

Wayne StatE UNIVERSITY

Recent developments in HQET

Gil Paz

Department of Physics and Astronomy,
Wayne State University,
Detroit, Michigan, USA

Introduction

HQET

- Heavy Quark Effective Theory (HQET) is an EFT for heavy quark Useful for $m_{Q} \gg \Lambda_{Q C D}$

HQET

- Heavy Quark Effective Theory (HQET) is an EFT for heavy quark Useful for $m_{Q} \gg \Lambda_{Q C D}$
- From the QCD Lagrangian we can obtain

$$
\mathcal{L}=\bar{h}_{v} i v \cdot D h_{v}+\bar{h}_{v} i \not D_{\perp} \frac{1}{2 m_{Q}+i v \cdot D} i \not D_{\perp} h_{v}
$$

h_{v} is the heavy quark field and $D_{\perp}^{\mu}=D^{\mu}-(v \cdot D) v^{\mu}$
For $v=(1, \overrightarrow{0}): \quad D_{\perp}^{\mu}=\vec{D}$

HQET

- Heavy Quark Effective Theory (HQET) is an EFT for heavy quark Useful for $m_{Q} \gg \Lambda_{Q C D}$
- From the QCD Lagrangian we can obtain

$$
\mathcal{L}=\bar{h}_{v} i v \cdot D h_{v}+\bar{h}_{v} i \not D_{\perp} \frac{1}{2 m_{Q}+i v \cdot D} i \not D_{\perp} h_{v}
$$

h_{v} is the heavy quark field and $D_{\perp}^{\mu}=D^{\mu}-(v \cdot D) v^{\mu}$
For $v=(1, \overrightarrow{0}): \quad D_{\perp}^{\mu}=\vec{D}$

- Expanding in powers of iv $\cdot D / 2 m_{Q}$ gives

$$
\mathcal{L}_{\mathrm{HQET}}=\bar{h}_{v} i v \cdot D h_{v}-c_{2} \bar{h}_{v} \frac{D_{\perp}^{2}}{2 m_{Q}} h_{v}-c_{F} \bar{h}_{v} \frac{\sigma_{\alpha \beta} G^{\alpha \beta}}{4 m_{Q}} h_{v}+\mathcal{O}\left(\frac{1}{m_{Q}^{2}}\right)
$$

HQET

- Using HQET observables can be written as a series

$$
\text { Observable }=\sum_{n=0}^{\infty} \sum_{j} c_{n}^{j}(\mu) \frac{\left\langle O_{n}^{j}(\mu)\right\rangle}{m_{Q}^{n}}
$$

where $\left\langle O_{n}^{j}(\mu)\right\rangle \sim \Lambda_{Q C D}^{n}$ and $\mu \sim m_{Q}$

HQET

- Using HQET observables can be written as a series

$$
\text { Observable }=\sum_{n=0}^{\infty} \sum_{j} c_{n}^{j}(\mu) \frac{\left\langle O_{n}^{j}(\mu)\right\rangle}{m_{Q}^{n}}
$$

where $\left\langle O_{n}^{j}(\mu)\right\rangle \sim \Lambda_{Q C D}^{n}$ and $\mu \sim m_{Q}$

- $c_{n}^{j}(\mu)$ are perturbative and $\left\langle O_{n}^{j}(\mu)\right\rangle$ are non-perturbative

HQET

- Using HQET observables can be written as a series

$$
\text { Observable }=\sum_{n=0}^{\infty} \sum_{j} c_{n}^{j}(\mu) \frac{\left\langle O_{n}^{j}(\mu)\right\rangle}{m_{Q}^{n}}
$$

where $\left\langle O_{n}^{j}(\mu)\right\rangle \sim \Lambda_{Q C D}^{n}$ and $\mu \sim m_{Q}$

- $\tau_{n}^{j}(\mu)$ are perturbative and $\left\langle O_{n}^{j}(\mu)\right\rangle$ are non-perturbative
- Since $\alpha_{s}(\mu)$ becomes smaller for large μ and $\Lambda_{Q C D} / m_{Q}$ is small expect to achieve good precision with just a few terms

HQET

- Using HQET observables can be written as a series

$$
\text { Observable }=\sum_{n=0}^{\infty} \sum_{j} c_{n}^{j}(\mu) \frac{\left\langle O_{n}^{j}(\mu)\right\rangle}{m_{Q}^{n}}
$$

where $\left\langle O_{n}^{j}(\mu)\right\rangle \sim \Lambda_{Q C D}^{n}$ and $\mu \sim m_{Q}$

- $\tau_{n}^{j}(\mu)$ are perturbative and $\left\langle O_{n}^{j}(\mu)\right\rangle$ are non-perturbative
- Since $\alpha_{s}(\mu)$ becomes smaller for large μ and $\Lambda_{Q C D} / m_{Q}$ is small expect to achieve good precision with just a few terms
- To improve the precision we can

HQET

- Using HQET observables can be written as a series

$$
\text { Observable }=\sum_{n=0}^{\infty} \sum_{j} c_{n}^{j}(\mu) \frac{\left\langle O_{n}^{j}(\mu)\right\rangle}{m_{Q}^{n}}
$$

where $\left\langle O_{n}^{j}(\mu)\right\rangle \sim \Lambda_{Q C D}^{n}$ and $\mu \sim m_{Q}$

- $\tau_{n}^{j}(\mu)$ are perturbative and $\left\langle O_{n}^{j}(\mu)\right\rangle$ are non-perturbative
- Since $\alpha_{s}(\mu)$ becomes smaller for large μ and $\Lambda_{Q C D} / m_{Q}$ is small expect to achieve good precision with just a few terms
- To improve the precision we can
- calculate $\tau_{n}^{j}(\mu)$ to higher powers in α_{s}

HQET

- Using HQET observables can be written as a series

$$
\text { Observable }=\sum_{n=0}^{\infty} \sum_{j} c_{n}^{j}(\mu) \frac{\left\langle O_{n}^{j}(\mu)\right\rangle}{m_{Q}^{n}}
$$

where $\left\langle O_{n}^{j}(\mu)\right\rangle \sim \Lambda_{Q C D}^{n}$ and $\mu \sim m_{Q}$

- $\tau_{n}^{j}(\mu)$ are perturbative and $\left\langle O_{n}^{j}(\mu)\right\rangle$ are non-perturbative
- Since $\alpha_{s}(\mu)$ becomes smaller for large μ and $\Lambda Q C D^{2} m_{Q}$ is small expect to achieve good precision with just a few terms
- To improve the precision we can
- calculate $\tau_{n}^{j}(\mu)$ to higher powers in α_{s}
- include $\left\langle O_{n}^{j}(\mu)\right\rangle$ with larger n,

HQET

- Using HQET observables can be written as a series

$$
\text { Observable }=\sum_{n=0}^{\infty} \sum_{j} c_{n}^{j}(\mu) \frac{\left\langle O_{n}^{j}(\mu)\right\rangle}{m_{Q}^{n}}
$$

where $\left\langle O_{n}^{j}(\mu)\right\rangle \sim \Lambda_{Q C D}^{n}$ and $\mu \sim m_{Q}$

- $\tau_{n}^{j}(\mu)$ are perturbative and $\left\langle O_{n}^{j}(\mu)\right\rangle$ are non-perturbative
- Since $\alpha_{s}(\mu)$ becomes smaller for large μ and $\Lambda Q C D^{2} m_{Q}$ is small expect to achieve good precision with just a few terms
- To improve the precision we can
- calculate $\tau_{n}^{j}(\mu)$ to higher powers in α_{s}
- include $\left\langle O_{n}^{j}(\mu)\right\rangle$ with larger n,
assuming you can extract them from data or use Lattice QCD

HQET

- Using HQET observables can be written as a series

$$
\text { Observable }=\sum_{n=0}^{\infty} \sum_{j} c_{n}^{j}(\mu) \frac{\left\langle O_{n}^{j}(\mu)\right\rangle}{m_{Q}^{n}}
$$

where $\left\langle O_{n}^{j}(\mu)\right\rangle \sim \Lambda_{Q C D}^{n}$ and $\mu \sim m_{Q}$

- $\tau_{n}^{j}(\mu)$ are perturbative and $\left\langle O_{n}^{j}(\mu)\right\rangle$ are non-perturbative
- Since $\alpha_{s}(\mu)$ becomes smaller for large μ and $\Lambda Q C D^{2} m_{Q}$ is small expect to achieve good precision with just a few terms
- To improve the precision we can
- calculate $\tau_{n}^{j}(\mu)$ to higher powers in α_{s}
- include $\left\langle O_{n}^{j}(\mu)\right\rangle$ with larger n,
assuming you can extract them from data or use Lattice QCD
- What $\left\langle O_{n}^{j}(\mu)\right\rangle$ do we encounter?

What $\left\langle O_{n}^{j}(\mu)\right\rangle$ do we encounter?

- What $\left\langle O_{n}^{j}(\mu)\right\rangle$ do we encounter?

What $\left\langle O_{n}^{j}(\mu)\right\rangle$ do we encounter?

- What $\left\langle O_{n}^{j}(\mu)\right\rangle$ do we encounter?
- Strong interaction operators made of quarks and gluons

What $\left\langle O_{n}^{j}(\mu)\right\rangle$ do we encounter?

- What $\left\langle O_{n}^{j}(\mu)\right\rangle$ do we encounter?
- Strong interaction operators made of quarks and gluons
- Local: e.g. $\bar{q}(0) \cdots q(0)$

What $\left\langle O_{n}^{j}(\mu)\right\rangle$ do we encounter?

