

Determination of the neutron flux by activation

DR. ELIZABETH MUSACCHIO GONZALEZ

Work of A. Villacorta and C. Guerrero

After the activation of two foils with the same thickness making the difference in neutron captures the estimation of the flux can be determined as:

 $A_{first} - A_{second} = \sigma \Phi N$

A Number of capture reactions (n/pulse)

 σ Cross section at the resonance (barn)

 Φ Flux at the resonance (n/pulse)

N Sample thickness (at/barn)

Work of A. Villacorta and C. Guerrero

After the activation of two foils with the same thickness making the difference in neutron captures the estimation of the flux can be determined as:

 $A_{first} - A_{second} = \sigma \Phi N$

A Number of capture reactions (n/pulse)

 σ Cross section at the resonance (barn)

 Φ Flux at the resonance (n/pulse)

N Sample thickness (at/barn)

RESULTS FOR BOTH EXPERIMENTAL AREAS

EAR2 (2021)

Activation of two 197- Au foils back-to-back:

✤ 80 x 0.1090 mm (upstream, bottom)

✤ 65 x 0.1064 mm (downstream, top)

Mylar foil between the gold samples (0.006 mm)

In the HPGe detector: 3 measurements per foil

	REAL_meas (t _m) (s)	LIVE_meas (s)	STA	RT	Waiting time (t _w)	t _w (s)
Au_65_1	3.748E+04	3.723E+04	10/15/2021	11:06:24	2:31:39	9099
Au_80_1	8.162E+04	8.102E+04	10/16/2021	21:37:30	13:02:45	46965
Au_65_2	9.290E+04	9.242E+04	10/16/2021	9:42:51	1:08:06	263286
Au_80_2	8.829E+04	8.783E+04	10/16/2021	11:37:13	3:02:28	356548
Au_65_3	1.111E+05	1.106E+05	10/17/2021	12:13:20	3:38:35	445115
Au_80_3	8.707E+04	8.666E+04	10/18/2021	19:10:00	10:35:15	556515

The number of activations after the irradiation:

$$A_x = \frac{C_x}{I_{\gamma x} f_{dx} k_{\gamma x} \varepsilon_{\gamma x}}$$

 C_x - Number of counts

 $\epsilon_{\gamma x}$ - Detection efficiency

 $k_{\gamma x}$ - Transmission factor

Detection efficiency (¹⁵²Eu source)

$$\varepsilon_{\gamma} = \frac{C_{peak} \cdot \lambda}{A_0 \cdot I_{\gamma} \cdot e^{-\lambda t_c} \cdot (1 - e^{-\lambda t_m})} \quad \Longrightarrow \quad$$

Sour	Source #3687(Eu-152)								
Initial Activty (A ₀)	15570	Bq							
ΔA ₀	514	Bq							
Date	01.04.2016								
Actual Date	03.10.2021								
Time passed (t _c)	1.74E+08	sec							
λ	1.625E-09	sec-1							
Δλ	1.000E-12	sec-1							
Measure time	9.895E+04	sec							
Live time	9.696E+04	sec							
Δt _m	1.990E+03	sec							

Energy (keV)	ΔE (keV)	Intensity (Iɣ)	ΔΙγ
1.218E+02	3.000E-04	2.853E-01	1.600E-03
2.447E+02	8.000E-04	7.550E-02	4.000E-04
3.443E+02	1.200E-03	2.659E-01	2.000E-03
7.789E+02	2.400E-03	1.293E-01	8.000E-04
9.641E+02	5.000E-03	1.451E-01	7.000E-04
1.086E+03	1.000E-02	1.011E-01	5.000E-04
1.112E+03	3.000E-03	1.367E-01	8.000E-04
1.408E+03	3.000E-03	2.087E-01	9.000E-04

Efficiency of HPGe detector (¹⁵²Eu source)

Activation analysis

The number of activations after the irradiation:

$$A_x = \frac{C_x}{I_{\gamma x} f_{dx} k_{\gamma x} \varepsilon_{\gamma x}}$$

 C_x - Number of counts

 $\varepsilon_{\gamma x}$ - Detection efficiency (extended source - 0.973):

