

IR MOCK-UP PROJECT FOR THE FCC-EE INTERACTION REGION

Manuela Boscolo (INFN-LNF)

3rd FCC@LNF Frascati, 15 settembre 2023

Tentative Milestones (timing relative to T0)

3 months: Executive drawings vacuum chamber, bellows.

6 months: Executive drawings mock-up vertex.

15/09/2023 3rd FCC@LNF

12 months: Executive drawings carbon-fibre cylinder.

9 months: Prototypes of vacuum chambers delivered and mockup vertex.

9-18 months: Preliminary stand-alone vertex cooling studies at Pisa.

18 months: Mockup carbon fibre cylinder delivered, mechanical supports, mockup lumical, mechanical structures, mounting all components together on their supports, and assembly tests.

Manuela Boscolo

18-27 months: Test of the assembly & Experimental test on vertex detector air cooling **Additional 2 months of** contingency, to be finished by December 2025.

Technological relevant deliverables – I

1. Prototype of the Albemet162 central IP chamber including cooling system and flanges

F. Fransesini, MDI meeting 11/9/23, https://indico.cern.ch/event/1316343/

Technological relevant deliverables – II

2. Prototype of the bellows aimed to study:

- the fabrication, assembly procedure and electron beam welding over an elliptical geometry,
- the thermal/electrical contact effectiveness,
- the AlBeMet 162/stainless steel transition.

(T0+10 months).

Technological relevant deliverables – III

- **3. Prototype of the trapezoidal chamber with cooling system until the crotch**, aimed to study the:
 - accuracy of the elliptical varying section shape
 - thick copper deposition over an elliptical shape with embedded channels
 - tightness of the channels and thermal contact between deposited copper and AlBeMet.

(T0+10 months).

Technological relevant deliverables – IV

- **4.** Mock-up of the carbon-fibre cylinder structure with endcaps and its mechanical support, to verify
 - the fiber carbon composite fabrication technology including the reinforcements for anchoring LumiCal and outer tracker,
 - the shape accuracy and rigidity of the structure

(T0+22 months).

Technological relevant deliverables – V

- **4. Mechanical temporary support structure** (Bosch or similar)
- 5. Mock-ups of the vertex mechanical structures
 - Aluminium for the Outer Vertex part and the discs
 - Carbon fibre for the inner vertex detector
 - Study of services (cables and cooling pipes) routing
 - Validation of inner vertex air cooling
 - Needs a "cooling tunnel" to be implemented

Wind tunnel for VTX air cooling

to be tested at Pisa next year, before the test at LNF

FCC-ee IR and its support tube

Vertex integration with accelerator components

Vertex outer layers and 6 disks (MAPS) mounted directly on the support tube.

Main goals of the IR mock-up

The main goals of the IR mock-up are related to addressing and studying the main issues related to the design, operation, and assembly.

The main identified goals and deliverables are:

- verify the technological feasibility of some key components;
- establish the optimal construction sequence of the IR;
- finalize the dimensioning of all the components, as close as possible to the final requirement
- of design, as a result of the complexity of the assembly sequence, including dedicated tools
- to be developed and survey;
- anticipate any possible assembling issue;
- in situ vertex detector air cooling system verification, that takes into account surrounding
- structures. [Similar tests were performed by other experiments like CLIC and CMS]

Complementarietà tra mockup e modello CAD

- Estensione e copertura
- Modellazione rapida con elevato livello di dettaglio
- Progettazione parametrica
- Simulazioni numeriche
- Facilità di condivisione
- Studi di fattibilità
- Misure in scala reale del comportamento meccanico e termico
- Valutazione delle tolleranze, problemi di allineamento e rilievo
- Valutazione della manutenzione e del funzionamento
- Formazione del personale
- Stima dei costi e della manodopera per la realizzazione finale

Technological relevant deliverables – V

- 4. Mock-up of the Luminosity monitor (Lumical) in lead (Pb) [funds?] to validate
 - Structural weight analysis on the Support tube
 - Installation sequence

FCC

Personale

- 1.4 FTE x 2 anni 2 Tecnologi meccanici (LNF)
- 0.3 FTE x 2 anni 1 Progettista meccanico (LNF)
- 0.2 FTE x 2 anni 1 Primo tecnologo (LNF)
- 0.1 FTE x 2 anni 1 Dirigente ricerca (Pisa)
- 0.1 FTE x 2 anni 1 Tecnologo meccanico (Pisa)
- + 1 associato senior tecnologo (Pisa) best effort
- + personale tecnico sia ai LNF che a Pisa

Team Preliminare:

LNF: M. Boscolo (PI), F. Fransesini, E. Di Pasquale, S. Lauciani

Pisa: F. Palla, F. Bosi, + ing. mecc. [tbd]

CERN: A. Gaddi, R. Kersevan

Conclusioni

Il progetto del mockup ha ricevuto un grande interesse all'interno della comunità FCC

- in primis per la validazione tecnologica del progetto MDI per il Feasibility Study
- contattati da diversi gruppi per misure addizionali (e.g. allineamento, vibrazioni, diagnostica, ...)

Manuela Boscolo

Le risorse da parte del CERN sono in via di approvazione.

Nonostante i ritardi accumulati stiamo lavorando all'implementazione tecnica.

FCC IR mock-up project has additional benefits

- It will give visibility to the LNF and to INFN not only within the FCC collaboration, but for the R&D Accelerator programs for the next EU Strategy.
- It will allow reinforcing the small but excellent & engaged INFN-FCC accelerator core team which has been slowing forming and growing these years around FCC-ee.

16

Additional material

FCC-ee Interaction Region

FCC-ee IR layout. The face of the first final focus quadrupole QC1, and the free length from the IP, L*, is 2.2 m. The 10 mm central radius is foreseen for $\pm 9 \text{ cm}$ from the IP, and the two symmetric beam pipes with radius of 15 mm are merged at 1.2 m from the IP.

3D view of the FCC-ee IR until the end of the first final focus quadrupole

This will be inside the detector, being the half-length of the detector ~5.2 m and the end QC1 at about 8.4 m.

Central Support tube and Vertex integration

Vertex and trackers inside the same volume of the support tube that holds also the LumiCal