- What $\left\langle O_{n}^{j}(\mu)\right\rangle$ do we encounter?
- Strong interaction operators made of quarks and gluons
- Local: e.g. $\bar{q}(0) \cdots q(0)$
- Non-Local: e.g. $\quad \bar{q}(0) \cdots q(t n) \quad n$ light-cone vector

What $\left\langle O_{n}^{j}(\mu)\right\rangle$ do we encounter?

- What $\left\langle O_{n}^{j}(\mu)\right\rangle$ do we encounter?
- Strong interaction operators made of quarks and gluons
- Local: e.g. $\quad \bar{q}(0) \cdots q(0)$
- Non-Local: e.g. $\quad \bar{q}(0) \cdots q(t n) \quad n$ light-cone vector
- The general matrix element: $\quad\left\langle f\left(p_{f}\right)\right| O_{n}^{j}(\mu)\left|i\left(p_{i}\right)\right\rangle$ $O_{n}^{j}(\mu)$ can be local or non-local; p_{i}, p_{f} independent or not List options in increased complexity

Local operators

- Local operator between vacuum and a state: Decay constant

$$
\langle 0| \bar{q} \gamma^{\mu} \gamma_{5} h_{v}|P(v)\rangle=-i \sqrt{m_{P}} f_{P} v^{\mu}
$$

Local operators

- Local operator between vacuum and a state: Decay constant

$$
\langle 0| \bar{q} \gamma^{\mu} \gamma_{5} h_{v}|P(v)\rangle=-i \sqrt{m_{P}} f_{P} v^{\mu}
$$

- Diagonal matrix element of local operator: HQET parameter

$$
\langle\bar{B}| \bar{b} \overrightarrow{\boldsymbol{D}}^{2} b|\bar{B}\rangle=2 M_{B} \mu_{\pi}^{2}
$$

Local operators

- Local operator between vacuum and a state: Decay constant

$$
\langle 0| \bar{q} \gamma^{\mu} \gamma_{5} h_{v}|P(v)\rangle=-i \sqrt{m_{P}} f_{P} v^{\mu}
$$

- Diagonal matrix element of local operator: HQET parameter

$$
\langle\bar{B}| \bar{b} \vec{D}^{2} b|\bar{B}\rangle=2 M_{B} \mu_{\pi}^{2}
$$

- Non-diagonal matrix element of local operator: Form factor

$$
\left\langle D\left(p_{f}\right)\right| \bar{c} \gamma^{\mu} b\left|\bar{B}\left(p_{i}\right)\right\rangle=f_{+}\left(q^{2}\right)\left(p_{i}+p_{f}\right)^{\mu}+f_{-}\left(q^{2}\right)\left(p_{i}-p_{f}\right)^{\mu}
$$

where $p_{f}-p_{i}=q$

Non-local operators

- Non-local operator between vacuum and a state: LCDA

$$
\left\langle H_{v}\right| \bar{h}_{v}(0) 巾 \gamma_{5}[0, t n] q_{s}(t n)|0\rangle=-i F(\mu) \int_{0}^{\infty} d \omega e^{i \omega t} \phi_{+}(\omega, \mu)
$$

Non-local operators

- Non-local operator between vacuum and a state: LCDA

$$
\left\langle H_{v}\right| \bar{h}_{v}(0) \not \phi_{\gamma_{5}}[0, t n] q_{s}(t n)|0\rangle=-i F(\mu) \int_{0}^{\infty} d \omega e^{i \omega t} \phi_{+}(\omega, \mu)
$$

- Diagonal matrix element of a non-local operator: Shape function

$$
S(\omega)=\frac{1}{2 \pi} \frac{1}{2 M_{B}} \int_{-\infty}^{\infty} d t e^{i \omega t}\langle\bar{B}(v)| \bar{b}(0)[0, t n] b(t n)|\bar{B}(v)\rangle
$$

Non-local operators

- Non-local operator between vacuum and a state: LCDA

$$
\left\langle H_{v}\right| \bar{h}_{v}(0) 巾 \gamma_{5}[0, t n] q_{s}(t n)|0\rangle=-i F(\mu) \int_{0}^{\infty} d \omega e^{i \omega t} \phi_{+}(\omega, \mu)
$$

- Diagonal matrix element of a non-local operator: Shape function

$$
S(\omega)=\frac{1}{2 \pi} \frac{1}{2 M_{B}} \int_{-\infty}^{\infty} d t e^{i \omega t}\langle\bar{B}(v)| \bar{b}(0)[0, t n] b(t n)|\bar{B}(v)\rangle
$$

- Non-diagonal matrix element of a non-local operator:

Non-local Form factor

$$
\left\langle K^{(*)}\left(p_{f}\right)\right| \bar{s}_{L}(0) \gamma^{\rho} \cdots \tilde{G}_{\alpha \beta} b_{L}(t n)\left|B\left(p_{i}\right)\right\rangle
$$

[Khodjamirian, Mannel, Pivovarov, Wang, JHEP 09, 089 (2010)]

Example: $\left|V_{c b}\right|$ and $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$

- Semileptonic $b \rightarrow c$ transition

$$
\mathcal{H}_{\text {eff }}=\frac{G_{F}}{\sqrt{2}} C_{1}(\mu) V_{c b} \bar{\ell} \gamma_{\mu}\left(1-\gamma^{5}\right) \nu_{\ell} \bar{c} \gamma^{\mu}\left(1-\gamma^{5}\right) b
$$

Example: $\left|V_{c b}\right|$ and $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$

- Semileptonic $b \rightarrow c$ transition

$$
\mathcal{H}_{\text {eff }}=\frac{G_{F}}{\sqrt{2}} C_{1}(\mu) V_{c b} \bar{\ell} \gamma_{\mu}\left(1-\gamma^{5}\right) \nu_{\ell} \bar{c} \gamma^{\mu}\left(1-\gamma^{5}\right) b
$$

- Using the optical theorem can calculate $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ as an OPE

$$
\Gamma \sim c_{0}\left\langle O_{0}\right\rangle+c_{2}^{j} \frac{\left\langle O_{2}^{j}\right\rangle}{m_{b}^{2}}+\cdots
$$

Example: $\left|V_{c b}\right|$ and $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$

- Semileptonic $b \rightarrow c$ transition

$$
\mathcal{H}_{\text {eff }}=\frac{G_{F}}{\sqrt{2}} C_{1}(\mu) V_{c b} \bar{\ell} \gamma_{\mu}\left(1-\gamma^{5}\right) \nu_{\ell} \bar{c} \gamma^{\mu}\left(1-\gamma^{5}\right) b
$$

- Using the optical theorem can calculate $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ as an OPE

$$
\Gamma \sim c_{0}\left\langle O_{0}\right\rangle+c_{2}^{j} \frac{\left\langle O_{2}^{j}\right\rangle}{m_{b}^{2}}+\cdots
$$

- $c_{0}\left\langle O_{0}\right\rangle$ is a free quark decay. At tree level same as $\mu \rightarrow e \bar{\nu}_{e} \nu_{\mu}$

Example: $\left|V_{c b}\right|$ and $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$

- Semileptonic $b \rightarrow c$ transition

$$
\mathcal{H}_{\text {eff }}=\frac{G_{F}}{\sqrt{2}} C_{1}(\mu) V_{c b} \bar{\ell} \gamma_{\mu}\left(1-\gamma^{5}\right) \nu_{\ell} \bar{c} \gamma^{\mu}\left(1-\gamma^{5}\right) b
$$

- Using the optical theorem can calculate $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ as an OPE

$$
\Gamma \sim c_{0}\left\langle O_{0}\right\rangle+c_{2}^{j} \frac{\left\langle O_{2}^{j}\right\rangle}{m_{b}^{2}}+\cdots
$$

- $c_{0}\left\langle O_{0}\right\rangle$ is a free quark decay. At tree level same as $\mu \rightarrow e \bar{\nu}_{e} \nu_{\mu}$
- c_{n}^{j} perturbative in α_{s}

Example: $\left|V_{c b}\right|$ and $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$

- Semileptonic $b \rightarrow c$ transition

$$
\mathcal{H}_{\text {eff }}=\frac{G_{F}}{\sqrt{2}} C_{1}(\mu) V_{c b} \bar{\ell} \gamma_{\mu}\left(1-\gamma^{5}\right) \nu_{\ell} \bar{c} \gamma^{\mu}\left(1-\gamma^{5}\right) b
$$

- Using the optical theorem can calculate $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ as an OPE

$$
\Gamma \sim c_{0}\left\langle O_{0}\right\rangle+c_{2}^{j} \frac{\left\langle O_{2}^{j}\right\rangle}{m_{b}^{2}}+\cdots
$$

- $c_{0}\left\langle O_{0}\right\rangle$ is a free quark decay. At tree level same as $\mu \rightarrow e \bar{\nu}_{e} \nu_{\mu}$
- c_{n}^{j} perturbative in α_{s}
- $\left\langle O_{n}^{j}\right\rangle$ are non perturbative, can be extracted from experiment
- $\left\langle O_{0}\right\rangle=\langle\bar{B}| \bar{b} b|\bar{B}\rangle=1$
$-\left\langle O_{2}^{\text {kin. }}\right\rangle=\langle\bar{B}| \bar{b}(i D)^{2} b|\bar{B}\rangle \Rightarrow \mu_{\pi}^{2}$
- $\left\langle O_{2}^{\text {mag. }}\right\rangle=\langle\bar{B}| \bar{b} \sigma_{\mu \nu} G^{\mu \nu} b|\bar{B}\rangle \Rightarrow \mu_{G}^{2}$ can be extracted from $M_{B^{*}}-M_{B}$

Example: $\left|V_{c b}\right|$ and $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$

