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‘—Aims of the Project

Aims of the Project for the Lecce Unit (Phase 1)

Development of general-purpose analytical reconstruction
algorithms

Development of mathematical framework for analytical
reconstruction

Development of general-purpose numerical reconstruction
algorithms

Development of mathematical framework for numerical
reconstruction

Focus on Multiple Coded Masks
@ Multiple Optical devices (Lenses and Coded Masks)



‘—Single View Geometry

The Camera Model

camera
centre

The Pinhole Camera Model
Ax=PX, VAeRy, P: X € PP—x € P?

P11 P12 P13 D4 p'T
P=|pn p2 ps pu|=|PT
P31 P32 P33 D34 p3T



‘—Single View Geometry

The Camera projection matrix

Z
0
Y
X
P = KI[RIt],
ReSOBB)and R¥5t=—-Rc: PC:P<(1:>:O
X0
Camera calibration matrix K=

o oh
oO<h »n
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‘—Single View Geometry

Can the projective description applicable to the Coded Masks?

A Coded Mask is not a centered optical system |
Approximations are needed and to be verified!

. An HURA of order 79.



‘—Single View Geometry

0-order Approximation: determining P
n source points
x,'<—)X,' ~ 3)\,'1 /\,‘X,': )\,‘ (X,'7 Vi, W,')T:PX,' izl,...,n
XiANPX;i=0& A P? =0

AcR?12 det A=0, rank A =11
P is defined by n > 6 points (modulo a scale factor)



‘—Single View Geometry

Application to a MURA mask

A 19 x 19 MURA mask, with parameters
a— 15,b — 1.3637, pm — 0.11, pg — 0.12 (cm)
6 point-like sources (minimal constraint)

1 5 10 15 19

1 1

1 5 10 15 19

= Aex, detAex #0, Aex Pex =0



‘—Single View Geometry

Solving for P

Direct Linear Algorithm
m Assemble A € R27x12
m Performe the Singular Valued Decomposition A= U D VT,
with D = diag (Amax, - - - s Amin) € R12X12.X; >0
mP=V,

/\min of Aex = 0.05042
—0.081 —-0.404 0.480 0.174

Pex = 0.209 —-0.839 —-0.534 1.851
—1.074 0.136 1. —0.920
0.005 0.005
0.02 0.01
) Almmagini 0.01 0.02
PeX.Sorgentl —_ W = 0.02 0.03
0.03 0.01

0.003 0.01



‘—Single View Geometry

Calibration matrix
0.281 0.223 0.236

K=PL3R1 = 0 0560 —0.402

0 0 1
R=1,R,(0.22) R,(0.82) R,(0.12)  c=(0.33,1.62,1.10)
In first approximation a Coded Mask is a Projective Camera
Different focal lengths f, # f,
(x0, ¥0) # 0 <> image plane Origin # principal point
Non vanishing skew parameter s

Rotation relative to the world frame

Traslated camera center



Optimization

for n > 6 find the Maximum Likelihood estimate of P by
a Standard Algorithm

Estimate P by a linear procedure

Normalize source and image points : X; = U X;, X; =T x;,

g _ X kP
suchthatZX,-—O,Zx;—O =3, = =2

Generate A ({)N(,} , {)"(,}) and take its normalized eigenvector
Prmin>Amin # 0 = P

Minimize recursively minp (27:1 Ix; — I5X,-|2>

Back in the original coordinates : P = T—1 PU



‘—Multiple View

Multiple Views

P; : P3P2
)\,‘j Xj:P,'XJ', V)\,'J'ER/O
P = K; [R,"ti] P,Ci=0

RONED

m Transition f. h,p : P? < P2

h; 3 =1
habhba =1

ha b hb c heca =1
cocycle identity



‘—Multiple View

The Projective Reconstruction Theorem
The triplet (P7 P, {Xa}azs) is called a 3D reconstruction of the images
{xa} and {x,} if it satisfies the relations
Ao Xa = P Xa, Ao xo =P X,

Th. A 3D reconstruction is unique up to a homography of P3.

