PRIN 2022KJZSYB Kickoff Meeting Bologna Nicolò Tosi 9-10-23

First and most crucial Issue

We need a name better than 2022KJZSYB, suggestions?

What is this all about?

- The main reason for this proposal is to support the effort of developing GRAIN
- We also want to explore other applications of Coded Aperture Imaging with SiPMs:
 - PET (both crystals and LAr)
 - Calorimetry

SAND

- SAND is one of the 3 DUNE Near Detectors
- SAND contains
 - Gas based Tracker
 - Pb-SciFi ECAL
 - a small LAr target: GRAIN
- GRAIN is not the usual TPC, but a scintillation imaging detector

GRAIN IN SAND

GRAIN

Prin Kickoff Meeting

- We want to take a picture of tracks
- Liquid Argon scintillates at 128 nm
- Difficult to build conventional optics

- Coded Aperture Masks
 - (used in X-ray imaging, etc...)
 - Complex reconstruction

GRAIN reconstruction

Why Imaging?

• Imaging achieves spatial resolution in 3D without segmentation of the sensitive volume

- Our channels scale with **area** instead of **volume**
- We are trading some rate capability for channel count

An example for PET

3DPi Overview

A Total-body (TB), Time of Flight (TOF) PET scanner

- Xenon-doped Liquid Argon instead of Crystal scintillators
- Using Silicon Photomultipliers (SiPM)
- Double sided SiPM on scintillation
- Multiple detection layers

Geometry:

- 9 annulus detection layers
- Each layer has the scintillator sandwiched between two layers of SiPMs
- Each detection layer has ~18 mm LAr thickness
- PTFE supporting structure
- 2 m in length
- Geant4 simulations

Two configurations:

*LAr+Xe

*LAr+TPB (TetraPhenylButadiene: an organic WLS)

Geant4 Geometry Parameters

F	Parameter	Value
Ī	Inner radius (cm)	45
C	Duter radius (cm)	64
L	_ength/AFOV (cm)	200
L	Ar thickness (cm)	16.2
1	Number of LAr layers	9
5	SiPM size (mm x mm)	10 x 10
1	Number of SiPMs	~1 x 10 ⁶
(Cryostat Thickness (mm)	6

3DPi Geometry rendered in Fusion 360

XeSAT 2023 - Nantes

This project foresees **100 square meters (!!) of SiPMs** and a million channels* for 3D segmentation of just 1.6 tons of LAr

Can we do better with imaging?

(and with SiPMs/ WLS coatings?)

* Guess what ASIC they use...

Azam Zabihi, ASTROCENT/CAMK-PAN, Warsaw, Poland, $3D\pi$ TB-TOF-PET Collaboration

Prin Kickoff Meeting

Our Official Timeline

- Phase 1 Conceptual design:
 - Development of general-purpose analytical reconstruction algorithms Y1Q1 to Y2Q2
 - Development of mathematical framework for analytical reconstruction Y1Q1 to Y1Q4
 - Development of general-purpose numerical reconstruction algorithms Y1Q1 to Y2Q2
 - Development of mathematical framework for numerical reconstruction Y1Q3 to Y2Q2
- Phase 2 Optimization and prototyping for specific applications:
 - Optimization for Neutrino detectors Y1Q4 to Y2Q4
 - Optimization for HEP calorimetry Y1Q4 to Y2Q4
 - Optimization for small crystal applications Y1Q3 to Y2Q2
 - Design and construction of small-scale crystal-based prototypes Y2Q2 to Y2Q3
 - Test of small-scale crystal-based prototypes Y2Q3 to Y2Q4

A change in the UniBO unit

- A change of co-PI was made necessary by a formal requirement imposed by MUR
- The new co-PI brings a lot of expertise on a different subject
- We decided to shift part of the UniBO unit work to a related development of Perovskite based Wavelength shifting coating (to improve upon TPB)

Plans

• Today we try to decide what to focus on

- By end of the year we need to recruit:
 - 1 yr AdR for the INFN unit (sim/reco/DAQ)
 - 1 yr AdR for the UniBO unit (perovskite deposition)