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Aims of the Project

Aims of the Project for the Lecce Unit (Phase 1)

1 Development of general-purpose analytical reconstruction
algorithms

2 Development of mathematical framework for analytical
reconstruction

3 Development of general-purpose numerical reconstruction
algorithms

4 Development of mathematical framework for numerical
reconstruction

5 Focus on Multiple Coded Masks
6 Multiple Optical devices (Lenses and Coded Masks)



Single View Geometry

The Camera Model

154 6 Camera Models
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Fig. 6.1. Pinhole camera geometry. C is the camera centre and p the principal point. The camera
centre is here placed at the coordinate origin. Note the image plane is placed in front of the camera
centre.

computes that the point (X, Y, Z)T is mapped to the point (fX/Z, fY/Z, f)T on the
image plane. Ignoring the final image coordinate, we see that

(X, Y, Z)T !→ (fX/Z, fY/Z)T (6.1)

describes the central projection mapping from world to image coordinates. This is a
mapping from Euclidean 3-space IR3 to Euclidean 2-space IR2.

The centre of projection is called the camera centre. It is also known as the optical
centre. The line from the camera centre perpendicular to the image plane is called the
principal axis or principal ray of the camera, and the point where the principal axis
meets the image plane is called the principal point. The plane through the camera
centre parallel to the image plane is called the principal plane of the camera.

Central projection using homogeneous coordinates. If the world and image points
are represented by homogeneous vectors, then central projection is very simply ex-
pressed as a linear mapping between their homogeneous coordinates. In particular,
(6.1) may be written in terms of matrix multiplication as
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. (6.2)

The matrix in this expression may be written as diag(f, f, 1)[I | 0] where
diag(f, f, 1) is a diagonal matrix and [I | 0] represents a matrix divided up into a 3× 3
block (the identity matrix) plus a column vector, here the zero vector.

We now introduce the notation X for the world point represented by the homoge-
neous 4-vector (X, Y, Z, 1)T, x for the image point represented by a homogeneous 3-
vector, and P for the 3×4 homogeneous camera projection matrix. Then (6.2) is written
compactly as

x = PX

which defines the camera matrix for the pinhole model of central projection as

P = diag(f, f, 1) [I | 0].

The Pinhole Camera Model
λ x = PX, ∀ λ ∈ R/0, P : X ∈ P3→x ∈ P2

6.2 The projective camera 159
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Fig. 6.4. The three image points defined by the columns pi, i = 1, . . . , 3, of the projection matrix are
the vanishing points of the directions of the world axes.

Under the mapping x = PX points on this line are projected to

x = PX(λ) = λPA + (1− λ)PC = λPA

since PC = 0. That is all points on the line are mapped to the same image point PA,
which means that the line must be a ray through the camera centre. It follows that C
is the homogeneous representation of the camera centre, since for all choices of A the
line X(λ) is a ray through the camera centre.
This result is not unexpected since the image point (0, 0, 0)T = PC is not defined,

and the camera centre is the unique point in space for which the image is undefined. In
the case of finite cameras the result may be established directly, since C = (C̃

T
, 1)T

is clearly the null-vector of P = KR[I | −C̃]. The result is true even in the case where
the first 3× 3 submatrix M of P is singular. In this singular case, though, the null-vector
has the form C = (dT, 0)T where Md = 0. The camera centre is then a point at infinity.
Camera models of this class are discussed in section 6.3.

Column vectors. The columns of the projective camera are 3-vectors which have a
geometric meaning as particular image points. With the notation that the columns of P
are pi, i = 1, . . . , 4, then p1,p2,p3 are the vanishing points of the world coordinate X,
Y and Z axes respectively. This follows because these points are the images of the axes’
directions. For example the x-axis has direction D = (1, 0, 0, 0)T, which is imaged at
p1 = PD. See figure 6.4. The column p4 is the image of the world origin.

