics @ INFN 

LQCD123

NPQCD QCDLAT
SFT SIM

GAGRA

Lattice QCD
BIOPHYS

Physics of Complex Systems

ENESMA
FIELDTURB

Nuclear Physics

MONSTRE
NUCSYS

Cosmology and Astroparticle Physics

INDARK
NEUMATT

TEONGRAV

Standard Model Phenomenology

QFTATCOL
Condensed Matter

NEMESYS

Quantum Information

QUANTUM

~200 researchers
Many research groups are involved in the activities of  
ICSC (Centro Nazionale di ricerca in HPC, Big Data and 
Quantum Computing) 

• BIOPHYS (PI S. Stramaglia)

• FIELDTURB (PI G. Gonnella) 

• QUANTUM (PI P. Facchi)

• NPQCD 

NOT  ONLY  LATTICE QCD…
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Cosmology and Astroparticle Physics INDARK  NEUMATT
TEONGRAV  

TEONGRAV  

NEUMATT  

INDARK  

GRAVITATIONAL WAVE  SIGNAL 
FROM THE MERGE OF BINARY 
NEUTRON STARS

Full 3D-simulation of Einstein Equation 
coupled to matter of the merger. Post-
merger signal + study of the the ejected 
matter. Equation of State effect on the 
signal.


dark energy and matter, axions, 
neutrinos, modified gravity

Markov Chain Monte Carlo codes 
interfaced with Boltzmann codes

• Modelling of gravitational wave 
sources via both semi-analytical and 
numerical methods;


• Equation of state of matter in the inner core 
of neutron stars;


• Dynamics of black hole formation;

• Electromagnetic counterparts of 

gravitational wave signals;

• Study of strong-field phenomena in 

modified gravity theories.

Hydrodynamics and 
magnetohydrodynamics simulations 
using state of the art codes in both the 
Newtonian and the General Relativistic 
regime 

(e.g. Model dynamical evolution and 
formation of stellar-mass and supermassive 
black holes via N-body simulations )

Analysis of observational data and 
numerical simulations of compact 
objects

(e.g.  Machine learning techniques to analyze 
gravitational waves from black hole binaries)
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Physics of Complex Systems BIOPHYS ENESMA
FIELDTURB

BIOPHYS  

ENESMA  

FIELDTURB  

Investigation of the three-dimensional 
structure of the mammalian genome 

Structural properties of proteins 
and protein assemblies 

Computational techniques: classical and 
ab-initio Molecular Dynamics, Monte Carlo 
and enhanced sampling by molecular 
dynamics algorithms. 

Enesma: due esempi di successo di applicazioni HPC alla fisica teorica
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I cristalli di Wigner, predetti da Eugene Wigner nel 1934, solo 
recentemente osservati sperimentalmente, sono finora sfuggiti 
a una completa spiegazione teorica. Come fanno elettroni liberi 
con repulsione Colombiana a formare un cristallo? Abbiamo 
mostrato che si tratta di una transizione di fase quantistica che 
agisce come condensazione nello spazio di Hilbert del sistema. 
La densità critica gcross predetta teoricamente (intervallo 
tratteggiato) è stata confermata da simulazioni MC adattative 
spinte fino a un numero di particelle Np senza precedenti con 
stima dell’esatto limite termodinamico.

Monte Carlo cattura gli inafferrabili cristalli di Wigner

Nel 2019 colleghi della University of Southern California hanno 
lanciato una sfida, aperta a tutti gli algoritmi e a tutte le macchine, 
per la risoluzione nel tempo più breve di un problema di 
ottimizzazione particolarmente duro: 3-XORSAT. Avendo 
dimostrato che la durezza del problema dipende essenzialmente 
dal superamento di barriere entropiche, abbiamo adattato un 
nostro algoritmo di tipo semi-greedy a GPU commerciali. Il tempo 
di soluzione (TTS) da noi ottenuto in funzione della taglia n del 
problema distacca di ordini di grandezza tutti gli altri avversari.