- Using the optical theorem can calculate $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ as an OPE

$$
\Gamma \sim c_{0}\left\langle O_{0}\right\rangle+c_{2}^{j} \frac{\left\langle O_{2}^{j}\right\rangle}{m_{b}^{2}}+c_{3}^{j} \frac{\left\langle O_{3}^{j}\right\rangle}{m_{b}^{3}}+c_{4}^{j} \frac{\left\langle O_{4}^{j}\right\rangle}{m_{b}^{4}}+c_{5}^{j} \frac{\left\langle O_{5}^{j}\right\rangle}{m_{b}^{5}}+\cdots
$$

Example: $\left|V_{c b}\right|$ and $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$

- Using the optical theorem can calculate $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ as an OPE

$$
\Gamma \sim c_{0}\left\langle O_{0}\right\rangle+c_{2}^{j} \frac{\left\langle O_{2}^{j}\right\rangle}{m_{b}^{2}}+c_{3}^{j} \frac{\left\langle O_{3}^{j}\right\rangle}{m_{b}^{3}}+c_{4}^{j} \frac{\left\langle O_{4}^{j}\right\rangle}{m_{b}^{4}}+c_{5}^{j} \frac{\left\langle O_{5}^{j}\right\rangle}{m_{b}^{5}}+\cdots
$$

- $1 / m_{b}^{0}$: One operator

Example: $\left|V_{c b}\right|$ and $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$

- Using the optical theorem can calculate $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ as an OPE

$$
\Gamma \sim c_{0}\left\langle O_{0}\right\rangle+c_{2}^{j} \frac{\left\langle O_{2}^{j}\right\rangle}{m_{b}^{2}}+c_{3}^{j} \frac{\left\langle O_{3}^{j}\right\rangle}{m_{b}^{3}}+c_{4}^{j} \frac{\left\langle O_{4}^{j}\right\rangle}{m_{b}^{4}}+c_{5}^{j} \frac{\left\langle O_{5}^{j}\right\rangle}{m_{b}^{5}}+\cdots
$$

- $1 / m_{b}^{0}$: One operator
- $1 / m_{b}$: No operators

Example: $\left|V_{c b}\right|$ and $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$

- Using the optical theorem can calculate $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ as an OPE

$$
\Gamma \sim c_{0}\left\langle O_{0}\right\rangle+c_{2}^{j} \frac{\left\langle O_{2}^{j}\right\rangle}{m_{b}^{2}}+c_{3}^{j} \frac{\left\langle O_{3}^{j}\right\rangle}{m_{b}^{3}}+c_{4}^{j} \frac{\left\langle O_{4}^{j}\right\rangle}{m_{b}^{4}}+c_{5}^{j} \frac{\left\langle O_{5}^{j}\right\rangle}{m_{b}^{5}}+\cdots
$$

- $1 / m_{b}^{0}$: One operator
- $1 / m_{b}$: No operators
- $1 / m_{b}^{2}$: Two operators

Example: $\left|V_{c b}\right|$ and $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$

- Using the optical theorem can calculate $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ as an OPE

$$
\Gamma \sim c_{0}\left\langle O_{0}\right\rangle+c_{2}^{j} \frac{\left\langle O_{2}^{j}\right\rangle}{m_{b}^{2}}+c_{3}^{j} \frac{\left\langle O_{3}^{j}\right\rangle}{m_{b}^{3}}+c_{4}^{j} \frac{\left\langle O_{4}^{j}\right\rangle}{m_{b}^{4}}+c_{5}^{j} \frac{\left\langle O_{5}^{j}\right\rangle}{m_{b}^{5}}+\cdots
$$

- $1 / m_{b}^{0}$: One operator
- $1 / m_{b}$: No operators
- $1 / m_{b}^{2}$: Two operators
[Blok, Koyrakh, Shifman, Vainshtein PRD 49, 3356 (1994)]
[Manoar, Wise PRD 49, 1310 (1994)]

Example: $\left|V_{c b}\right|$ and $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$

- Using the optical theorem can calculate $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ as an OPE

$$
\Gamma \sim c_{0}\left\langle O_{0}\right\rangle+c_{2}^{j} \frac{\left\langle O_{2}^{j}\right\rangle}{m_{b}^{2}}+c_{3}^{j} \frac{\left\langle O_{3}^{j}\right\rangle}{m_{b}^{3}}+c_{4}^{j} \frac{\left\langle O_{4}^{j}\right\rangle}{m_{b}^{4}}+c_{5}^{j} \frac{\left\langle O_{5}^{j}\right\rangle}{m_{b}^{5}}+\cdots
$$

- $1 / m_{b}^{0}$: One operator
- $1 / m_{b}$: No operators
- $1 / m_{b}^{2}$: Two operators
[Blok, Koyrakh, Shifman, Vainshtein PRD 49, 3356 (1994)]
[Manoar, Wise PRD 49, 1310 (1994)]
- $1 / m_{b}^{3}$: Two operators
[Gremm, Kapustin, PRD 55, 6924 (1997)]

Example: $\left|V_{c b}\right|$ and $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$

- Using the optical theorem can calculate $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ as an OPE

$$
\Gamma \sim c_{0}\left\langle O_{0}\right\rangle+c_{2}^{j} \frac{\left\langle O_{2}^{j}\right\rangle}{m_{b}^{2}}+c_{3}^{j} \frac{\left\langle O_{3}^{j}\right\rangle}{m_{b}^{3}}+c_{4}^{j} \frac{\left\langle O_{4}^{j}\right\rangle}{m_{b}^{4}}+c_{5}^{j} \frac{\left\langle O_{5}^{j}\right\rangle}{m_{b}^{5}}+\cdots
$$

- $1 / m_{b}^{0}$: One operator
- $1 / m_{b}$: No operators
- $1 / m_{b}^{2}$: Two operators
[Blok, Koyrakh, Shifman, Vainshtein PRD 49, 3356 (1994)]
[Manoar, Wise PRD 49, 1310 (1994)]
- $1 / m_{b}^{3}$: Two operators
[Gremm, Kapustin, PRD 55, 6924 (1997)]
- [Mannel, Turczyk, Uraltsev JHEP 1011, 109 (2010)]:
- $1 / m_{b}^{4}$: Nine operators
- $1 / m_{b}^{5}$: Eighteen operators

Example: $\left|V_{c b}\right|$ and $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$

- Using the optical theorem can calculate $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ as an OPE

$$
\Gamma \sim c_{0}\left\langle O_{0}\right\rangle+c_{2}^{j} \frac{\left\langle O_{2}^{j}\right\rangle}{m_{b}^{2}}+c_{3}^{j} \frac{\left\langle O_{3}^{j}\right\rangle}{m_{b}^{3}}+c_{4}^{j} \frac{\left\langle O_{4}^{j}\right\rangle}{m_{b}^{4}}+c_{5}^{j} \frac{\left\langle O_{5}^{j}\right\rangle}{m_{b}^{5}}+\cdots
$$

- $1 / m_{b}^{0}$: One operator
- $1 / m_{b}$: No operators
- $1 / m_{b}^{2}$: Two operators
[Blok, Koyrakh, Shifman, Vainshtein PRD 49, 3356 (1994)]
[Manoar, Wise PRD 49, 1310 (1994)]
- $1 / m_{b}^{3}$: Two operators
[Gremm, Kapustin, PRD 55, 6924 (1997)]
- [Mannel, Turczyk, Uraltsev JHEP 1011, 109 (2010)]:
- $1 / m_{b}^{4}$: Nine operators
- $1 / m_{b}^{5}$: Eighteen operators
- All above: \boldsymbol{c}_{n}^{j} at $\mathcal{O}\left(\alpha_{s}^{0}\right)$.

Example: $\left|V_{c b}\right|$ and $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$

- Using the optical theorem can calculate $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ as an OPE

$$
\Gamma \sim c_{0}\left\langle O_{0}\right\rangle+c_{2}^{j} \frac{\left\langle O_{2}^{j}\right\rangle}{m_{b}^{2}}+c_{3}^{j} \frac{\left\langle O_{3}^{j}\right\rangle}{m_{b}^{3}}+c_{4}^{j} \frac{\left\langle O_{4}^{j}\right\rangle}{m_{b}^{4}}+c_{5}^{j} \frac{\left\langle O_{5}^{j}\right\rangle}{m_{b}^{5}}+\cdots
$$

- $1 / m_{b}^{0}$: One operator
- $1 / m_{b}$: No operators
- $1 / m_{b}^{2}$: Two operators
[Blok, Koyrakh, Shifman, Vainshtein PRD 49, 3356 (1994)]
[Manoar, Wise PRD 49, 1310 (1994)]
- $1 / m_{b}^{3}$: Two operators
[Gremm, Kapustin, PRD 55, 6924 (1997)]
- [Mannel, Turczyk, Uraltsev JHEP 1011, 109 (2010)]:
- $1 / m_{b}^{4}$: Nine operators
- $1 / m_{b}^{5}$: Eighteen operators
- All above: c_{n}^{j} at $\mathcal{O}\left(\alpha_{s}^{0}\right)$. Are these all the possible operators?

Interlude

- Are these all the possible operators?