Row vectors. The rows of the projective camera (6.12) are 4-vectors which may be
interpreted geometrically as particular world planes. These planes are examined next.
We introduce the notation that the rows of P are PiT so that

P =




p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34


 =




P1T

P2T

P3T


 . (6.12)



Single View Geometry

The Camera projection matrix
156 6 Camera Models
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Fig. 6.3. The Euclidean transformation between the world and camera coordinate frames.

centre in the world coordinate frame, and R is a 3 × 3 rotation matrix representing the
orientation of the camera coordinate frame. This equation may be written in homoge-
neous coordinates as

Xcam =

[
R −RC̃
0 1

]



X
Y
Z
1


 =

[
R −RC̃
0 1

]
X. (6.6)

Putting this together with (6.5) leads to the formula

x = KR[I | −C̃]X (6.7)

where X is now in a world coordinate frame. This is the general mapping given by a
pinhole camera. One sees that a general pinhole camera, P = KR[I | −C̃], has 9 degrees
of freedom: 3 for K (the elements f, px, py), 3 for R, and 3 for C̃. The parameters
contained in K are called the internal camera parameters, or the internal orientation
of the camera. The parameters of R and C̃ which relate the camera orientation and
position to a world coordinate system are called the external parameters or the exterior
orientation.
It is often convenient not to make the camera centre explicit, and instead to represent

the world to image transformation as X̃cam = RX̃ + t. In this case the camera matrix is
simply

P = K[R | t] (6.8)

where from (6.7) t = −RC̃.

CCD cameras. The pinhole camera model just derived assumes that the image coor-
dinates are Euclidean coordinates having equal scales in both axial directions. In the
case of CCD cameras, there is the additional possibility of having non-square pixels. If
image coordinates are measured in pixels, then this has the extra effect of introducing
unequal scale factors in each direction. In particular if the number of pixels per unit

P = K [R|t] ,

R ∈ SO (3) and R3 3 t = −R c : P C = P

(
c
1

)
= 0

Camera calibration matrix K =




fx s x0
0 fy y0
0 0 1




fx , fy focal lengths, s skew parameter, (x0, y0) principal point



Single View Geometry

Can the projective description applicable to the Coded Masks?

1 A Coded Mask is not a centered optical system !
2 Approximations are needed and to be verified!

98 A. BUSBOOM ET AL.
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Figure 1. Cyclic coded aperture imaging system.

From among the various algorithms proposed in the literature for reconstruct-
ing the original source distribution from the coded detector image, we will only
mention two here:
1. For matched filtering, reconstruction is achieved by periodically crosscorre-
lating the detector image with the aperture array itself, possibly scaled by a
constant factor and offset by a constant value. Matched filtering can be shown
to be optimum with respect to the contribution of quantum noise in the detector
measurements to the reconstruction. However, the point spread function (PSF)
of the resulting imaging system is the periodic autocorrelation function of
the aperture array. Unless this autocorrelation function has constant sidelobe
values, the reconstruction will be subject to systematic errors, often referred to
as coding noise or artifacts.

2. For inverse or mismatched filtering, the detector image is crosscorrelated
with the periodic inverse filter of the aperture array (Antweiler and Lüke,
1994; Lüke and Busboom, 1998). In this case, the reconstruction will be free
of coding noise for arbitrary aperture arrays, however, amplification of the
quantum noise will occur and have a deteriorating effect on the reconstructed
image.
Matched and mismatched filtering become identical, except for a constant scal-

ing and offset, if and only if the periodic autocorrelation function of the aperture
array has constant sidelobes. Arrays with this property are commonly referred to

expa350.tex; 15/06/1998; 10:42; p.2

Mosaic of 2× 2 cyclic coded aperture imaging system

S. R. Gottesman and E. E. Fenimore, Appl. Opt. 28 (1989), 4344



Single View Geometry

0-order Approximation: determining P

n source points
Xi ↔ xi ⇔ ∃ λi : λi xi = λi (xi , yi , wi )

T = P Xi i = 1, . . . , n

xi ∧ P Xi = 0⇔ A




P1

P2

P3


 = 0

A ∈ R2n×12 det A = 0, rank A = 11
P is defined by n ≥ 6 points (modulo a scale factor)



Single View Geometry

Application to a MURA mask

A 19× 19 MURA mask, with parameters
a→ 15, b → 1.3637, pm → 0.11, pd → 0.12 (cm)
6 point-like sources (minimal constraint)
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⇒ Aex , detAex 6= 0, Aex Pex = 0