Algoritmo GPU fa dominare sfida mondiale 3—XORSAT Quantum phase transition in a Wigner Cristal

Simulation of disordered systems 
(spin glasses, models of structural glasses, 
hard and soft spheres near the jamming 
point, optimization and inference 
problems, models of light propagation in 
disordered media, ecological models, 
etc...).
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Quantum Information QUANTUM  

QUANTUM  Entanglement and other Quantum Correlations, Quantum Simulation, and 
Quantum Control

The major objectives of the QUANTUM collaboration are the investigation 


of typical quantum mechanical effects and phenomena via three major, interrelated avenues:


1. Entanglement and other Quantum Correlations;


2. Quantum Simulation


3. Quantum Control.

quantum-inspired techniques applied to the simulation of


high-energy physics


lattice gauge theories


many-body systems
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Nuclear Physics MONSTRE 
NUCSYS  

MONSTRE  NUCSYS  

I.S. nucsys: study of dd fusion
Method of calculation: expansion of the scattering wave functions in a basis

Problem to be solved: linear system M X = T(E)
M=matrix nxn (independent on energy E), T=known vectors, X=solution vector

Calculation of M & T
Tipically n=300,000

- 5-dimensional integration
- OpenMP code 

Solution of the linear system (Lanczos)
- OpenMP code

Memory intensive calculation: work with 1 node only

- run for different J , energies, interactions,…

- a typical calculation takes 5,000 core hours on 1 Marconi & 
Galileo100 (48 cores)

NEXT: implementation using GPUs, extension up to A=6

Theoretical uncertainty

- Numerical integration, convergence: well under control
- Dynamical input: we start from a given V= NN+3N interaction, 
but V is not exactly known 

Approach used so far
- Perform the calculations using V derived from chiral Perturbation 
Theory (ChPT) & vary the cutoff Λ used to regularize the high 
momentum tail  [Λ=500 - 600 MeV] (rough estimate of the 
theoretical uncertainty coming from the incomplete knowledge of 
the dynamical input)

NEXT: calculation with V derived from different orders of 
ChPT & estimation of the theoretical uncertainties using 
Bayesian method derived for that purpose. 

I.S. nucsys: study of dd fusion
Method of calculation: expansion of the scattering wave functions in a basis

Problem to be solved: linear system M X = T(E)
M=matrix nxn (independent on energy E), T=known vectors, X=solution vector

Calculation of M & T
Tipically n=300,000

- 5-dimensional integration
- OpenMP code 

Solution of the linear system (Lanczos)
- OpenMP code

Memory intensive calculation: work with 1 node only

- run for different J , energies, interactions,…

- a typical calculation takes 5,000 core hours on 1 Marconi & 
Galileo100 (48 cores)

NEXT: implementation using GPUs, extension up to A=6

Theoretical uncertainty

- Numerical integration, convergence: well under control
- Dynamical input: we start from a given V= NN+3N interaction, 
but V is not exactly known 

Approach used so far
- Perform the calculations using V derived from chiral Perturbation 
Theory (ChPT) & vary the cutoff Λ used to regularize the high 
momentum tail  [Λ=500 - 600 MeV] (rough estimate of the 
theoretical uncertainty coming from the incomplete knowledge of 
the dynamical input)

NEXT: calculation with V derived from different orders of 
ChPT & estimation of the theoretical uncertainties using 
Bayesian method derived for that purpose. 

I.S. nucsys: study of dd fusion
Method of calculation: expansion of the scattering wave functions in a basis

Problem to be solved: linear system M X = T(E)
M=matrix nxn (independent on energy E), T=known vectors, X=solution vector

Calculation of M & T
Tipically n=300,000

- 5-dimensional integration
- OpenMP code 

Solution of the linear system (Lanczos)
- OpenMP code

Memory intensive calculation: work with 1 node only

- run for different J , energies, interactions,…

- a typical calculation takes 5,000 core hours on 1 Marconi & 
Galileo100 (48 cores)

NEXT: implementation using GPUs, extension up to A=6

Theoretical uncertainty

- Numerical integration, convergence: well under control
- Dynamical input: we start from a given V= NN+3N interaction, 
but V is not exactly known 

Approach used so far
- Perform the calculations using V derived from chiral Perturbation 
Theory (ChPT) & vary the cutoff Λ used to regularize the high 
momentum tail  [Λ=500 - 600 MeV] (rough estimate of the 
theoretical uncertainty coming from the incomplete knowledge of 
the dynamical input)

NEXT: calculation with V derived from different orders of 
ChPT & estimation of the theoretical uncertainties using 
Bayesian method derived for that purpose. 