 $\varepsilon_{\gamma\chi}(411.8 \text{ keV}) = 7.36E - 03 \pm 2.58E - 04$

 $k_{\gamma x}$ - Transmission factor

	f _d	Δf	C _x	ΔC _x	Α	ΔΑ	ΔA (rel %)
Au_65_1	9.528E-02	7.287E-05	9.848E+05	3.001E+03	1.492E+09	5.279E+07	3.54
Au_65_2	1.023E-01	1.472E-04	1.051E+06	3.116E+03	1.484E+09	5.252E+07	3.54
Au_65_3	6.940E-02	1.084E-04	7.184E+05	2.164E+03	1.494E+09	5.290E+07	3.54
Au_80_1	1.739E-01	3.085E-04	2.568E+06	7.498E+03	2.133E+09	7.553E+07	3.54
Au_80_2	7.413E-02	1.026E-04	1.091E+06	3.209E+03	2.126E+09	7.524E+07	3.54
Au_80_3	4.038E-02	4.956E-05	6.006E+05	1.862E+03	2.149E+09	7.606E+07	3.54

	A65	A80	Diff
Mean	1.490E+09	2.136E+09	6.460E+08
Error	3.095E+07	4.517E+07	5.476E+07
Rel Error (%)	2.08	2.11	8.48

$$A = A_{80} - A_{65}$$
$$\delta A_x = \sqrt{\delta A_{exp}^2 + \delta A_{stat}^2}$$

Flux and Neutron captures

$A=\sigma \, \Phi \, N$

- A Number of capture reactions
- σ Cross section (barn)
- Φ Neutron Flux
- N Sample thickness (at/barn)

N = 6.43E - 04 at/barn

 $A = A_{80} - A_{65} = 6.460E + 08 \pm 5.48E + 07$

How to if the cross section change a lot?

Part of the code: thanks to Elisso!!!

if (Flux_Histo->GetXaxis()->GetBinCenterLog(i) < FIRST_XS_ENERGY) {sacssum += 0; Neutrons_With_XS_SACS += Flux_Histo->GetBinContent(i); continue;}
if (Flux_Histo->GetXaxis()->GetBinCenterLog(i) > LAST_XS_ENERGY) {sacssum += 0; Neutrons_With_XS_SACS += Flux_Histo->GetBinContent(i); continue;}

- for (int j=0; j<Flux_Histo->GetBinContent(i)/1000000; j++) { //loop the number of neutrons in this bin //printf("second loop");
- sacssum += XS_Graph->Eval(pow(10., gRandom->Uniform(log10(Flux_Histo->GetBinLowEdge(i)), log10((Flux_Histo->GetBinLowEdge(i)+Flux_Histo->GetBinWidth(i)))))); //BinCont=Flux_Histo->GetBinContent(i);
- } //...loop in neutrons

//cout<<"Get_Bin_Content: "<<endl<<BinCont<<endl;</pre>

Neutrons_With_XS_SACS += Flux_Histo->GetBinContent(i); // total neutrons/cm2
printf("\t %d / %d\n", i, BINS);
} //...loop in flux histogram bins

double Neutrons; Neutrons=Neutrons_With_XS_SACS/1000000;

double sacs=sacssum/Neutrons; cout<<endl<<"SACS [b]: "<<sacs<<endl;</pre>

$$\sigma_{int} = \frac{\int \sigma \cdot \Phi}{\int \Phi} \quad \longrightarrow \quad \sigma_{int} = 1708.96 \text{ barr}$$

Simulations: Flux and Neutron captures

The flux was used as input in the MCNPX file with the geometry.

The output file contain the number of capture reactions (Tally F4).

Simulations: Flux and Neutron captures

Final Flux from the activation measurement

 $A = \sigma \Phi N$

A Number of capture reactions

 σ Cross section (barn)

 $\Phi \ {\rm Flux}$

N Sample thickness (at/barn)

N = 6.43E - 04 at/barn

 $A = A_{80} - A_{65} = 6.46E + 08 \pm 5.48E + 07$ $\sigma_{int} = 1708.96 \text{ barn}$

EAR1 (2021)

Activation of two 197- Au foils back-to-back:

✤ 45 x 0.0509 mm (upstream, bottom)

48 x 0.1033 mm (downstream, top)

Mylar foil between the gold samples (0.006 mm)