Single View Geometry

Solving for P

Direct Linear Algorithm
Assemble A ∈ R2n×12

Performe the Singular Valued Decomposition A = U D V T ,
with D = diag (λmax , . . . , λmin) ∈ R12×12, λi > 0
P = Vλmin

λmin of Aex = 0.05042

Pex =



−0.081 −0.404 0.480 0.174
0.209 −0.839 −0.534 1.851
−1.074 0.136 1. −0.920




Pex .Sorgenti −→ ∆Immagini
Immagini

=




0.005 0.005
0.02 0.01
0.01 0.02
0.02 0.03
0.03 0.01
0.003 0.01






Single View Geometry

Calibration matrix

K = P1−3
ex R−1 =




0.281 0.223 0.236
0 0.560 −0.402
0 0 1




R = Iy Rz (0.22) Ry (0.82) Rz (0.12) c = (0.33, 1.62, 1.10)

In first approximation a Coded Mask is a Projective Camera
Different focal lengths fx 6= fy

(x0, y0) 6= 0↔ image plane Origin 6= principal point
Non vanishing skew parameter s
Rotation relative to the world frame
Traslated camera center



Single View Geometry

Optimization

for n ≥ 6 find the Maximum Likelihood estimate of P by
a Standard Algorithm

1 Estimate P by a linear procedure
2 Normalize source and image points : X̃i = U Xi , x̃i = T xi ,

such that
∑

i

X̃i = 0,
∑

i

x̃i = 0
∑

i |X̃i |2
n − 1

= 3,
∑

i |x̃i |2
n − 1

= 2

3 Generate A
({

X̃i

}
, {x̃i}

)
and take its normalized eigenvector

~pmin↔λmin 6= 0 ⇒ P̃

4 Minimize recursively minP

(∑n
i=1 |xi − P̃Xi |2

)

5 Back in the original coordinates : P = T−1 P̃ U



Multiple View

Multiple Views

Pi : P3→P2

λi j xj = PiXj , ∀ λi j ∈ R/0
Pi = Ki [Ri |ti] Pi Ci = 0

Ci =

(
ci
1

)
=

(
−RT

i ti
1

)

Transition f. ha b : P2 ↔ P2



ha a = I
ha b hb a = I
ha b hb c hc a = I

cocycle identity

C

C

C

Pa

Ha b

b cH

Ha c



Multiple View

The Projective Reconstruction Theorem

The triplet
(
P, P ′, {Xα}α≥8

)
is called a 3D reconstruction of the images

{xα} and {x′α} if it satisfies the relations

λα xα = P Xα, λ′α x′α = P′ Xα

Th. A 3D reconstruction is unique up to a homography of P3.(
P̃, P̃ ′,

{
~Xα
}
α≥8

)
is another reconstruction iff

P̃ = P H−1, P̃ ′ = P ′ H−1, ~Xα = H Xα,H : P3↔P3 linear
For any Camera Stereo Rig P1,P2, . . . its canonical form is

P̃1 = [I|0] , P̃2 = K2R2 (K1R1)
−1 [I | det (K1)K1R2 (c1 − c2)] , ...

H =

(
K1R1 −K1R1c1

0T 1/ det (K1)

)
Equally calibrated cameras

P0 = K [I|0] , Pβ = P0 H0,β ,H0,β =

(
Rβ tβ
0T 1

)
, Hαβ = H−1

0α H0 β .

H0α are the generators of a Borel subgroup of GL (4).



Multiple View

Pseudo-Inverse of P and Reconstruction formula in double-view

P = K [R|t] x = P X

P+ =

[
RT

tT

](
I− t⊗ t

1 + |t|2
)

K−1 =

[
I
−cT

](
I− c⊗ c

1 + |c|2
)
RTK−1

⇒ X = P+x + µC µ ∈ R

Corresponding point

λ′ x′ = P ′ X λ′ ∈ R/0

x′ ∧ x′ = 0⇒ X = P+x +
(P ′ P+ x ∧ x′) · (x′ ∧ P ′ C)

