

Proposal for benchmarking FCC-ee collimation simulation tools at DAΦNE

G. Broggi 1,2,3, A. Abramov 2, M. Boscolo 3, R. Bruce 2

- ¹ Sapienza University of Rome, Rome, Italy
- ² CERN, Meyrin, Switzerland
- ³ INFN-LNF, Frascati, Italy

3rd FCC@LNF meeting – INFN Laboratori Nazionali di Frascati, Frascati, Italy 15/09/2023

FCC-ee: collimation requirements

- FCC-ee will have an unprecedented stored beam energy for a lepton collider
 - ➤ Up to 17.8 MJ (Z mode) → highly destructive beams
- Collimation system indispensable
 - > Reduce the background in the experiments
 - Protect the machine from unavoidable losses

- Dedicated halo collimation system in PF (A. Abramov FCC week 23)
 - > Two-stage betatron and off-momentum collimation in one insertion
- Synchrotron radiation collimators around the Interaction Points (IPs) (K. André FCC week 23)
- Suitable collimation simulation tools are essential in the collimation design phase to converge on an optimum performace

Simulation tool

- Xtrack-BDSIM simulation tool used to evaluate beam losses along the accelerator ring
- Xtrack: single particle tracking library belonging to the Xsuite collection of Python packages
- BDSIM: C++ software package based on the Geant4 toolkit to simulate radiation transport in accelerators and beam lines
 - Can be used together for studies including particle tracking and particle-matter interaction

• Other tools available, e.g., Xsuite (Xtrack-Xcoll), Xtrack-FLUKA (soon)

Simulation tool benchmark

- To test the degree of reliability of such simulation tools a benchmark with existing tools and (especially) measurements is needed
- Xtrack-BDSIM coupling already benchmarked against:
 - Existing tools: Sixtrack-FLUKA, K2, PyAT-BDSIM
 - Measured data from <u>proton</u> machines: LHC, PS
- For the FCC-ee needs this is not fully satisfactory (different particle type and energy)
 - Benchmark with data from a lepton machine is needed
 - > DAONE could be an excellent candidate (SuperKEKB is also being considered)
- A benchmarked simulation tool could also be beneficial for DAΦNE
 - Better understanding of beam losses and of the machine in general
- However, for a succesfull benchmark, some requirements are needed
 - Simulation model
 - > Experimental measurements

Simulation tool benchmark: simulation model

- To succesfully run a Xtrack-BDSIM simulation, the following inputs are required:
 - > Accelerator parameters: beam energy, emittance, ...
 - > Accelerator optics: optical parameters and magnetic strengths for the accelerator under study
 - Aperture model
 - ▶ Beam Intercepting Devices (BID) database: database containing BID specifics (geometry, opening, material, movable / not movable ?)
- Different loss scenario can be simulated
 - ➢ Given beam distribution impacting a BID ← simplest case
 - (top-up) injection losses
 - BID scraping (if movable BIDs are present)
 - Known beam excitation
 - Touschek / beam-gas losses (to be implemented)

- 1st step to check feasibility: perform pure tracking simulations (no particle matter interactions with BIDs) with Xtrack to reproduce equilibrium conditions
 - Some regions (e.g., IRs) could be challenging to be modelled (SuperKEKB case)

Simulation tool benchmark: experiment

- Xtrack-BDSIM tool good for simulating particle-BID interactions and track the outscattered particles
- To successfully perform a measurements that can be compared with simulations:
 - > Particle losses on a BID*: possibly generated on purpose in a controlled way
 - > Beam loss monitors (BLM): to record signals that can be related to beam losses on the aperture of the accelerator under study
 - *e.g., collimator, scraper, aperture restriction
 - > **Beam intensity monitor**: to properly normalize our measurements (LHC BCT like)
- Ideally perform single beam measurements (NO collisions)
- Possible caveats (and possible solutions)
 - Challenging regions to be modelled (e.g., IRs)
 - Accuracy of aperture model
 - Absence of beam loss monitors / not reliable BLM response along the accelerator
 - Use collider detectors (if present) to record the outscattered particles ("target experiment")
 - > Place a movable detector in a relevant position along the accelerator
 - Low sensitivity on setting collimators/scrapers opening
 - Beam based settings (BPM resolution ?)

Example: benchmark of Xtrack-BDSIM at the LHC

B1H (protons in LHC), stable beams, XRP_IN, 6.8 TeV, β*=30 cm

From G. Broggi, Master's thesis

Summary

- Simulation tools to evaluate FCC-ee collimation performance are available
 - > Essential in the collimation design phase to converge on an optimum performance
 - Benchmarked with existing tools (Sixtrack-FLUKA, K2, PyAT-BDSIM)
 - Benchmarked with data from proton machines (LHC, PS)
- A more satisfacory benchmark with data from lepton machines is needed
 - > DAΦNE could be an excellent candidate (SuperKEKB is also considered)
 - > Benchmarked simulation tool useful to better understanding the machine: FCC-ee/DAΦNE win-win
- For a successfull benchmark some ingredients are needed
 - > Simulation model: accelerator parameters, accelerator optics, aperture model, BID database (geometry, opening, material, movable / not movable ?)
 - **Experiment**: losses on a BID*, reliable diagnostic system for particle losses, beam intensity monitor *e.g., collimator, scraper, aperture restriction, ...

Thank you!

