¹²C(n,3α): test di fattibilità con PPAC

Meeting n_TOF Italia, 9 Novembre 2023 - Trieste

Motivation

Neutron irradiation of Fusion reactor materials will produce residual H and He atoms

H and He concentration can affect material performance:

Steels

other possible fusion material such as **Silicon Carbide**:

Alternative material for the first wall of the fusion reactor

Carbon-based neutron spectrometers are widely used in neutron detections and diagnoses

In order to predict material performance <u>accurately nuclear data</u> for reactions which produce gas residuals are required

all H and He residuals must be accounted for

 $^{12}C(n, \alpha_{0})^{9}Be$

Motivation

Coincidence Events

PPAC test

Background component & limitations

The same material for Sample and detector Sample = 6 μm mylar
PPAC = 3 electrodes of 1.7 μm mylar each one

- Cathodes pre-amp → gain not well suited for light particles

- α passing through 2 PPAC from the 2nd sample

Background component & limitations

The same material for Sample and detector Sample = 6 μm mylar
PPAC = 3 electrodes of 1.7 μm mylar each one

> PPAC not directly in beam and/or PPAC far \rightarrow events selection by time properties

- Cathodes pre-amp \rightarrow gain not well suited for light particles

already planned a change in the cathodes electronics (probably before the Ce measurement)

- α passing through 2 PPAC from the 2nd sample

PPAC test

Solution

System for CAlorimetry with Parallel Plate Avalanche counters

Technical papers:

- A. Manna, E. Pirovano et al. on behalf of the n_TOF collaboration, "*Recoil proton telescopes and parallel plate avalanche counters for the* ²³⁵U(n,f) cross section *measurement relative to H(n,n)H between 10 and 500 MeV neutron energy*", Journal of Instrumentation 18 (04), P04024

- E. Pirovano, A. Manna et al. on behalf of the n_TOF collaboration, "A detector system for 'absolute' measurements of fission cross sections at n_TOF in the energy range below 200 MeV", Journal of Instrumentation, in press

Extension of the 235U(n,f) cross section above 420 MeV

PRC:

a draft ready, in distribution soon

PRL:

a draft ready, in distribution soon

Extension of the 235U(n,f) cross section above 420 MeV

High energy limit in our measurement: opening of the first inelastic channel in the n-p reaction - excitation of the Δ resonance

Development of a new detector able to measure the high-energy neutron based in the TOF of the protons from the n-p elastic scattering Experimental data requested in the last IAEA neutron standard meeting

The idea...

Measurement feasible with our standard PPAC setup (9 samples + 10 detectors) in EAR-1 with fission collimator ^{1.15}

Preliminary "ok" for the preparation of the samples from Orsay

Anyone is welcome to contribute to the preparation of the proposal and 1.05 perform the experiment

Additional fission cross

section measurement