I.S. nucsys: study of dd fusion
RESULTS (PRELIMINARY)

Bands: our calculations
For the QSF there are no measurements – old theoretical calculation  
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Standard Model Phenomenology QFTATCOL  

QFTATCOL  
QFT@Colliders [BO, CS, FI, MIB, PV]

• A few examples of CPU intensive phenomenological study

S. Catani et al., JHEP 08 (2020) 08, 027 [FI]
“Top-quark pair hadroproduction at NNLO: di�erential predictions with the MS mass”
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Figure: mtt̄ at di�erent accuracies. NNLO greatly improves agreement with CMS data

HPC for CSN4 2 / 3
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Computing Resources (*) 
Euro-HPC

EuroHPC 

LUMI supercomputer

375 PFlop/s    -  

LEONARDO 
supercomputer


MARENOSTRUM 5

205 PFlop/s    - SPAIN

coming 

HPC Vega IZUM

6.92  PFlop/s   - MELUXINA supercomputer


12.81 PFlop/s    - 

KAROLINA supercomputer

9.59 PFlop/s - CZECH 

DISCOVERER 
supercomputer


DEUCALION 
supercomputer


MARCONI-A3

60 Mcorehours

GALILEO 100

6 Mcorehours

LEONARDO

Booster: 3 Mnodehours

Cineca-INFN 

LEONARDO

General purpose

Cineca-INFN agreement

(*) other resources from Tier1/Tier2 (e.g. ReCaS) 
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LATTICE QCD

ASTROPARTICLE

EXPERIMENTAL PHYSICS
1.8%
OTHERS
1.4%
COMPLEX SYSTEMS
9.1%
NUCLEAR PHYSICS
1.8%

ASTROPARTICLE
13.8%

LATTICE QCD
72.0%

26

HPC  COMPUTING  RESOURCES  2017-2021

CINECA 2017-2021

%
 c

or
eh

ou
rs

LATTICE QCD

ASTROPARTICLE

NUCLEAR 
PHYSICS

COMPLEX 
SYSTEMS

OTHERS

EXPERIMENTAL 
PHYSICS

0 20 40 60 80

2017 2018 2019 2020 2021

%corehours 2017 2018 2019 2020 2021
LATTICE QCD 76.97 74.09 70.06 70.62 66.31
ASTROPARTICLE 9.49 13.34 15.64 14.80 14.06
NUCLEAR PHYSICS 1.24 1.05 2.17 2.45 2.86
COMPLEX SYSTEMS 10.09 10.10 9.25 7.10 8.51
OTHERS 2.21 1.43 1.35 1.28 0.80
EXPERIMENTAL PHYSICS 1.53 3.75 7.46

AREA corehours %
LATTICE QCD 687,787,117 72.0
ASTROPARTICLE 131,826,951 13.8
NUCLEAR PHYSICS 17,546,676 1.8
COMPLEX SYSTEMS 87,396,389 9.1
OTHERS 13,724,017 1.4
EXPERIMENTAL PHYSICS 17,596,432 1.8

TOTAL 955,877,582 100
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HPC + Quantum Computing ?