Irradiation time: Start @ 13/10/2021 19:09:26

Stop @ 15/10/2021 15:09:51

Total: ----- 158425 s

In the HPGe detector: 3 measurements per foil

	REAL_meas (t _m) (s)	LIVE_meas (s)	STA	RT	Waiting time (s)
Au_45_1	6.136E+04	6.115E+04	10/15/2021	16:01:30	3099
Au_48_1	2.220E+04	2.212E+04	10/16/2021	9:08:17	64706
Au_45_2	1.649E+04	1.644E+04	10/16/2021	15:27:15	87444
Au_48_2	4.986E+04	4.969E+04	10/16/2021	20:09:09	104358
Au_45_3	7.978E+04	7.953E+04	10/17/2021	10:05:55	154564
Au_48_3	1.751E+05	1.746E+05	10/18/2021	8:17:26	234455

$$A_x = \frac{C_x}{I_{\gamma x} f_{dx} k_{\gamma x} \varepsilon_{\gamma x}}$$

 C_x - Number of counts

 $\epsilon_{\gamma x}$ - Detection efficiency

 $k_{\gamma x}$ - Transmission factor

 C_x - Number of counts

 $A_x = \frac{C_x}{I_{\gamma x} f_{dx} k_{\gamma x} \varepsilon_{\gamma x}}$

 $I_{\gamma x}$ - Gamma intensity - I_{γ}(411.8 keV) = 0.9562 ± 0.0006

 f_{dx} - Disintegration factor - $f_d = 0.799$

 $\epsilon_{\gamma x}$ - Detection efficiency - $\epsilon_{\gamma x}$ (411.8 keV) = 7.56E - 03 ± 2.65E - 04

 $k_{\gamma x}$ - Transmission factor $k_{\gamma}(45) = 0.993 \pm 0.004$

 $k_{\gamma}(48) = 0.983 \pm 0.004$

	f _d	Δf	C _x	ΔC _x	Α	ΔΑ	ΔA (rel %)
Au_45_1	1.323E-01	7.967E-05	6.569E+04	3.894E+02	6.960E+07	2.487E+06	3.57
Au_45_2	2.954E-02	4.721E-06	1.470E+04	1.524E+02	6.978E+07	2.563E+06	3.67
Au_45_3	1.067E-01	8.197E-05	5.381E+04	3.197E+02	7.068E+07	2.526E+06	3.57
Au_48_1	4.219E-02	9.058E-06	2.055E+04	1.745E+02	6.899E+07	2.501E+06	3.63
Au_48_2	8.087E-02	3.912E-05	3.947E+04	2.742E+02	6.913E+07	2.483E+06	3.59
Au_48_3	1.617E-01	2.685E-04	7.902E+04	4.191E+02	6.922E+07	2.469E+06	3.57

	A45	A48	Diff
Mean	7.002E+07	6.911E+07	9.055E+05
Error	1.568E+06	1.439E+06	2.129E+06
Rel Error (%)	2.24	2.08	

 C_x - Number of counts

 $A_x = \frac{C_x}{I_{\gamma x} f_{dx} k_{\gamma x} \varepsilon_{\gamma x}}$

 $l_{\gamma x}$ - Gamma intensity - $I_{\gamma}(411.8 \text{ keV}) = 0.9562 \pm 0.0006$

 f_{dx} - Disintegration factor - $f_d = 0.799$

 $\varepsilon_{\gamma x}$ - Detection efficiency - $\varepsilon_{\gamma x}$ (411.8 keV) = 7.56E - 03 ± 2.65E - 04

 $k_{\gamma x}$ - Transmission factor $k_{\gamma}(45) = 0.993 \pm 0.004$

 $k_{\gamma}(48) = 0.983 \pm 0.004$

	f _d	Δf	C _x	ΔC _x	Α	ΔΑ	ΔA (rel %)
Au_45_1	1.323E-01	7.967E-05	6.569E+04	3.894E+02	6.960E+07	2.487E+06	3.57
Au_45_2	2.954E-02	4.721E-06	1.470E+04	1.524E+02	6.978E+07	2.563E+06	3.67
Au_45_3	1.067E-01	8.197E-05	5.381E+04	3.197E+02	7.068E+07	2.526E+06	3.57
Au_48_1	4.219E-02	9.058E-06	2.055E+04	1.745E+02	6.899E+07	2.501E+06	3.63
Au_48_2	8.087E-02	3.912E-05	3.947E+04	2.742E+02	6.913E+07	2.483E+06	3.59
Au_48_3	1.617E-01	2.685E-04	7.902E+04	4.191E+02	6.922E+07	2.469E+06	3.57

	A45	A48	Diff
Mean	7.002E+07	6.911E+07	9.055E+05
Error	1.568E+06	1.439E+06	2.129E+06
Rel Error (%)	2.24	2.08	

Simulations: Flux and Neutron captures

The output file contain the number of capture reactions (Tally F4).