Interlude

- Are these all the possible operators?
- Question answered in [Gunawardna, GP JHEP 1707137 (2017)]

Interlude

- Are these all the possible operators?
- Question answered in [Gunawardna, GP JHEP 1707137 (2017)] By mapping the problem to diagonal HQET local matrix elements

Interlude

- Are these all the possible operators?
- Question answered in [Gunawardna, GP JHEP 1707137 (2017)] By mapping the problem to diagonal HQET local matrix elements
- We considered matrix elements of the form $\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} h|H\rangle$
$\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} s^{\lambda} h|H\rangle$

Interlude

- Are these all the possible operators?
- Question answered in [Gunawardna, GP JHEP 1707137 (2017)] By mapping the problem to diagonal HQET local matrix elements
- We considered matrix elements of the form
$\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} h|H\rangle$
$\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} s^{\lambda} h|H\rangle$
- We used the constraints
- Orthogonality of v to $\mu_{1}, \mu_{n}, \lambda$ [Mannel, PRD 50, 428 (1994)]
- Parity and Time reversal symmetry
- Hermitian conjugation
- Four dimensions
- Possible multiple color structures [Kobach, Pal PLB 772225 (2017)]

Interlude

- Are these all the possible operators?
- Question answered in [Gunawardna, GP JHEP 1707137 (2017)] By mapping the problem to diagonal HQET local matrix elements
- We considered matrix elements of the form
$\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} h|H\rangle$
$\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} s^{\lambda} h|H\rangle$
- We used the constraints
- Orthogonality of v to $\mu_{1}, \mu_{n}, \lambda$ [Mannel, PRD 50, 428 (1994)]
- Parity and Time reversal symmetry
- Hermitian conjugation
- Four dimensions
- Possible multiple color structures [Kobach, Pal PLB 772225 (2017)]
- To decompose them in terms of the tensors
- $v^{\mu_{i}}, \Pi^{\mu \nu}=g^{\mu \nu}-v^{\mu} v^{\nu}, \epsilon^{\rho \sigma \alpha \beta} v_{\rho}$

Dimension 9 HQET operators

- For example: for dimension 5 HQET operators

$$
\frac{1}{2 M_{H}}\langle H(v)| \bar{Q}_{v} i D^{\mu_{1}} i D^{\mu_{2}} Q_{v}|H(v)\rangle=
$$

Dimension 9 HQET operators

- For example: for dimension 5 HQET operators

$$
\begin{gathered}
\frac{1}{2 M_{H}}\langle H(v)| \bar{Q}_{v} i D^{\mu_{1}} i D^{\mu_{2}} Q_{v}|H(v)\rangle=-\frac{\mu_{\pi}^{2}}{3} \Pi^{\mu_{1} \mu_{2}}=-\frac{\mu_{\pi}^{2}}{3}\left(g^{\mu \nu}-v^{\mu} v^{\nu}\right) \\
\frac{1}{2 M_{H}}\langle H(v)| \bar{Q}_{v} i D^{\mu_{1}} i D^{\mu_{2}} s^{\lambda} Q_{v}|H(v)\rangle=
\end{gathered}
$$

Dimension 9 HQET operators

- For example: for dimension 5 HQET operators

$$
\begin{gathered}
\frac{1}{2 M_{H}}\langle H(v)| \bar{Q}_{v} i D^{\mu_{1}} i D^{\mu_{2}} Q_{v}|H(v)\rangle=-\frac{\mu_{\pi}^{2}}{3} \Pi^{\mu_{1} \mu_{2}}=-\frac{\mu_{\pi}^{2}}{3}\left(g^{\mu \nu}-v^{\mu} v^{\nu}\right) \\
\frac{1}{2 M_{H}}\langle H(v)| \bar{Q}_{v} i D^{\mu_{1}} i D^{\mu_{2}} s^{\lambda} Q_{v}|H(v)\rangle=\frac{1}{6} \mu_{G}^{2} i \epsilon^{\rho \mu_{1} \mu_{2} \lambda} v_{\rho}
\end{gathered}
$$

Dimension 9 HQET operators

- For example: for dimension 5 HQET operators

$$
\begin{gathered}
\frac{1}{2 M_{H}}\langle H(v)| \bar{Q}_{v} i D^{\mu_{1}} i D^{\mu_{2}} Q_{v}|H(v)\rangle=-\frac{\mu_{\pi}^{2}}{3} \Pi^{\mu_{1} \mu_{2}}=-\frac{\mu_{\pi}^{2}}{3}\left(g^{\mu \nu}-v^{\mu} v^{\nu}\right) \\
\frac{1}{2 M_{H}}\langle H(v)| \bar{Q}_{v} i D^{\mu_{1}} i D^{\mu_{2}} s^{\lambda} Q_{v}|H(v)\rangle=\frac{1}{6} \mu_{G}^{2} i \epsilon^{\rho \mu_{1} \mu_{2} \lambda} v_{\rho}
\end{gathered}
$$

- Spin independent Dimension 9 HQET operators at $\mathcal{O}\left(\alpha_{s}^{0}\right)$ [Gunawardna, GP JHEP 1707137 (2017)]

Dimension 9 HQET operators

- For example: for dimension 5 HQET operators

$$
\begin{gathered}
\frac{1}{2 M_{H}}\langle H(v)| \bar{Q}_{v} i D^{\mu_{1}} i D^{\mu_{2}} Q_{v}|H(v)\rangle=-\frac{\mu_{\pi}^{2}}{3} \Pi^{\mu_{1} \mu_{2}}=-\frac{\mu_{\pi}^{2}}{3}\left(g^{\mu \nu}-v^{\mu} v^{\nu}\right) \\
\frac{1}{2 M_{H}}\langle H(v)| \bar{Q}_{v} i D^{\mu_{1}} i D^{\mu_{2}} s^{\lambda} Q_{v}|H(v)\rangle=\frac{1}{6} \mu_{G}^{2} i \epsilon^{\rho \mu_{1} \mu_{2} \lambda} v_{\rho}
\end{gathered}
$$

- Spin independent Dimension 9 HQET operators at $\mathcal{O}\left(\alpha_{s}^{0}\right)$ [Gunawardna, GP JHEP 1707137 (2017)]
$\left.\frac{1}{2 M_{H}}\langle H| \bar{h} i D^{\mu_{1}} D^{\mu_{2}} i^{\mu_{3}}{ }_{i D^{\mu_{4}} D^{\mu_{5}} D^{\mu_{6}}}| | H\right\rangle=a_{12,34}^{(9)} \Pi^{\mu_{1} \mu_{2}} \Pi^{\mu_{3} \mu_{4}} \Pi^{\mu_{5} \mu_{6}}+$
$+a_{12,35}^{99}\left(\Pi^{\mu_{1} \mu_{2}} \Pi^{\mu_{3} \mu_{5}} \Pi^{\mu_{4} \mu_{6}}+\Pi^{\mu_{1} \mu_{3}} \Pi^{\mu_{2} \mu_{4}} \Pi^{\mu_{5} \mu_{6}}\right)+a_{12,36}^{(9)}\left(\Pi^{\mu_{1} \mu_{2}} \Pi^{\mu_{3} \mu_{6}} \Pi^{\mu_{4} \mu_{5}}+\Pi^{\mu_{1} \mu_{4}} \Pi^{\mu_{2} \mu_{3}} \Pi^{\mu_{5} \mu_{6}}\right)+$
$+a_{13,25}^{(9)} \Pi^{\mu_{1} \mu_{3}} \Pi^{\mu_{2} \mu_{5}} \Pi^{\mu_{4} \mu_{6}}+z_{13,26}^{(9)}\left(\Pi^{\mu_{1} \mu_{3}} \Pi^{\mu_{2} \mu_{6}} \Pi^{\mu_{4} \mu_{5}}+\Pi^{\mu_{1} \mu_{5}} \Pi^{\mu_{2} \mu_{3}} \Pi^{\mu_{4} \mu_{6}}\right)+a_{14,25}^{(9)} \Pi^{\mu_{1} \mu_{4}} \Pi^{\mu_{2} \mu_{5}} \Pi^{\mu_{3} \mu_{6}}+$
$+a_{14,26}^{(9)}\left(\Pi^{\mu_{1} \mu_{4}} \Pi^{\mu_{2} \mu_{6}} \Pi^{\mu_{3} \mu_{5}}+\Pi^{\mu_{1} \mu_{5}} \Pi^{\mu_{2} \mu_{4}} \Pi^{\mu_{3} \mu_{6}}\right)+a_{15,26}^{(9)} \square^{\mu_{1} \mu_{5}} \Pi^{\mu_{2} \mu_{6}} \Pi^{\mu_{3} \mu_{4}}+a_{16,23}^{(9)} \Pi^{\mu_{1} \mu_{6}} \Pi^{\mu_{2} \mu_{3}} \Pi^{\mu_{4} \mu_{5}}+$
$+a_{10,24}^{(9)} \Pi^{\mu_{1} \mu_{6}} \Pi^{\mu_{2} \mu_{4}} \Pi^{\mu_{3} \mu_{5}}+a_{10,25}^{(9)} \Pi^{\mu_{1} \mu_{6}} \Pi^{\mu_{2} \mu_{5}} \Pi^{\mu_{3} \mu_{4}}+b_{12,36}^{(9)}\left(\Pi^{\mu_{1} \mu_{2}} \Pi^{\mu_{3} \mu_{6}} \nu^{\mu_{4}} \nu^{\mu_{5}}+\Pi^{\mu_{1} \mu_{4}} \Pi^{\mu_{5} \mu_{6} \nu^{\mu_{2}} \nu^{\mu_{3}}}\right)+$
$+b_{12,46}^{(9)}\left(\Pi^{\mu_{1} \mu_{2}} \Pi^{\mu_{4} \mu_{6}} v^{\mu_{3}} \nu^{\mu_{5}}+\Pi^{\left.\mu_{1} \mu_{3} \Pi^{\mu_{5} \mu_{6}} \nu^{\mu_{2}} \nu^{\mu_{4}}\right)+b_{12,56}^{(9)} \Pi^{\mu_{1} \mu_{2}} \Pi^{\mu_{5} \mu_{6}} \nu^{\mu_{3}} \nu^{\mu_{4}}+}\right.$
$+b_{13,26}^{(9)}\left(\Pi^{\mu_{1} \mu_{3}} \Pi^{\mu_{2} \mu_{6}} v^{\mu_{4}} v^{\mu_{5}}+\Pi^{\mu_{1} \mu_{5}} \Pi^{\mu_{4} \mu_{6}} v^{\mu_{2}} v^{\mu_{3}}\right)+b_{13,46}^{(9)} \Pi^{\mu_{1} \mu_{3}} \Pi^{\mu_{4} \mu_{6}} v^{\mu_{2}} v^{\mu_{5}}+$
$+b_{14,26}^{(9)}\left(\Pi^{\mu_{1} \mu_{4}} \Pi^{\mu_{2} \mu_{6}} v^{\mu_{3}} v^{\mu_{5}}+\Pi^{\mu_{1} \mu_{5}} \Pi^{\mu_{3} \mu_{6}} v^{\mu_{2}} \imath^{\mu_{4}}\right)+b_{14,36}^{(9)} \Pi^{\mu_{1} \mu_{4}} \Pi^{\mu_{3} \mu_{6}} \nu^{\mu_{2}} \nu^{\mu_{5}}+b_{15,26}^{(9)} \Pi^{\mu_{1} \mu_{5}} \Pi^{\mu_{2} \mu_{6} \nu^{\mu_{3}} v^{\mu_{4}}}+$
$+b_{16,23}^{(9)}\left(\Pi^{\mu_{1} \mu_{6}} \Pi^{\mu_{2} \mu_{3}} \nu^{\mu_{4}} \nu^{\mu_{5}}+\Pi^{\mu_{1} \mu_{6}} \Pi^{\mu_{4} \mu_{5}} \nu^{\mu_{2}} \imath^{\mu_{3}}\right)+b_{16,24}^{(9)}\left(\Pi^{\mu_{1} \mu_{6}} \Pi^{\mu_{2} \mu_{4}} \nu^{\mu_{3}} \nu^{\mu_{5}}+\Pi^{\mu_{1} \mu_{6}} \Pi^{\mu_{3} \mu_{5}} \nu^{\mu_{2}} \nu^{\mu_{4}}\right)+$
$+b_{16,25}^{(9)} \Pi^{\mu_{1} \mu_{6}} \Pi^{\mu_{2} \mu_{5}} \nu^{\mu_{3}} \nu^{\mu_{4}}+b_{16,34}^{(9)} \Pi^{\mu_{1} \mu_{6}} \Pi^{\mu_{3} \mu_{4}} \nu^{\mu_{2}} \nu^{\mu_{5}}+c^{(9)} \Pi^{\mu_{1} \mu_{6}} \nu^{\mu_{2}} \nu^{\mu_{3}} \nu^{\mu_{4}} \nu^{\mu_{5}}$