(x′ ∧ P ′ C)2 C



Multiple View

The Fundamental Matrix

Epipoles
e′ = P ′ C, e = P C′

x′ = P ′X = P ′ P+x + µ e′

l′ = e′ ∧ x′ = e′ ∧ P ′ P+ x
F =

[
e′
]
∧ P ′ P+

rank 2 P2 → P2, detF = 0
Corresponding image points
x′ · l′ = x′T F x = 0∑

i j x ′i Fi j xj =

det

(
P ′ x′ 0
P 0 x

)
= 0

C C’

epipolar plane

epipole

epipole ‘

F = [e′]∧ K
′ R ′ K−1 = K ′−T R ′ KT [e]∧



Multiple View

Computing F from a pair of Camera Matrices - Examples I

Equally calibrated c.s K ′ = K

Translated Camera :

Ft = [K t]∧ , x′ = x + λK t, X =

(
K−1x

− x−x ′

sty +αtx +tz (x0−x ′)

)

Roto-traslated Camera: F = [K t]∧ K R K−1,

x′ = KRK−1 x + µK t, X =

(
K−1x

(KRK−1 x ∧ x′)·(x′ ∧ Kt)
(x′ ∧ Kt)2

)

front-to-front stereo rig:
P ′ = K Iz [I,−c] , c = (0, 0, c)T , Iz = diag (1, 1,−1)
e′ = c (x0, y0, 1)T = ck3, Fff−z = [k3]∧ KIzK

−1

x′TFff−zx = (y ′ − y0) x + (y0 − y) x ′ + (y − y ′) x0 = 0 Eur.

Phys. J. C 81 (2021) 1011

xS = 2xAxB
xA+xB

, zS = 2zAzB
zA+zB

, yS = a xA−xB
xA+xB

= a zA−zB
zA+zB



Multiple View

Computing F from a pair of Camera Matrices - Examples II

Cameras at right angle:
P = K [I, 0] , P ′ = K Ry

−π/2

[
I,−r Ry

π/4ẑ
]

e = r K Ry
π/4ẑ, e′ = −r K Ry

−π/4ẑ

F⊥ =
[
K Ry

−π/4 ẑ
]
×

K Ry
−π/2 K−1 =


0 1 −y0
−1 0 x0 − α
y0 −α− x0 2α y0


Non anti-symmetry ⇒ Horopter: xT F⊥+F T

⊥
2 x = 0 is degenerate

conic of the image points the coordinates of which coincide.



Multiple View

GRAIN as a multiple-view (lenses) system

457 mm

1000 mm

1456 
mm

Set of lenses centered at

cε1, ε2, ε3m =

(
ξ
ε2, ε3
m h

ψ
ε1, ε3
m b

ζ
ε2, ε3
m `

)
=

( [
(1− ε3) δm −

(−1)ε2
2 ε3

]
h

− (1− ε3) (−1)ε1 βm b[
− (1− ε3)

(−1)ε2
2 + λ ε3 m

]
`

)

for εi = 0, 1 and 0 ≤ |m| ≤ 3
δ−m = −δm, δ0 = 0 and β−m = βm

Projection Matrices

Pε1 ε2 ε3m = K
(

Rx
π

)ε2(1−ε3)
(

R
y
(−1)ε2 π2

)ε3 [
I,−cε1, ε2, ε3m

]
Fundamental Matrices

F
ε1 ε2 ε3 ε

′
1 ε
′
2 ε
′
3

m m′ =

(
P
ε′1 ε
′
2 ε
′
3

m′

)+ T (
Pε1 ε2 ε3m

)T
[
e
ε1 ε2 ε3 ε

′
1 ε
′
2 ε
′
3

m m′

]



Multiple View

Reconstruction by double-Views

Minimal hypotesis :
K = diag (−f ,−f , 1) ∀m, ε1, ε2, ε3 , f = 100mm

Compute Pε1 ε2 ε3m and F
ε1 ε2 ε3 ε′1 ε

′
2 ε
′
3

m m′

Each point is detected/seen by N ≤ 38 cameras
Centroids of the photon distribution as image coordinates .
There are M = N!