33. G. Felsenfeld et ai., J. Am. Chem. Soc. 79, 2023 NASA grant NAGW 2554 (C.R.W.), and a core grant ware and database support; T. D~xon and V. Sapro 
(1957); A. G. Leta et a/. , Biochemistry 27, 91 08 to TIGR from Human Genome Sciences. G.J 0 is for computer system support; K. Hong and B. Sta- 
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RESEAWCkI ARTICLE, can be extracted wlth Monte Carlo methods 
(30-32) Such methods use amounts of 
cornouter time and mernorv swace that erow 
as polynomial functions of ;he size o r  the U n ive rsa I QU a n tU m S i m u 1 a tors svstem of interest (where sire is 
Aeasured by the number of variables-par- 

Seth Lloyd ticles or lattice sites, for example-required 
to characterize the system). Problems that 

Feynman's 1982 conjecture, that quantum computers can be programmed to simulate can be solved by methods that use polyno- 
any local quantum system, is shown to be correct. mial amounts of computational resources are 

commonly called tractable; problems that 
can only be solved by methods that use 
exponential amounts of resources are com- 

O v e r  the past half century, the logical the bits stored on capacitors. Quantum monly called intractable. Feynman pointed 
devices by which computers store and pro- computers can also solve problems in a out that the problem of simulating the full 
cess information have shrunk bv a factor of similar fashion: nonlinear interactions be- time evolution of arbitrarv auantum svstems 
2 every 2 years. A quantum cokputer is the 
end point of this process of miniaturiza- 
tion-when devices become sufficiently 
small, their behavior is governed by quan- 
tum mechanics. Information in conven- 
tional digital computers is stored on capac- 
itors. An uncharged capacitor registers a 0 
and a charged capacitor registers a 1. Infor- 
mation in a quantum computer is stored on 
individual spins, photons, or atoms. An 
atom can itself be thought of as a tiny ca- 
pacitor. An atom in its ground state is anal- 
ogous to an uncharged capacitor and can be 
taken to register a 0, whereas an atom in an 
excited state is analogous to a charged ca- 
pacitor and can be taken to register a 1. 

So far, quantum computers sound very 
much like classical computers; the only use 
of quantum mechanics has been to make a 
correspondence between the discrete quan- 
tum states of spins, photons, or atoms and 
the discrete logical states of a digital com- 
puter. Quantum systems, however, exhibit 
behavior that has no classical analog. In 
particular, unlike classical systems, quan- 
tum systems can exist in superpositions of 
different discrete states. An ordinary capac- 
itor can be either charged or uncharged, but 
not both: A classical bit is either 0 or 1. In 
contrast, an atom in a quantum superposi- 
tion of its ground and excited state is a 
quantum bit that in some sense registers 
both 0 and 1 at the same time. As a result, 
quantum computers can do things that clas- 
sical computers cannot. 

Classical computers solve problems by 
using nonlinear devices such as transistors 
to perform elementary logical operations on 

The author is at the D'Arbeloff Laboratory for Informaton 
Systems and Technology, Department of Mechancal En- 
gneering, Massachusetts Institute of Technology, Cam- 
brdge, MA 02139, USA. E-mail. sloyd@mt.edu 

tween quantum variables can be exploited 
to perform elementary quantum logical op- 
erations. However, in addition to ordinary 
classical logical operations such as AND, 
NOT, and COPY, quantum logic includes 
operations that put quantum bits in super- 
positions of 0 and 1. Because quantum com- 
puters can perform ordinary digital logic as 
well as exotic quantum logic, they are in 
principle at least as powerful as classical 
computers. Just what problems quantilm 
computers can solve more efficiently than 
classical computers is an open question. 

Since their introduction in 1980 (1 )  
quantum computers have been investigated 
extensively (2-29). A comprehensive re- 
view can be found in (15). The best known 
problem that quantilm computers can in 
principle solve more efficiently than classi- 
cal computers is factoring (14). In this ar- 
ticle I present another type of problem that 
in principle quantum computers could solve 
more efficiently than a classical computer- 
that of simulating other quantum systems. In 
1982, Feynman conjectured that quantum 
comouters mieht be able to simulate other - 
quantum systems more efficiently than clas- 
sical computers (2) .  Quantum simulation is 
thus the first classically difficult problem 
posed for quantum computers. Here I show 
that a quantum computer can in fact simu- 
late quantum systems efficiently as long as 
they evolve according to local interactions. 