Dimension 8 NRQCD Lagrangian

- Method allows to also find NRQED and NRQCD bilinear operators

Dimension 8 NRQCD Lagrangian

- Method allows to also find NRQED and NRQCD bilinear operators
- The dimension 8 NRQCD Lagrangian calculated for the first time [Gunawardna, GP JHEP 1707137 (2017), Kobach, Pal PLB 772225 (2017)]

Dimension 8 NRQCD Lagrangian

- Method allows to also find NRQED and NRQCD bilinear operators
- The dimension 8 NRQCD Lagrangian calculated for the first time [Gunawardna, GP JHEP 1707137 (2017), Kobach, Pal PLB 772225 (2017)]

$$
\left.+i i_{x} 15 g^{2} \frac{\left[\boldsymbol{E}^{i},(\boldsymbol{D} \times \boldsymbol{B}+\boldsymbol{B} \times \boldsymbol{D})^{i}\right]}{m_{p}^{4}}+c_{\times 16} g^{2} \frac{\left[\boldsymbol{\sigma} \cdot \boldsymbol{B},\left\{\boldsymbol{D}^{i}, \boldsymbol{E}^{i}\right\}\right]}{m_{p}^{4}}+c_{\times 17} g^{2} \frac{\left[\boldsymbol{B}^{i},\left\{\boldsymbol{D}^{i}, \boldsymbol{\sigma} \cdot \boldsymbol{E}\right\}\right]}{m_{p}^{4}}+c_{\times 118 g^{2}} \frac{\left[\boldsymbol{E}^{i},\left\{\boldsymbol{\sigma} \cdot \boldsymbol{D}, \boldsymbol{B}^{i}\right\}\right]}{m_{p}^{4}}\right\} \psi
$$

- 25 operators $\quad c_{X i b}$ start at $\mathcal{O}\left(\alpha_{s}\right)$

$$
\begin{aligned}
& \mathcal{L}_{\mathcal{N R Q C D}}^{\operatorname{dim}=8}=\psi^{\dagger}\left\{\ldots c \times 1 g \frac{\left[D^{2},\left\{D^{i}, E^{i}\right\}\right]}{m_{P}^{4}}+c \times 2 g \frac{\left\{D^{2},\left[D^{i}, E^{i}\right]\right\}}{m_{p}^{4}}+c_{\times 3} \frac{\left[D^{i},\left[D^{i},\left[D^{j}, E^{j}\right]\right]\right]}{m_{P}^{4}}\right. \\
& +i C_{X 4 a} g^{\{ } \frac{\left\{D^{i}, e^{i j} E_{j}^{E} B_{b}^{k}\left\{T^{a}, T^{b}\right\}\right\}}{2 M^{4}}+i i_{X 4 b} g^{2} \frac{\left\{D^{i}, \epsilon^{j j} E_{E}^{j} B_{b}^{k} g^{a b}\right\}}{m_{p}^{4}}+i i_{X 5} g \frac{D^{i} \sigma \cdot(\boldsymbol{D} \times \boldsymbol{E}-E \times D) D^{i}}{m_{p}^{4}} \\
& +i c_{X 6} g \frac{\epsilon^{i j k^{i} \sigma^{i} D^{j}\left[D^{\prime}, E^{\prime}\right] D^{k}}}{m_{p}^{4}}+c_{X 7 a} g^{2} \frac{\left\{\boldsymbol{\sigma} \cdot B_{a} T^{a},\left[D^{i}, E^{i}\right]_{b} T^{b}\right\}}{2 M^{4}}+c_{X 7 b} g^{2} \frac{\sigma \cdot B_{a}\left[D^{i}, E^{i}\right]_{a}}{m_{P}^{4}} \\
& +c_{x 8} g^{2} g^{2} \frac{\left\{\boldsymbol{E}_{a}^{i} T^{a},\left[\boldsymbol{D}^{i}, \boldsymbol{\sigma} \cdot \boldsymbol{B}\right]_{b} T^{b}\right\}}{2 M^{4}}+c_{x 8 b} g^{2} \frac{\boldsymbol{E}_{a}^{i}\left[\boldsymbol{D}^{i}, \boldsymbol{\sigma} \cdot \boldsymbol{B}\right]_{a}}{m_{p}^{4}}+c_{x 9 a} g g^{\left\{\frac{\left\{\boldsymbol{B}_{a}^{i} T^{a},\left[\boldsymbol{D}^{i}, \boldsymbol{\sigma} \cdot \boldsymbol{E}\right]_{b} T^{b}\right\}}{2 M^{4}}\right.}
\end{aligned}
$$

$$
\begin{aligned}
& \left.+c_{X 11 a} g^{2} \frac{\left\{\mathcal{B}_{a}^{i} T^{a},\left[\sigma \cdot D, E^{j}\right]_{b} T^{b}\right\}}{2 M^{4}}+c_{X 11 b} g^{2} \frac{B_{a}^{i}\left[\sigma \cdot D, E^{j}\right]_{a}}{m_{p}^{4}}+\tilde{c}_{X 12 a} g^{g^{i} \epsilon^{i j k}{ }^{i} E_{a}^{j}\left[D_{t}, E^{k}\right]_{b}\left\{T^{a}, T^{b}\right\}} 2 M^{4}\right\}
\end{aligned}
$$

Interlude

- Are these all the possible operators?

Interlude

- Are these all the possible operators?
- Question answered in [Gunawardna, GP JHEP 1707137 (2017)]
- By mapping the problem to diagonal HQET local matrix elements
- List such operators, in principle, to arbitrary dimension
- NRQED and NRQCD bilinear ops., in principle, to arbitrary dimension
- See also [Kobach, Pal PLB 772225 (2017)] using Hilbert series

Interlude

- Are these all the possible operators?
- Question answered in [Gunawardna, GP JHEP 1707137 (2017)]
- By mapping the problem to diagonal HQET local matrix elements
- List such operators, in principle, to arbitrary dimension
- NRQED and NRQCD bilinear ops., in principle, to arbitrary dimension
- See also [Kobach, Pal PLB 772225 (2017)] using Hilbert series
- Are these all the possible operators?

Interlude

- Are these all the possible operators?
- Question answered in [Gunawardna, GP JHEP 1707137 (2017)]
- By mapping the problem to diagonal HQET local matrix elements
- List such operators, in principle, to arbitrary dimension
- NRQED and NRQCD bilinear ops., in principle, to arbitrary dimension
- See also [Kobach, Pal PLB 772225 (2017)] using Hilbert series
- Are these all the possible operators? No.