] <I3, :E”, {)"(a} ) is another reconstruction iff
a>8

B=PH, P =P H?' X,=HXa, H: PP linear
m For any Camera Stereo Rig Pi, P2, ... its canonical form is

Py =[10], P = KaRa (KiR1) " [I | det (K1) KiR2 (c1 — €2)], ...

H— KiR:1 —KiRic1
T 07T 1/det(K)

m Equally calibrated cameras

Rs t -
Po =K [1|0], Ps = PoHos , Hos = ( o 1 )7 Hap = Hyo Hos.

m Ho. are the generators of a Borel subgroup of GL (4).



‘—Multiple View

Pseudo-Inverse of P and Reconstruction formula in double-view

P=K[R] x=PX

RT tot _ I c®c
P+: ]1—7 K 1: ]I_ RTK_l
i) o= e ] )

= X=Px+uC peR

Corresponding point

NX =P X XNeRy

(PPPtx AX)-(X AN PC)

C
(X A P'C)?

XAX =0=|X=Px+




The Fundamental Matrix

m Epipoles
=P C, e=PC
mx =P X=P Ptx+pue
mll=e AX=¢ NP P"x
= |F=[e], P'P
rank 2 P2 — P?, detF =0

m Corresponding image points

X - V=[xTFx=0] “c

epipole =

! ' C. . v. — ipolar &

= Zij x; Fijxj= S
P x 0

X

det(P 0 x>—0

F=[e], KR K1=K-TR KT[e,

epipolar plane

. 1
epipole
el




‘—Multiple View

Computing F from a pair of Camera Matrices - Examples |

Equally calibrated c.s K’ = K
m Translated Camera :
, K~1x
Fe=[Kt],, X =x+AIKt, X= !
T stytatctt(xo—x')

m Roto-traslated Camera: F =[Kt], K R K71,

K~ 1x
X' = KRK™tx+ pKt, X = (kRk~*xnx)(x AKt)
(x’ A Kt)?
m front-to-front stereo rig:
P'=KI, [I,—c], c=(0,0,¢)", I, = diag (1,1, —1)
e =c(x0,y0,1) =cks, Fr_, = [ks], KLK™
XTF_x=("—yo)x+0o—y)X 4+ —y)x =0 e
Phys. J. C 81 (2021) 1011

_ 2xaxB _ 2zpzp _ XA—XB __ -ZA—2ZB
XS = Xatxg’ ST zatzer VST Yt T zatzs



‘—Multiple View

Computing F from a pair of Camera Matrices - Examples I

m Cameras at right angle:
P=KILOl, P =KR , [IL-rR,2]
_ y _
e=rKR/,2 e =-rK R{ﬂ/42
0 1 —Y0
/2 K1t=| -1 0 X — o
Yo —a— X0 2ay
T
Non anti-symmetry = Horopter: XT%X = 0 is degenerate
conic of the image points the coordinates of which coincide.

Fu=[KR 2 KR,



‘—Multiple View

GRAIN as a multiple-view (lenses) system

Set of lenses centered at

5;12’53,7 [(1—53)6”,—%53 h
cfniv €2, €3 — 7,0;1’ 3p = —(1- 63)(;1)61 Bm b

&, e _

a2 3 e [Fa-e) 52 v aeam| o

for ¢,=0,1 and0< |m| <3
d_m=—8m, do=0and B_,, = Bn

Projection Matrices

pe1cz €3 = i (RY)c2(l—<a) (R{_l)qg>€3 [, —c1: <2 €3]
2

Fundamental Matrices

oot Lol Nt T ot
€ € € € € € € € € € € € € € €
Fel €2 €3 €1 €2 €3 _ (P 1 €2 3) (Per 2 €3)T [e 1€2€3 € €2 3]

mm’ mm’



Multiple View

Reconstruction by double-Views

Minimal hypotesis :
K = diag (—f,—f,1) Vm,e1,€2,€e3, f =100mm

€1 €2 €3 €1 €2 €3 51 52 53
Compute Py} and F = -

Each point is detected/seen by N < 38 cameras
Centroids of the photon distribution as image coordinates .