Fevnman noted that simulating quan- - .  
tum systems on classical computers is hard. 
Over the past 50 years, a considerable 
amount of effort has been devoted to such 
simulation. Much information about a quan- 
tum system's dynamics can be extracted 
from semiclassical approximations (when 
classical solutions are known), and ground 
state properties and correlation f~~nctions 

, 
on a classical computer is intractable: The 
states of a quantum system are wave func- 
tions that lie in a vector space whose dimen- 
sion grows exponentially with the size of the 
system. As a result, it is an exponentially 
difficult problem merely to record the state 
of a quantum system, let alone integrate its 
equations of motion. For example, to record 
the state of 40 spin-% particles in a classical 
computer's memory requires L40 - 10'' 
numbers. whereas to calculate their time 
evolution requires the exponentiation of a 
L40 X L40 matrix with entries. Feyn- 
man asked whether it might be possible to 
bypass this exponential explosion by having 
one quantum system simulate another di- 
rectlv, so that the states of the simulator 
obey the same equations of motion as the 
states of the simulated system. Feynman 
gave simple examples of one quantum sys- 
tem simulating another and conjectured 
that there existed a class of universal ouan- 
tilm simulators capable of simulating any 
quantum system that evolved according to 
local interactions. 

The answer to Fevnman's ouestion is, 
yes. I will show that a variety of quantum 
systems, including quantum computers, can 
be "programmed" to simulate the behavior 
of arbitrary quantum systems whose dynam- 
ics are determined by local interactions. 
The programming is accomplished by in- 
ducing interactions between the variables 
of the simulator that imitate the interac- 
tions between the variables of the system to 
be simulated. In effect, the dynamics of the 
properly programmed simulator and the dy- 
namics of the system to be simulated are 
one and the same to within any desired 
accuracy. So, to simulate the time evolution 
of 40 spin-% particles over time t requires a 
simulator with 40 quantum bits evolving 

SCIENCE VOL. 273 23 AUGUST 1996 1073 

Universal simulator: by appropriately changing the 
sequence of quantum operations (the code), it can 
simulate problems that are very different from each 
other.

(Science  23 Aug 1996:Vol. 273, Issue 5278, pp. 1073-1078)
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1. INTRODUCTION 

On the program it says this is a keynote speech--and I don't  know 
what a keynote speech is. I do not intend in any way to suggest what should 
be in this meeting as a keynote of the subjects or anything like that. I have 
my own things to say and to talk about and there's no implication that 
anybody needs to talk about the same thing or anything like it. So what I 
want to talk about is what Mike Dertouzos suggested that nobody would 
talk about. I want to talk about the problem of simulating physics with 
computers and I mean that in a specific way which I am going to explain. 
The reason for doing this is something that I learned about from Ed 
Fredkin, and my entire interest in the subject has been inspired by him. It 
has to do with learning something about the possibilities of computers, and 
also something about possibilities in physics. If we suppose that we know all 
the physical laws perfectly, of course we don't  have to pay any attention to 
computers. It's interesting anyway to entertain oneself with the idea that 
we've got something to learn about physical laws; and if I take a relaxed 
view here (after all I 'm here and not at home) I'll admit that we don't  
understand everything. 

The first question is, What kind of computer are we going to use to 
simulate physics? Computer theory has been developed to a point where it 
realizes that it doesn't make any difference; when you get to a universal 
computer, it doesn't matter how it's manufactured, how it's actually made. 
Therefore my question is, Can physics be simulated by a universal com- 
puter? I would like to have the elements of this computer locally intercon- 
nected, and therefore sort of think about cellular automata as an example 
(but I don't  want to force it). But I do want something involved with the 
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(but I don't  want to force it). But I do want something involved with the 

467 

0020-7748/82/0600-0467503.0£1/0 © 1982 Plenum Publishing Corporation 

“Let the computer itself be built of quantum mechanical 
elements which obey quantum mechanical laws.”