Interlude

- Are these all the possible operators?
- Question answered in [Gunawardna, GP JHEP 1707137 (2017)]
- By mapping the problem to diagonal HQET local matrix elements
- List such operators, in principle, to arbitrary dimension
- NRQED and NRQCD bilinear ops., in principle, to arbitrary dimension
- See also [Kobach, Pal PLB 772225 (2017)] using Hilbert series
- Are these all the possible operators? No.
- For $1 / m_{b}^{0}, 1 / m_{b}^{2}, 1 / m_{b}^{3}$ these are all the possible operators

Interlude

- Are these all the possible operators?
- Question answered in [Gunawardna, GP JHEP 1707137 (2017)]
- By mapping the problem to diagonal HQET local matrix elements
- List such operators, in principle, to arbitrary dimension
- NRQED and NRQCD bilinear ops., in principle, to arbitrary dimension
- See also [Kobach, Pal PLB 772225 (2017)] using Hilbert series
- Are these all the possible operators? No.
- For $1 / m_{b}^{0}, 1 / m_{b}^{2}, 1 / m_{b}^{3}$ these are all the possible operators
- $1 / m_{b}^{4}$: 9 operators at $\mathcal{O}\left(\alpha_{s}^{0}\right)$

Interlude

- Are these all the possible operators?
- Question answered in [Gunawardna, GP JHEP 1707137 (2017)]
- By mapping the problem to diagonal HQET local matrix elements
- List such operators, in principle, to arbitrary dimension
- NRQED and NRQCD bilinear ops., in principle, to arbitrary dimension
- See also [Kobach, Pal PLB 772225 (2017)] using Hilbert series
- Are these all the possible operators? No.
- For $1 / m_{b}^{0}, 1 / m_{b}^{2}, 1 / m_{b}^{3}$ these are all the possible operators
- $1 / m_{b}^{4}$: 9 operators at $\mathcal{O}\left(\alpha_{s}^{0}\right) \Rightarrow 11$ operators at $\mathcal{O}\left(\alpha_{s}\right)$ or higher

Interlude

- Are these all the possible operators?
- Question answered in [Gunawardna, GP JHEP 1707137 (2017)]
- By mapping the problem to diagonal HQET local matrix elements
- List such operators, in principle, to arbitrary dimension
- NRQED and NRQCD bilinear ops., in principle, to arbitrary dimension
- See also [Kobach, Pal PLB 772225 (2017)] using Hilbert series
- Are these all the possible operators? No.
- For $1 / m_{b}^{0}, 1 / m_{b}^{2}, 1 / m_{b}^{3}$ these are all the possible operators
- $1 / m_{b}^{4}$: 9 operators at $\mathcal{O}\left(\alpha_{s}^{0}\right) \Rightarrow 11$ operators at $\mathcal{O}\left(\alpha_{s}\right)$ or higher
- $1 / m_{b}^{5}: 18$ operators at $\mathcal{O}\left(\alpha_{s}^{0}\right)$

Interlude

- Are these all the possible operators?
- Question answered in [Gunawardna, GP JHEP 1707137 (2017)]
- By mapping the problem to diagonal HQET local matrix elements
- List such operators, in principle, to arbitrary dimension
- NRQED and NRQCD bilinear ops., in principle, to arbitrary dimension
- See also [Kobach, Pal PLB 772225 (2017)] using Hilbert series
- Are these all the possible operators? No.
- For $1 / m_{b}^{0}, 1 / m_{b}^{2}, 1 / m_{b}^{3}$ these are all the possible operators
- $1 / m_{b}^{4}$: 9 operators at $\mathcal{O}\left(\alpha_{s}^{0}\right) \Rightarrow 11$ operators at $\mathcal{O}\left(\alpha_{s}\right)$ or higher
- $1 / m_{b}^{5}: 18$ operators at $\mathcal{O}\left(\alpha_{s}^{0}\right) \Rightarrow 25$ operators at $\mathcal{O}\left(\alpha_{s}\right)$ or higher

Interlude

- Are these all the possible operators?
- Question answered in [Gunawardna, GP JHEP 1707137 (2017)]
- By mapping the problem to diagonal HQET local matrix elements
- List such operators, in principle, to arbitrary dimension
- NRQED and NRQCD bilinear ops., in principle, to arbitrary dimension
- See also [Kobach, Pal PLB 772225 (2017)] using Hilbert series
- Are these all the possible operators? No.
- For $1 / m_{b}^{0}, 1 / m_{b}^{2}, 1 / m_{b}^{3}$ these are all the possible operators
- $1 / m_{b}^{4}$: 9 operators at $\mathcal{O}\left(\alpha_{s}^{0}\right) \Rightarrow 11$ operators at $\mathcal{O}\left(\alpha_{s}\right)$ or higher
- $1 / m_{b}^{5}: 18$ operators at $\mathcal{O}\left(\alpha_{s}^{0}\right) \Rightarrow 25$ operators at $\mathcal{O}\left(\alpha_{s}\right)$ or higher
- $\mathcal{O}\left(\alpha_{s}\right)$ operators are unknown but extremely small For example: $\alpha_{s}\left(\Lambda_{\mathrm{QCD}} / m_{b}\right)^{4} \sim 0.2 \cdot(0.1)^{4} \sim 10^{-5}$

Power corrections

- $1 / m_{b}^{4}, 1 / m_{b}^{5}$ matrix elements extracted from $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ [Gambino, Healey, Turczyk PLB 763, 60 (2016)]

Power corrections

- $1 / m_{b}^{4}, 1 / m_{b}^{5}$ matrix elements extracted from $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ [Gambino, Healey, Turczyk PLB 763, 60 (2016)]

Table 2
Default fit results: the second and third columns give the central values and standard deviations.

$m_{b}^{\text {kin }}$	4.546	0.021	r_{1}	0.032	0.024
$\bar{m}_{c}(3 \mathrm{GeV})$	0.987	0.013	r_{2}	-0.063	0.037
μ_{π}^{2}	0.432	0.068	r_{3}	-0.017	0.025
μ_{G}^{2}	0.355	0.060	r_{4}	-0.002	0.025
ρ_{D}^{3}	0.145	0.061	r_{5}	0.001	0.025
$\rho_{L S}^{3}$	-0.169	0.097	r_{6}	0.016	0.025
\bar{m}_{1}^{3}	0.084	0.059	r_{7}	0.002	0.025
\bar{m}_{2}	-0.019	0.036	r_{8}	-0.026	0.025
\bar{m}_{3}	-0.011	0.045	r_{9}	0.072	0.044
\bar{m}_{4}	0.048	0.043	r_{10}	0.043	0.030
\bar{m}_{5}	0.072	0.045	r_{11}	0.003	0.025
\bar{m}_{6}	0.015	0.041	r_{12}	0.018	0.025
\bar{m}_{7}	-0.059	0.043	r_{13}	-0.052	0.031
\bar{m}_{8}	-0.178	0.073	r_{14}	0.003	0.025
\bar{m}_{9}	-0.035	0.044	r_{15}	0.001	0.025
$\chi^{2} /$ dof	0.46		r_{16}	0.001	0.025
$B R(\%)$	10.652	0.156	r_{17}	-0.028	0.025
$\mathbf{1 0}^{\mathbf{3}}\left\|\mathbf{V}_{\mathbf{c b}}\right\|$	$\mathbf{4 2 . 1 1}$	$\mathbf{0 . 7 4}$	r_{18}	-0.001	0.025

Power corrections

- $1 / m_{b}^{4}, 1 / m_{b}^{5}$ matrix elements extracted from $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ [Gambino, Healey, Turczyk PLB 763, 60 (2016)]

Table 2
Default fit results: the second and third columns give the central values and standard deviations.

$m_{b}^{\text {kin }}$	4.546	0.021	r_{1}	0.032	0.024
$\bar{m}_{c}(3 \mathrm{GeV})$	0.987	0.013	r_{2}	-0.063	0.037
μ_{π}^{2}	0.432	0.068	r_{3}	-0.017	0.025
μ_{G}^{2}	0.355	0.060	r_{4}	-0.002	0.025
ρ_{D}^{3}	0.145	0.061	r_{5}	0.001	0.025
$\rho_{L S}^{3}$	-0.169	0.097	r_{6}	0.016	0.025
\bar{m}_{1}	0.084	0.059	r_{7}	0.002	0.025
\bar{m}_{2}	-0.019	0.036	r_{8}	-0.026	0.025
\bar{m}_{3}	-0.011	0.045	r_{9}	0.072	0.044
\bar{m}_{4}	0.048	0.043	r_{10}	0.043	0.030
\bar{m}_{5}	0.072	0.045	r_{11}	0.003	0.025
\bar{m}_{6}	0.015	0.041	r_{12}	0.018	0.025
\bar{m}_{7}	-0.059	0.043	r_{13}	-0.052	0.031
\bar{m}_{8}	-0.178	0.073	r_{14}	0.003	0.025
\bar{m}_{9}	-0.035	0.044	r_{15}	0.001	0.025
$\chi^{2} /$ dof	0.46		r_{16}	0.001	0.025
$B R(\%)$	10.652	0.156	r_{17}	-0.028	0.025
$\mathbf{1 0}\left\|\mathbf{V}_{\mathbf{c b}}\right\|$	$\mathbf{4 2 . 1 1}$	$\mathbf{0 . 7 4}$	r_{18}	-0.001	0.025

- "The higher power corrections have a minor effect on $\left|V_{c b}\right| \ldots$ There is a -0.25% reduction in $\left|V_{c b}\right| "$

State of the art: $\left|V_{c b}\right|$ and $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$

- What is the current "state of the art"?