2!(N−2)! possible double-views
Check the consistency conditions
xm′

ε′1 ε
′
2 ε
′
3

T · F ε1 ε2 ε3 ε
′
1 ε
′
2 ε
′
3

m m′ · xm
ε1 ε2 ε3 ≈ 0

Perform M reconstructions by the 3D formula
take the mean value of the M possible reconstructions for each

coordinate X =
∑N

i<j Xij

M , Y =
∑N

i<j Yij

M , Z =
∑N

i<j Zij

M
∆Xi = Xcalc i − Xtrue i :

∆X ≈ 10−2mm ∆X21/2 ≈ 5mm, ∆Y ≈ 10−2mm ∆Y 21/2 ≈ 3mm, ∆Z ≈ 10−2mm ∆Z21/2 ≈ 3mm



Multiple View

Errors in computing the corresponding points

S = {x1, . . . , xN} , S ′ =
{
x′1, . . . , x

′
N′
}
→ S × S ′ =

{(
xα, x′β

)}

Corresponding points : Scp =
{(

xα, x′β
)

: x′β F xα = 0
}

Empirical data 0 ≤ Eα,β = | x′β F xα | ≤ ε

Bounded spread criterion(
xα, x′β

)
=
(
x0
α + ∆x, x′0β + ∆x′

)

|∆x| ≤ ε

|x′0
β̄
| ||F || , |∆x′| ≤ ε

|x0
β̄
| ||F ||



Multiple View

The Fundamental matrix from data

The set Scp of the corresponding points is known and #Scp ≥ 8
x′α Fxα = 0 ⇒ AF = 0 with A ∈ Rn×9

rank (A) = 8⇒ λ F is determined
rank (A) = 9 a least square solution is found by solving
MinA||AF|| subject to ||F|| = 1

Singular Value Decomposition : F = U D V T with
D = diag (p, q, ε) , ε� q < p, U,V orthogonal

Introduce the matrices Z =
( 0 −1 0

1 0 0
0 0 0

)
and

W =
( 0 −1 0

1 0 0
0 0 1

)

Compute S = UZUT and M = UW TDV T , then F = SM

Associated to F a pair of cameras is P = [I|0] , P ′ = [M|U.3]



Multiple View

Three view reconstruction I

λα xα = P Xα, λ′α x′α = P′ Xα, λ”α x”α = P” Xα(
P xα 0 0
P′ 0 x′α 0
P” 0 0 x”α

)( Xα
−λα
−λ′α
−λ”α

)
= 0

Since a solution exists, then all 7× 7 sub-matrices have determinant = 0
⇒

3∑

i,j,k,q,r=1

x i x
′j x”kεjquεkrvT qr

i = 0

4 independent eq.s
9 trilinear conditions involving the trifocal tensor (27 components)

T qr
i = (−1)i+1 det

(
Pî ,P

′
q,P”r

)

7 triplets of corresponding points completely determine T qr
i

Known T qr
i , three views allow to reconstruct X



Multiple View

Three view reconstruction II

Duality point-line :
lp l ′q l ′′r T qr

i = 0

Line Transfer :
lp = l ′q l ′′r T qr

p
Triple-View Geometry and image correspondences:

the Trifocal Tensor

32



Multiple View

Three view reconstruction III

Cameras involved: 15,16,19,20,23,24, 31-36
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3D Global Reconstruction of the track

40

∆Ω ≈ 10−3π st.rad.



Conclusions

Conclusions I

Different reconstruction algorithms are in development.

A coded mask can be treated as a projective camera at 0-order
approximation

Camera projection matrices, Fundamental matrices and trifocal
tensors are common tools in a multiple - view treatment.

Camera projection matrices, fundamental matrices and trifocal
tensors can be derived from constructive design data

3D Reconstruction formulas are displayed for generic and
special arrangements of cameras.

Alternatively, they can be derived from calibration methods,
exploiting a minimal finite number of empirical data.

Optimization methods in the above calculations are already at
our disposal.



Conclusions

Conclusions II

Several tests addressed to evaluate the capability of 3D
reconstruction point like sources in different regions of GRAIN
have been performed.
Adopting the trifocal tensor approach, point and line sources
can be treated at the same foot.
Generalized methods in presence of more than three view
should be developed.
Reconstruction of a single muon trace with origin within the
GRAIN volume;
Reconstruction of two tracks from a vertex within GRAIN;
Development of criteria for the association of images of
different simultaneous tracks on different sensors;
Image Transfer.
Further Ideas
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