D.M. Grabowska Quantum Simulations of Lattice Field Theories Lattice 2023 6

Real-World Digital Computing Hardware
Many “commercial” computers are networking together ever-growing number of qubits

IBM Quantum Roadmap, 2020 
Superconducting Qubits IonQ Roadmap, 2020 
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Copy over from previous slide - rephrase

Gate noise is currently at the 10-3 level, with ideas for how to decrease it further

Quantum computing will play a huge role in the future of HPC

Develop a hybrid programming platform that combines 
quantum simulations with classical high-performance 
computing to accelerate the computing speed of classical 
supercomputers.
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Creare un’infrastruttura digitale nazionale per ricerca e 

innovazione, partendo dalle attuali infrastrutture in HPC, HTC e Big 

Data…

... evolvere verso un modello di cloud datalake, accessibile dalle 

comunità scientifiche e industriali attraverso interfacce web cloud 

flessibili e uniformi, affidandosi a un team di supporto di alto livello 

... 

… costituire un ecosistema attrattivo a livello globale basato su 
partenariati strategici pubblico-privato per sfruttare appieno 

l'infrastruttura digitale di alto livello per il calcolo scientifico e 

tecnico e per promuovere lo sviluppo di nuove tecnologie 

informatiche

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Lo scopo e gli obiettivi di ICSC
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• Costruire un’infrastruttura cloud di supercalcolo di livello
mondiale per archiviare, gestire ed elaborare tutti i dati prodotti

• Istituire centri di eccellenza con team di esperti di alto livello per 
sviluppare applicazioni del settore

• Creare forti legami tra il mondo accademico, l'industria e la 
pubblica amministrazione

• Formare la prossima generazione di data scientist e manager 
affinché diventino esperti nella transizione digitale

• Attuare misure strutturali per l'innovazione e la 
divulgazione

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

5 pilastri del 
programma d'azione
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L’ICSC include
10 Spoke tematici
e 
1 Spoke 
infrastruttura
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ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

dotato di un team di esperti di alto livello che integrano
i gruppi di lavoro degli Spoke (gruppi misti trasversali)

SUPERCOMPUTING CLOUD INFRASTRUCTURE0
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SPOKE 0 - Infrastruttura Cloud di supercalcolo
Lo Spoke 0 “Infrastruttura Cloud di supercalcolo” ha la 

responsabilità di fornire un’infrastruttura federata HPC e Big 

Data. Si differenzia dagli altri Spoke perché non è dedicato a 

una specifica area tematica ma è trasversale a tutte.

SPOKE 1 - FUTURE HPC & BIG DATA
Il focus principale dello Spoke 1 “Future HPC & Big Data” è lo 

sviluppo di tecnologie hardware e software altamente 

innovative per i supercalcolatori del futuro e il suo obiettivo è 

creare nuovi laboratori come parte integrante di un centro 

federato nazionale.

SPOKE 2 - FUNDAMENTAL RESEARCH & SPACE ECONOMY
Lo Spoke 2 intende sviluppare e testare nuove soluzioni per 

rispondere alle sempre crescenti esigenze di calcolo delle nuove 

generazioni di esperimenti per la ricerca di base e favorire la 

condivisione delle conoscenze e delle tecnologie sviluppate in 

ricerca di base con i settori produttivi.

SPOKE 4 - EARTH & CLIMATE
L’obiettivo dello Spoke 4 “Earth & Climate” è la creazione di un 

framework interdisciplinare che integri componenti della più 

avanzata modellistica del sistema terrestre, per fornire alla 

comunità scientifica e agli utenti uno strumento flessibile, 

affidabile e potente.

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

SPOKE 3 - ASTROPHYSICS & COSMOS OBSERVATIONS
Lo scopo dello Spoke 3 “Astrophysics & Cosmos observation” 

è lo sviluppo di software innovativi in grado di sfruttare le 

tecnologie di HPC e Big Data per raggiungere obiettivi nelle 

aree dell’astronomia, dell’astrofisica delle alte energie, della 

fisica astroparticellare e della cosmologia.

L.C.