State of the art: $\left|V_{c b}\right|$ and $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$

- What is the current "state of the art"?

$$
\Gamma \sim c_{0}\left\langle O_{0}\right\rangle+c_{2}^{j} \frac{\left\langle O_{2}^{j}\right\rangle}{m_{b}^{2}}+c_{3}^{j} \frac{\left\langle O_{3}^{j}\right\rangle}{m_{b}^{3}}+c_{4}^{j} \frac{\left\langle O_{4}^{j}\right\rangle}{m_{b}^{4}}+c_{5}^{j} \frac{\left\langle O_{5}^{j}\right\rangle}{m_{b}^{5}}+\cdots
$$

- c_{0} known at $\mathcal{O}\left(\alpha_{s}^{0}\right), \mathcal{O}\left(\alpha_{s}^{1}\right), \mathcal{O}\left(\alpha_{s}^{2}\right), \mathcal{O}\left(\alpha_{s}^{3}\right)$ for selected observables

State of the art: $\left|V_{c b}\right|$ and $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$

- What is the current "state of the art"?

$$
\Gamma \sim c_{0}\left\langle O_{0}\right\rangle+c_{2}^{j} \frac{\left\langle O_{2}^{j}\right\rangle}{m_{b}^{2}}+c_{3}^{j} \frac{\left\langle O_{3}^{j}\right\rangle}{m_{b}^{3}}+c_{4}^{j} \frac{\left\langle O_{4}^{j}\right\rangle}{m_{b}^{4}}+c_{5}^{j} \frac{\left\langle O_{5}^{j}\right\rangle}{m_{b}^{5}}+\cdots
$$

- c_{0} known at $\mathcal{O}\left(\alpha_{s}^{0}\right), \mathcal{O}\left(\alpha_{s}^{1}\right), \mathcal{O}\left(\alpha_{s}^{2}\right), \mathcal{O}\left(\alpha_{s}^{3}\right)$ for selected observables
- \mathcal{C}_{2}^{j} known at $\mathcal{O}\left(\alpha_{s}^{0}\right), \mathcal{O}\left(\alpha_{s}^{1}\right)$

State of the art: $\left|V_{c b}\right|$ and $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$

- What is the current "state of the art"?

$$
\Gamma \sim c_{0}\left\langle O_{0}\right\rangle+c_{2}^{j} \frac{\left\langle O_{2}^{j}\right\rangle}{m_{b}^{2}}+c_{3}^{j} \frac{\left\langle O_{3}^{j}\right\rangle}{m_{b}^{3}}+c_{4}^{j} \frac{\left\langle O_{4}^{j}\right\rangle}{m_{b}^{4}}+c_{5}^{j} \frac{\left\langle O_{5}^{j}\right\rangle}{m_{b}^{5}}+\cdots
$$

- c_{0} known at $\mathcal{O}\left(\alpha_{s}^{0}\right), \mathcal{O}\left(\alpha_{s}^{1}\right), \mathcal{O}\left(\alpha_{s}^{2}\right), \mathcal{O}\left(\alpha_{s}^{3}\right)$ for selected observables
- c_{2}^{j} known at $\mathcal{O}\left(\alpha_{s}^{0}\right), \mathcal{O}\left(\alpha_{s}^{1}\right)$
- c_{3}^{j} known at $\mathcal{O}\left(\alpha_{s}^{0}\right), \mathcal{O}\left(\alpha_{s}^{1}\right)$ for selected observables

State of the art: $\left|V_{c b}\right|$ and $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$

- What is the current "state of the art"?

$$
\Gamma \sim c_{0}\left\langle O_{0}\right\rangle+c_{2}^{j} \frac{\left\langle O_{2}^{j}\right\rangle}{m_{b}^{2}}+c_{3}^{j} \frac{\left\langle O_{3}^{j}\right\rangle}{m_{b}^{3}}+c_{4}^{j} \frac{\left\langle O_{4}^{j}\right\rangle}{m_{b}^{4}}+c_{5}^{j} \frac{\left\langle O_{5}^{j}\right\rangle}{m_{b}^{5}}+\cdots
$$

- c_{0} known at $\mathcal{O}\left(\alpha_{s}^{0}\right), \mathcal{O}\left(\alpha_{s}^{1}\right), \mathcal{O}\left(\alpha_{s}^{2}\right), \mathcal{O}\left(\alpha_{s}^{3}\right)$ for selected observables
- c_{2}^{j} known at $\mathcal{O}\left(\alpha_{s}^{0}\right), \mathcal{O}\left(\alpha_{s}^{1}\right)$
- c_{3}^{j} known at $\mathcal{O}\left(\alpha_{s}^{0}\right), \mathcal{O}\left(\alpha_{s}^{1}\right)$ for selected observables
- c_{4}^{j} known at $\mathcal{O}\left(\alpha_{s}^{0}\right)$

State of the art: $\left|V_{c b}\right|$ and $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$

- What is the current "state of the art"?

$$
\Gamma \sim c_{0}\left\langle O_{0}\right\rangle+c_{2}^{j} \frac{\left\langle O_{2}^{j}\right\rangle}{m_{b}^{2}}+c_{3}^{j} \frac{\left\langle O_{3}^{j}\right\rangle}{m_{b}^{3}}+c_{4}^{j} \frac{\left\langle O_{4}^{j}\right\rangle}{m_{b}^{4}}+c_{5}^{j} \frac{\left\langle O_{5}^{j}\right\rangle}{m_{b}^{5}}+\cdots
$$

- c_{0} known at $\mathcal{O}\left(\alpha_{s}^{0}\right), \mathcal{O}\left(\alpha_{s}^{1}\right), \mathcal{O}\left(\alpha_{s}^{2}\right), \mathcal{O}\left(\alpha_{s}^{3}\right)$ for selected observables
- c_{2}^{j} known at $\mathcal{O}\left(\alpha_{s}^{0}\right), \mathcal{O}\left(\alpha_{s}^{1}\right)$
- c_{3}^{j} known at $\mathcal{O}\left(\alpha_{s}^{0}\right), \mathcal{O}\left(\alpha_{s}^{1}\right)$ for selected observables
- c_{4}^{j} known at $\mathcal{O}\left(\alpha_{s}^{0}\right)$
- c_{5}^{j} known at $\mathcal{O}\left(\alpha_{s}^{0}\right)$

Outline

- Introduction

Outline

- Introduction
- Recent developments in HQET: Perturbative

Outline

- Introduction
- Recent developments in HQET: Perturbative
- Recent developments in HQET: Non-local matrix elements

Outline

- Introduction
- Recent developments in HQET: Perturbative
- Recent developments in HQET: Non-local matrix elements
- Recent developments in HQET: Local non-diagonal matrix elements

Outline

- Introduction
- Recent developments in HQET: Perturbative
- Recent developments in HQET: Non-local matrix elements
- Recent developments in HQET: Local non-diagonal matrix elements
- Recent developments in HQET: New directions

Outline

- Introduction
- Recent developments in HQET: Perturbative
- Recent developments in HQET: Non-local matrix elements
- Recent developments in HQET: Local non-diagonal matrix elements
- Recent developments in HQET: New directions
- Conclusions

Recent developments in HQET: Perturbative

Perturbative corrections

- Can improve theoretical predictions by calculating c_{n}^{j} to higher orders in α_{s}

Perturbative corrections

- Can improve theoretical predictions by calculating c_{n}^{j} to higher orders in α_{s}
- Example: $c_{3}^{\text {Darwin }}$ to $\mathcal{O}\left(\alpha_{s}\right)$ for $\bar{B} \rightarrow X_{u} \ell \bar{\nu}_{\ell}$ total rate and leptonic invariant mass [Moreno, PRD 109, 074030 (2024) arXiv:2402.13805]

Perturbative corrections

- Can improve theoretical predictions by calculating c_{n}^{j} to higher orders in α_{s}
- Example: $c_{3}^{\text {Darwin }}$ to $\mathcal{O}\left(\alpha_{s}\right)$ for $\bar{B} \rightarrow X_{u} \ell \bar{\nu}_{\ell}$ total rate and leptonic invariant mass [Moreno, PRD 109, 074030 (2024) arXiv:2402.13805]
- In some cases "technology" improved to $\mathcal{O}\left(\alpha_{s}^{4}\right)$

Perturbative corrections

- Can improve theoretical predictions by calculating c_{n}^{j} to higher orders in α_{s}
- Example: $c_{3}^{\text {Darwin }}$ to $\mathcal{O}\left(\alpha_{s}\right)$ for $\bar{B} \rightarrow X_{u} \ell \bar{\nu}_{\ell}$ total rate and leptonic invariant mass [Moreno, PRD 109, 074030 (2024) arXiv:2402.13805]
- In some cases "technology" improved to $\mathcal{O}\left(\alpha_{s}^{4}\right)$
- Example: using four-loop relation between the pole and $\overline{\mathrm{MS}}$ masses the extract HQET parameters from B and D meson masses [Takaura, EPJ Web Conf. 274, 03003 (2022) arXiv:2212.02874]

Perturbative corrections: Four-loop HQET propagator

- "Technology" improved to $\mathcal{O}\left(\alpha_{s}^{4}\right)$: Four-loop HQET propagator [Lee, Pikelner JHEP 02, 097 (2023) arXiv:2211.03668]

Perturbative corrections: Four-loop HQET propagator

- "Technology" improved to $\mathcal{O}\left(\alpha_{s}^{4}\right)$: Four-loop HQET propagator [Lee, Pikelner JHEP 02, 097 (2023) arXiv:2211.03668]

Red solid lines: massless propagators, double lines: HQET propagator

Four loop HQET heavy-to-light anomalous dimension

- This four-loop calculation was used to find the four-loop HQET heavy to light anomalous dimension
[Grozin, JHEP 02, 198 (2024) arXiv:2311.09894]