There are M = . possible double-views

27|(N 2)
Check the consistency conditions
Xm/ T'Feleze3elle/2€/3. m ~0
€] €5 €} mm' €1 €263 7

m Perform M reconstructions by the 3D formula

m take the mean value of the M possible reconstructions for each

coordinate X = Z,<, , Y = Z’<’ 7= Z’<J
AXi = Xealc i — Xtrue i-

AX ~ 10 2mm BAX2Y2 x 5mm, AY ~ 10 2mm AY2Y2 % 3mm, AZ ~ 10 2mm az2Y/2:



‘—Multiple View

Errors in computing the corresponding points

5= Pt xub S = (Ko} = S xS = { (xaix)}

Corresponding points : S, = {(xa,x’ﬁ) ; X,B F xo = 0}
Empirical data 0 < E, g = | x,'B Fxol|<e

Bounded spread criterion
(xa, x/’8> = (xg + Ax, x'ﬁ0 + Ax')

€ €
|AX| < ——— ) |AX ] <
ARl tsanital



‘—Multiple View

The Fundamental matrix from data

The set 5S¢, of the corresponding points is known and #5., > 8
X, Fxo =0 = AF =0 with Ac R"™°
rank (A) = 8 = X\ F is determined
rank (A) = 9 a least square solution is found by solving
Mina||AF|| subject to ||F|| =1
m Singular Value Decomposition : F = U D VT with
D = diag(p, g,€),e < g < p, U, V orthogonal

0 —1 0
m Introduce the matrices Z = ( 1o > and

m Compute S = UZUT and M = UWTDV' | then F = SM
m Associated to F a pair of cameras is P = [[|0], P’ =[M|U3]



‘—Multiple View

Three view reconstruction |

a / " no _ pn
AaXa =P Xy, ALx, =P Xy, XNax'a=P" X,
P Xa 0 0 };‘
PP 0 x, 0 - =0
P 0 0 x'a o
—N'g
Since a solution exists, then all 7 x 7 sub-matrices have determinant = 0
=
3
L e .
E x'x7 x “ejquein T =0
ij,k,q,r=1

4 independent eq.s
9 trilinear conditions involving the trifocal tensor (27 components)

T = (-1)"*' det (P, P, P",)

m 7 triplets of corresponding points completely determine 7,7

m Known 7;%", three views allow to reconstruct X



‘—Multiple View

Three view reconstruction |l

m Duality point-line :
Ip 15 /T =0

m Line Transfer :

b = I 1T




‘—Multiple View

Three view reconstruction ||

Cameras involved: 15,16,19,20,23,24, 31-36

— ‘

AQ ~ 10737 st.rad.



Conclusions

Conclusions |

m Different reconstruction algorithms are in development.

m A coded mask can be treated as a projective camera at 0-order
approximation

m Camera projection matrices, Fundamental matrices and trifocal
tensors are common tools in a multiple - view treatment.

m Camera projection matrices, fundamental matrices and trifocal
tensors can be derived from constructive design data

m 3D Reconstruction formulas are displayed for generic and
special arrangements of cameras.

m Alternatively, they can be derived from calibration methods,
exploiting a minimal finite number of empirical data.

m Optimization methods in the above calculations are already at
our disposal.



Conclusions

Conclusions Il

m Several tests addressed to evaluate the capability of 3D
reconstruction point like sources in different regions of GRAIN
have been performed.

m Adopting the trifocal tensor approach, point and line sources
can be treated at the same foot.

m Generalized methods in presence of more than three view
should be developed.

m Reconstruction of a single muon trace with origin within the
GRAIN volume;

m Reconstruction of two tracks from a vertex within GRAIN;

m Development of criteria for the association of images of
different simultaneous tracks on different sensors;

m Image Transfer.

m Further Ideas
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