Simulations: Flux and Neutron captures

Final Flux from the activation measurement

 $A=\sigma \, \Phi \, N$

- A Number of capture reactions
- σ Cross section (barn)

 $\Phi \ {\rm Flux}$

N Sample thickness (at/barn)

N = 3.00E - 04 at/barn

 $A = A_{45} - A_{48} = 3.68E + 07 \pm 1.71E + 06$ $\sigma_{int} = 1756.26 \text{ barn}$

MGAS B10 MGAS U5

PPAC

PTB Activation

Energy (eV)

Simulation (MCNP+FLUKA

9

10

Final Flux from the activation measurement

$\Phi = \frac{A \cdot 0.69}{N \cdot \sigma_{int}}$ $A = \sigma \Phi N$ $\Phi = 2.23E + 04 \pm 1.04E + 03$ A Number of capture reactions σ Cross section (barn) Neutron Flux (E dΦ/dE/pulse) Φ Flux 100000 *N* Sample thickness (at/barn) 10000 -Since this result is an N = 3.00E - 04 at/barn assumption a new measurement was done!!! $A = A_{45} - A_{48} = 3.68E + 07 \pm 1.71E + 06$ 1000 $\sigma_{int} = 1756.26$ barn

EAR1 (2023)

Same Au foils from EAR2 measurement (2021)

Activation of two 197- Au foils back-to-back:

- ✤ 80 x 0.1090 mm (upstream, bottom)
- ✤ 65 x 0.1064 mm (downstream, top)
- No Mylar foil between the gold samples

Irradiation time: Start @ 10/04/2023 00:10:00

Stop @ 12/04/2023 10:00:00

Total: ----- 208200 s

In the HPGe detector (**NEW**):

	DEAL we are $(+)(a)$				
	REAL_meas (t_m) (s)	LIVE_meas (s)	SIA	RI	Waiting time (s)
Au_65_1	2.166E+04	2.160E+04	4/13/2023	17:03:07	1.118E+05
Au_65_2	3.616E+04	3.600E+04	4/21/2023	10:39:45	7.800E+05
Au_65_3	3.615E+04	3.600E+04	4/21/2023	20:42:27	8.161E+05
Au_65_4	3.616E+04	3.600E+04	4/22/2023	6:45:03	8.523E+05
Au_65_5	3.615E+04	3.600E+04	4/22/2023	16:47:44	8.885E+05
Au_65_6	3.615E+04	3.600E+04	4/23/2023	2:50:15	9.246E+05
Au_80_1	4.325E+04	4.320E+04	—	—	6.822E+04
Au_80_2	3.615E+04	3.600E+04	4/25/2023	16:19:51	1.146E+06
Au_80_3	3.615E+04	3.600E+04	4/26/2023	2:22:25	1.182E+06
Au_80_4	5.958E+03	5.934E+03	4/26/2023	12:25:02	1.218E+06

The number of activations after the irradiation:

$$A_x = \frac{C_x}{I_{\gamma x} f_{dx} k_{\gamma x} \varepsilon_{\gamma x}}$$

 C_x - Number of counts

 $\varepsilon_{\gamma x}$ - Detection efficiency

 $k_{\gamma x}$ - Transmission factor

The number of activations after the irradiation:

$$A_x = \frac{C_x}{I_{\gamma x} f_{dx} k_{\gamma x} \varepsilon_{\gamma x}}$$

 C_x - Number of counts

 $I_{\gamma x}$ - Gamma intensity - $I_{\gamma}(411.8 \text{ keV}) = 0.9562 \pm 0.0006$

♦ f_{dx} - Disintegration factor - $f_d = 0.73519$

 $\varepsilon_{\gamma \chi}$ - Detection efficiency (extended source - 0.988):

