RIPTIDE: a novel recoil-proton track imaging detector for fast neutrons

A. Musumarra^{1,2}, F. Leone^{1,2}, C. Massimi^{5,3,4}, M.G. Pellegriti², F. Romano², R. Spighi⁴ and M. Villa^{3,4} Published 13 December 2021 • © 2021 IOP Publishing Ltd and Sissa Medialab Journal of Instrumentation, Volume 16, December 2021

Citation A. Musumarra et al 2021 JINST 16 C12013

Project started on 2020 within the <u>*n_TOF collaboration</u> «neutron scattering length measurement» A. Musumarra & C. Massimi</u>*

CERN-INTC-2020-051 ; INTC-I-220

It has been approved by CSN V INFN on september 2023

«RIPTIDE» in progress

INFN-CT & INFN-BO

Following the progress report by JINST:

Musumarra, A., Leone, F., Massimi, C., Pellegriti, M., Romano, F., Spighi, R., & Villa, M. (2021). RIPTIDE: a novel recoilproton track imaging detector for fast neutrons. *Journal of Instrumentation*, 16(12), C12013.

Massimi, C., Musumarra, A., Leone, F., Pellegriti, M., Romano, F., Spighi, R., & Villa, M. (2022). "RIPTIDE"—an innovative recoil-proton track imaging detector. *Journal of Instrumentation*, *17*(09), *C09026*.

Console Camprini, P., Leone, F., Massimi, C., Musumarra, A., Pellegriti, M., Pisanti, C., Romano, F., Spighi, R., Terranova, N., & Villa, M. (2023). A proton-recoil track imaging system for fast neutrons: the RIPTIDE detector. *Journal of Instrumentation*, 18(1), C01054. "RIPTIDE" – An innovative recoil-proton track imaging detector

A. Musumarra^{1,3}, C. Massimi^{2,4}, F. Leone¹, M.G. Pellegriti³
F. Romano³, R. Spighi⁴, M. Villa^{2,4}

1. University of Catania, Dipartimento di Fisica e Astronomia I-95123 Catania Italy

- 2. University of Bologna, Dipartimento di Fisica e Astronomia I-40126 Bologna Italy
- 3. INFN Sezione di Catania I-95123 Catania Italy
- 4. INFN Sezione di Bologna I-40126 Bologna Italy

"RIPTIDE" task and implementation

Neutron detectors perform key tasks in many research fields as nuclear, particle and astroparticle physics as well as neutron dosimetry, radiotherapy, and radiation protection.

Neutron detectors exhibiting tracking capability are missing, even if several approach to neutron momentum reconstruction have been proposed [1-7].

In this context, we aim at developing a novel Recoll-Proton Track Imaging DEtection system "RIPTIDE", in which the light output of a fast scintillation signal is used to perform a complete reconstruction in space and time of the neutron-proton elastic scattering

The 3D track reconstruction is going to be implemented by state-of-the-art highsensitivity imaging detector (CMOS, MCP, Timepix).

Preliminary Geant4 simulations of the proposed set-up show up a good detection efficiency in a compact active volume.

The envisaged electronic readout can be easily adapted according to a specific application (event-by-event mode or integration mode).

The system can be rescaled by increasing the detection volume or by combining several detection modules. Further developments of the basic detection technique can be adapted for fast charged particle detection tracking.

 $E_n = E_n \cos^2 \theta$

State of the art

Lower efficiency large n-energy threshold

M. Marafini, *et al.*, Phys. Med. Biol. **62** (2017) 3299 G.A. de Nolfo, et al. NIMA 1054 (2023) 168352 E.V. Pagano, et al. Frontiers of physics, DOI 10.3389/fphy.2022.1051058

J. Hu et al, Sci. Rep. 8, 13363 (2018) M. Filipenko et al. Eur. Phys. J. C (2014) 74:3131

Optical system to track

Recoil Proton Technique

- If the neutron direction is known, the measurement of the recoiling proton energy (range) and direction can be used to deduce the incident neutron energy and direction (scattering plane and scattering angle can be determined)

- If incident neutron direction and energy are unknown double elastic scattering events can be used.

Recoil Proton Technique

Option 1: High Sensitivity CMOS (INFN-CT)

CMOS camera

In progress@INFN-CT

Pros:

Easy implementation

Benchmark for optics

Low power

Cons:

Low fps

No external correlation

Option 2: fast sensor and ASICs readout (INFN-BO)

Interactions and detection efficiencies (proton track reconstruction)

Optics simulated by the INFN-Bo group

Parameter	values
s: scintillator size	60 mm
s': side of the active cube	40 mm
d: side of the CCD sensor	20 mm
f: focal length of the lens	30 mm f = D/2
D: diameter of the lens	60 mm
a: position of the lens	71 mm a = p'' – p'
b: position of the sensor	45 mm b = fp"/(p"-f)

A simple MC in order to have an idea of the image size and overall performances

- Main problems:
- aberrations
- field of view
- depth of field

PCA analysis 30 MeV proton track By Patrizio

more than a simple regression problem

10

Application: solar neutrons detection in space

Space exploration is the only method to detect neutrons (En<100MeV), while spacecraft and ground-based detectors can detect neutrons (En>100MeV) simultaneously

Neutron-dominated enhancements are always connected with the observable flares, while the solar origin of proton-dominated enhancement often concentrates at the western heliolongitudes

n

MESSENGER (MErcury Surface, Space EN vironment, GEochemistry and Ranging)