G. Gonnella, G. Negro
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The Big Data Technopole, 
Bologna

Bologna

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing



Leonardo Cosmai - INFN Sezione di Bari 34

09/10/2023, 18:32 LEONARDO | SCAI

https://www.hpc.cineca.it/hardware/leonardo 1/3

ABOUT US RESOURCES SERVICES FOR USERS TRAINING PROJECTS

Home › Resources › Hardware

The new pre-exascale Tier-0 EuroHPC supercomputer

The pre-exascale Tier-0 EuroHPC supercomputer

LEONARDO is classified in 4° position among the

most powerful supercomputers in

the  Top500 List. It is hosted by Cineca and is

currently built in the Bologna Technopole. It is

supplied by ATOS, with two main partitions:

Booster Module and Data-centric Module. The

booster module partition is based on BullSequana

XH2135 supercomputer nodes, each with four

NVIDIA Tensor Core GPUs and a single Intel

CPU. It also uses NVIDIA Mellanox HDR 200Gb/s

InfiniBand connectivity, with smart in-network

computing acceleration engines that enable

extremely low latency and high data throughput

to provide the highest AI and HPC application

performance and scalability. The Data-centric

partition is based on BullSequana X2140 three-

node CPU Blade and is equipped with two Intel

Sapphire Rapids CPUs, each with 56 cores.

LEONARDO will be available in pre-production from February 2023 and will be open to full production in March

2023. For more news and information please visit Leonardo's website.

System Architecture

  

Compute Nodes:

5092 computing nodes subdivided in:

Model:  BullSequana X2135 "Da Vinci" single node GPU Blade

Nodes: 3456 booster nodes

Processors: Intel Xeon 8358 32 cores, 2.6 GHz 

Cores: 110592 (32 cores/node)

Accelerators: 4XNvidia custom Ampere GPU 64GB HBM2

RAM: (8x64) GB DDR4 3200 MHz

Network: 2xNvidia HDR cards 2x100Gb/s

Home  Contacts  CINECA

Search  

LEONARDO

We use cookies on this site to enhance your user experience
By clicking any link on this page you are giving your consent for us

to set cookies. More info

OK, I agree  DeclineDecline
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Model:  BullSequana X2140 three-node CPU Blade

Nodes: 1536 data-centric nodes

Processors: Intel Saphire Rapids 2x56 cores, 4.8 GHz 

Cores: 172032 (112 cores/node)

RAM: (48x32) GB DDR5 4800 MHz 

Network: 3xNvidia HDR cards 1x100Gb/s

16 visualization nodes  2 x Icelake ICP06 32cores 2.4GHz, 3 NVIDIA Tesla V100, RAM: (16 x

32) GB DDR5 4800 MHz

106 PB (raw) Large capacity storage, 620 GB/s

High Performance Storage 5.4 PB, 1.4 TB/s Based on 31 x DDN Exascaler ES400NVX2 

Login and Service nodes: 16 Login nodes are available. 16  service nodes for I/O and cluster

management.

All the nodes are interconnected through an Nvidia Mellanox network, with Dragon Fl+, capable

of a maximum bandwidth of 200Gbit/s between each pair of nodes.

User guide
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Top 10 positions of the 61st TOP500 in June 2023[29]

Rank
(previous)

Rmax
Rpeak

(PetaFLOPS)
Name Model CPU

cores
Accelerator (e.g. GPU)

cores Interconnect Manufacturer Site
country Year

1 1,194.00
1,679.82 Frontier HPE Cray EX235a

561,664
(8,776 × 64-
core
Optimized
3rd
Generation
EPYC 64C
@2.0 GHz)

36,992 × 220 AMD Instinct
MI250X Slingshot-11 HPE

Oak Ridge
National
Laboratory

 United
States

2023

2 442.010
537.212 Fugaku Supercomputer

Fugaku

7,630,848
(158,976 ×
48-core
Fujitsu
A64FX
@2.2 GHz)

158,976 x

Fujitsu A64FX
Tofu
interconnect D Fujitsu

RIKEN Center
for
Computational
Science

 Japan

2020

3 309.10
428.70 LUMI HPE Cray EX235a

150,528
(2,352 × 64-
core
Optimized
3rd
Generation
EPYC 64C
@2.0 GHz)