 $\varepsilon_{\gamma\chi}(411.8 \text{ keV}) = 8.58E - 03 \pm 2.92E - 05$

 k_{γ}

 $k_{\gamma x}$ - Transmission factor

 $k_{\gamma}(80) = 0.976 \pm 0.004$ $k_{\gamma}(65) = 0.977 \pm 0.004$

	f _d	Δf	C _x	ΔC _x	Α	ΔΑ	ΔA (rel %)
Au_65_1	3.291E-02	5.431E-06	2.370E+04	1.706E+02	8.988E+07	8.069E+05	0.90
Au_65_2	7.358E-03	3.513E-06	5.302E+03	8.004E+01	8.992E+07	1.441E+06	1.60
Au_65_3	6.606E-03	3.021E-06	4.750E+03	7.606E+01	8.973E+07	1.516E+06	1.69
Au_65_4	5.933E-03	2.795E-06	4.278E+03	7.240E+01	8.999E+07	1.598E+06	1.78
Au_65_5	5.326E-03	2.369E-06	3.890E+03	6.921E+01	9.115E+07	1.694E+06	1.86
Au_65_6	4.783E-03	2.143E-06	3.679E+03	6.768E+01	9.600E+07	1.840E+06	1.92
<u> </u>	7.250E-02	<u>1.111E-05</u>	1.125E+05	3.500E+02	1.936E+08	1.200E+06	0.62
Au_80_2	2.474E-03	1.121E-06	3.452E+03	6.548E+01	1.741E+08	3.433E+06	1.97
Au_80_3	2.222E-03	1.025E-06	3.221E+03	6.360E+01	1.809E+08	3.702E+06	2.05
Au_80_4	3.437E-04	2.480E-08	4.967E+02	2.385E+01	1.803E+08	8.712E+06	4.83

	A65	A80	Diff
Mean	9.111E+07	1.785E+08	8.734E+07
Error	2.526E+06	5.046E+06	5.643E+06
Rel Error (%)	2.77	2.83	6.46

$$A = A_{80} - A_{65}$$

$$\delta A_x = \sqrt{\delta A_{exp}^2 + \delta A_{stat}^2}$$

Simulations: Flux and Neutron captures

The output file contain the number of capture reactions (Tally F4).

54.8 % of the captures are in the resonance region (4.67-5.12 eV)

Final Flux from the activation measurement

 $A = \sigma \Phi N$

- A Number of capture reactions
- σ Cross section (barn)
- $\Phi \ {\rm Flux}$
- N Sample thickness (at/barn)

N = 6.43E - 04 at/barn

 $A = A_{80} - A_{65} = 8.73E + 07 \pm 5.64E + 06$ $\sigma_{int} = 1756.26 \text{ barn}$

Conclusions

□ The absolute flux at was determined from an activation measurement for both experimental areas.

□ A good agreement was found with the simulated flux & evaluated flux.

EAR1

EAR2

Work of A. Villacorta and C. Guerrero

3

Activations of ¹⁹⁷Au foils $(t_{1/2}=2.7d)$

1. Calculation of the yield for each of two targets (ENDF 7.1).

 $Y_{x,A}^{th} = \left(1 - e^{n_A \sigma_t(E)}\right) \frac{\sigma_x(E)}{\sigma_t(E)}$ $Y_{x,B}^{th} = e^{-n_A \sigma_t(E)} \left(1 - e^{-n_B \sigma_t(E)}\right) \frac{\sigma_x(E)}{\sigma_t(E)}$

- 2. Use the Geant4 expected flux to estimate number of capture reactions as function of neutron energy.
- 3. Calculate the differences and, more importantly, the sensitivity of this differences to each neutron energy range. $N(E) = \Phi_n(E) \left(Y_{x,A}^{th} - Y_{x,B}^{th} \right)$
- 4. Irradiation of two ¹⁹⁷Au foils, back-to-back, and determine the number of capture reactions occurred in each of them.

ຳ້າໃ

A. Villacorta and C. Guerrero, n_TOF Analysis Meeting, Geneva, September 2015 "Determination of the neutron flux in n_TOF-EAR2 by activation and PPAC measurements"

Activation of ¹⁹⁷Au foils: calculations