9,408 × 220 AMD Instinct
MI250X Slingshot-11 HPE

EuroHPC JU
 European

Union, Kajaani,
 Finland

2022

4 238.70
304.47 Leonardo BullSequana

XH2000

110,592
(3,456 × 32-
core Xeon
Platinum
8358
@2.6 GHz)

15,872 × 108 Nvidia
Ampere A100

Nvidia HDR100
Infiniband Atos

EuroHPC JU
 European

Union, Bologna,
 Italy

2023

5 148.600
200.795 Summit IBM Power System

AC922

202,752
(9,216 × 22-
core IBM
POWER9
@3.07 GHz)

27,648 × 80 Nvidia Tesla
V100 InfiniBand EDR IBM

Oak Ridge
National
Laboratory

 United
States

2018

6 94.640
125.712 Sierra IBM Power System

S922LC

190,080
(8,640 × 22-
core IBM
POWER9
@3.1 GHz)

17,280 × 80 Nvidia Tesla
V100 InfiniBand EDR IBM

Lawrence
Livermore
National
Laboratory

 United
States

2018

7 93.015
125.436

Sunway
TaihuLight Sunway MPP

10,649,600
(40,960 ×
260-core
Sunway
SW26010
@1.45 GHz)

0 Sunway[30] NRCPC

National
Supercomputing
Center in Wuxi

 China[30]
2016

8 70.87
93.75 Perlmutter HPE Cray EX235n

? × ?-core
AMD Epyc
7763 64-
core
@2.45 GHz

? × 108 Nvidia Ampere
A100 Slingshot-10 HPE

NERSC
 United

States
2021

9 63.460
79.215 Selene Nvidia

71,680
(1,120 × 64-
core AMD
Epyc 7742
@2.25 GHz)

4,480 × 108 Nvidia
Ampere A100

Mellanox HDR
Infiniband Nvidia

Nvidia
 United

States
2020

10 61.445
100.679 Tianhe-2A TH-IVB-FEP

427,008
(35,584 ×
12-core Intel
Xeon E5–
2692 v2
@2.2 GHz)

35,584 × Matrix-2000[31]

128-core TH Express-2 NUDT

National
Supercomputer
Center in
Guangzhou

 China

2018[32]

Legend:[33]

Rank – Position within the TOP500 ranking. In the TOP500 list table, the computers are ordered first by their Rmax value. In the case of equal
performances (Rmax value) for different computers, the order is by Rpeak. For sites that have the same computer, the order is by memory size
and then alphabetically.
Rmax – The highest score measured using the LINPACK benchmarks suite. This is the number that is used to rank the computers. Measured in
quadrillions of 64-bit floating point operations per second, i.e., petaFLOPS.[34]
Rpeak – This is the theoretical peak performance of the system. Computed in petaFLOPS.
Name – Some supercomputers are unique, at least on its location, and are thus named by their owner.
Model – The computing platform as it is marketed.
Processor – The instruction set architecture or processor microarchitecture, alongside GPU and accelerators when available.
Interconnect – The interconnect between computing nodes. InfiniBand is most used (38%) by performance share, while Gigabit Ethernet is most
used (54%) by number of computers.
Manufacturer – The manufacturer of the platform and hardware.
Site – The name of the facility operating the supercomputer.
Country – The country in which the computer is located.
Year – The year of installation or last major update.

TOP500.org  (as of June 2023)

http://TOP500.org


Leonardo Cosmai - INFN Sezione di Bari 36

VIDEO ICSC
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Conclusions

Computational theoretical physics @INFN: a rich and enduring tradition that has 
made fundamental contributions to the advancement of high-performance 
computing (HPC) endeavors.  Researchers in this field are working on a wide range 
of projects, including lattice QCD, high-energy physics (HEP), astroparticle physics, 
nuclear physics, complex systems, and quantum computing.

Challenge: Ensuring the long-term sustainability of efforts to maintain and enhance 
codes and algorithms, which necessitates a considerable amount of human 
resources —> ICSC.

The availability of cutting-edge computing resources is vital for maintaining 
competitiveness on an international scale —> ICSC.

Scientific computing has become one of the fundamental pillars of science, 
combining theory and experiment. 
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