Four loop HQET heavy-to-light anomalous dimension

- This four-loop calculation was used to find the four-loop HQET heavy to light anomalous dimension
[Grozin, JHEP 02, 198 (2024) arXiv:2311.09894]

$$
\begin{align*}
& \tilde{\gamma}_{j}\left(\alpha_{s}\right)=-3 C_{F} \frac{\alpha_{s}}{4 \pi}+C_{F}\left(\frac{\alpha_{s}}{4 \pi}\right)^{2}\left[-C_{F}\left(\frac{8}{3} \pi^{2}-\frac{5}{2}\right)+\frac{C_{A}}{3}\left(2 \pi^{2}-\frac{49}{2}\right)+\frac{10}{3} T_{F} n_{f}\right] \\
& +C_{F}\left(\frac{\alpha_{s}}{4 \pi}\right)^{3}\left[-C_{F}^{2}\left(36 \zeta_{3}+\frac{8}{9} \pi^{4}-\frac{32}{3} \pi^{2}+\frac{37}{2}\right)\right. \\
& +\frac{C_{F} C_{A}}{3}\left(142 \zeta_{3}-\frac{8}{15} \pi^{4}-\frac{592}{9} \pi^{2}-\frac{655}{12}\right)-\frac{C_{A}^{2}}{3}\left(22 \zeta_{3}+\frac{4}{5} \pi^{4}-\frac{130}{9} \pi^{2}-\frac{1451}{36}\right) \\
& \left.-\frac{2}{3} C_{F} T_{F} n_{f}\left(88 \zeta_{3}-\frac{112}{9} \pi^{2}-\frac{235}{3}\right)+\frac{8}{3} C_{A} T_{F} n_{f}\left(19 \zeta_{3}-\frac{7}{9} \pi^{2}-\frac{64}{9}\right)+\frac{140}{27}\left(T_{F} n_{f}\right)^{2}\right] \\
& +\left(\frac{\alpha_{s}}{4 \pi}\right)^{4}\left[C_{F}^{4}\left(1200 \zeta_{5}-168 \zeta_{3}^{2}-\frac{896}{3} \pi^{2} \zeta_{3}+394 \zeta_{3}+\frac{3884}{2835} \pi^{6}-\frac{4}{15} \pi^{4}+\frac{136}{3} \pi^{2}-\frac{691}{8}\right)\right. \\
& -C_{F}^{3} C_{A}\left(\frac{5660}{3} \zeta_{5}-192 \zeta_{3}^{2}-\frac{4576}{9} \pi^{2} \zeta_{3}+1275 \zeta_{3}+\frac{2659}{2835} \pi^{6}-\frac{119}{45} \pi^{4}+\frac{2398}{9} \pi^{2}-\frac{3991}{12}\right) \\
& +C_{F}^{2} C_{A}^{2}\left(\frac{434}{3} \zeta_{5}-42 \zeta_{3}^{2}-\frac{1916}{9} \pi^{2} \zeta_{3}+\frac{39047}{27} \zeta_{3}+\frac{2087}{1890} \pi^{6}-\frac{2663}{90} \pi^{4}+\frac{41026}{243} \pi^{2}-\frac{189671}{324}\right) \\
& +C_{F} C_{A}^{3}\left(492 \zeta_{5}+30 \zeta_{3}^{2}+\frac{352}{9} \pi^{2} \zeta_{3}-\frac{14666}{27} \zeta_{3}-\frac{1439}{8505} \pi^{6}+\frac{23}{90} \pi^{4}-\frac{7246}{243} \pi^{2}+\frac{179089}{648}\right) \\
& +8 d_{F A}\left(30 \zeta_{5}+\frac{106}{3} \pi^{2} \zeta_{3}-16 \zeta_{3}-\frac{452}{567} \pi^{6}+\frac{29}{9} \pi^{4}+\frac{46}{3} \pi^{2}-8\right) \\
& +4 C_{F}^{3} T_{F} n_{f}\left(\frac{580}{3} \zeta_{5}-\frac{224}{9} \pi^{2} \zeta_{3}-24 \zeta_{3}-\frac{29}{45} \pi^{4}+\frac{68}{3} \pi^{2}-\frac{119}{3}\right) \\
& -\frac{C_{F}^{2} C_{A} T_{F} n_{f}}{3}\left(1096 \zeta_{5}-\frac{736}{3} \pi^{2} \zeta_{3}+\frac{18980}{9} \zeta_{3}-\frac{1138}{45} \pi^{4}-\frac{9404}{81} \pi^{2}-\frac{32093}{27}\right) \\
& -C_{F} C_{A}^{2} T_{F} n_{f}\left(308 \zeta_{5}+24 \zeta_{3}^{2}+\frac{128}{9} \pi^{2} \zeta_{3}-\frac{20792}{27} \zeta_{3}-\frac{874}{8505} \pi^{6}+\frac{56}{27} \pi^{4}+\frac{5240}{243} \pi^{2}+\frac{27269}{162}\right) \\
& -32 d_{F F} n_{f}\left(15 \zeta_{5}+\frac{8}{3} \pi^{2} \zeta_{3}-8 \zeta_{3}-\frac{437}{2835} \pi^{6}+\frac{4}{9} \pi^{4}+\frac{20}{3} \pi^{2}-4\right) \\
& +\frac{16}{27} C_{F}^{2}\left(T_{F} n_{f}\right)^{2}\left(326 \zeta_{3}-\frac{11}{5} \pi^{4}+\frac{16}{9} \pi^{2}-\frac{206}{3}\right) \\
& -\frac{2}{27} C_{F} C_{A}\left(T_{F n f}\right)^{2}\left(2272 \zeta_{3}-\frac{76}{5} \pi^{4}+\frac{32}{9} \pi^{2}-\frac{761}{3}\right) \\
& \left.-\frac{8}{9} C_{F}\left(T_{F} n_{f}\right)^{3}\left(16 \zeta_{3}-\frac{83}{9}\right)\right]+\mathcal{O}\left(\alpha_{s}^{5}\right) \tag{3.3}
\end{align*}
$$

Four loop HQET heavy-to-light anomalous dimension

- Four-loop HQET heavy to light anomalous dimension [Grozin, JHEP 02, 198 (2024) arXiv:2311.09894]

Four loop HQET heavy-to-light anomalous dimension

- Four-loop HQET heavy to light anomalous dimension [Grozin, JHEP 02, 198 (2024) arXiv:2311.09894]
For $n_{f}=4: \tilde{\gamma}_{j}=-\frac{\alpha_{s}}{\pi}-2.487726\left(\frac{\alpha_{s}}{\pi}\right)^{2}-6.292698\left(\frac{\alpha_{s}}{\pi}\right)^{3}-13.878042\left(\frac{\alpha_{s}}{\pi}\right)^{4}$

Four loop HQET heavy-to-light anomalous dimension

- Four-loop HQET heavy to light anomalous dimension [Grozin, JHEP 02, 198 (2024) arXiv:2311.09894]
For $n_{f}=4: \tilde{\gamma}_{j}=-\frac{\alpha_{s}}{\pi}-2.487726\left(\frac{\alpha_{s}}{\pi}\right)^{2}-6.292698\left(\frac{\alpha_{s}}{\pi}\right)^{3}-13.878042\left(\frac{\alpha_{s}}{\pi}\right)^{4}$
- This anomalous dimension can be used to calculate f_{B} / f_{D}

$$
\frac{f_{B}}{f_{D}}=\sqrt{\frac{m_{D}}{m_{B}}}\left(\frac{\alpha_{s}^{(4)}\left(m_{c}\right)}{\alpha_{s}^{(4)}\left(m_{b}\right)}\right)^{-\frac{z_{j 0}}{2 \beta_{0}^{(4)}}}\left\{1+\cdots \alpha_{s}+\cdots \alpha_{s}^{2}+\cdots \alpha_{s}^{3}+[\sim 1 \mathrm{GeV}]\left(\frac{1}{m_{c}}-\frac{1}{m_{b}}\right)+\cdots\right\}
$$

Four loop HQET heavy-to-light anomalous dimension

- Four-loop HQET heavy to light anomalous dimension [Grozin, JHEP 02, 198 (2024) arXiv:2311.09894]
For $n_{f}=4: \tilde{\gamma}_{j}=-\frac{\alpha_{s}}{\pi}-2.487726\left(\frac{\alpha_{s}}{\pi}\right)^{2}-6.292698\left(\frac{\alpha_{s}}{\pi}\right)^{3}-13.878042\left(\frac{\alpha_{s}}{\pi}\right)^{4}$
- This anomalous dimension can be used to calculate f_{B} / f_{D}

$$
\begin{gathered}
\frac{f_{B}}{f_{D}}=\sqrt{\frac{m_{D}}{m_{B}}}\left(\frac{\alpha_{s}^{(4)}\left(m_{c}\right)}{\alpha_{s}^{(4)}\left(m_{b}\right)}\right)^{-\frac{\tilde{\gamma}_{j 0}}{2 \beta_{0}^{4)}}}\left\{1+\cdot \cdot \alpha_{s}+\cdot \cdot \alpha_{s}^{2}+\cdot \cdot \alpha_{s}^{3}+[\sim 1 \mathrm{GeV}]\left(\frac{1}{m_{c}}-\frac{1}{m_{b}}\right)+\cdot \cdot\right\} \\
\frac{f_{B}}{f_{D}}=0.669 \cdot(1+0.039+0.029+0.032+[\sim 0.46])
\end{gathered}
$$

Four loop HQET heavy-to-light anomalous dimension

- Four-loop HQET heavy to light anomalous dimension [Grozin, JHEP 02, 198 (2024) arXiv:2311.09894]
For $n_{f}=4: \tilde{\gamma}_{j}=-\frac{\alpha_{s}}{\pi}-2.487726\left(\frac{\alpha_{s}}{\pi}\right)^{2}-6.292698\left(\frac{\alpha_{s}}{\pi}\right)^{3}-13.878042\left(\frac{\alpha_{s}}{\pi}\right)^{4}$
- This anomalous dimension can be used to calculate f_{B} / f_{D}

$$
\begin{gathered}
\frac{f_{B}}{f_{D}}=\sqrt{\frac{m_{D}}{m_{B}}}\left(\frac{\alpha_{s}^{(4)}\left(m_{c}\right)}{\alpha_{s}^{(4)}\left(m_{b}\right)}\right)^{-\frac{\tilde{y}_{0} 0}{2 \beta_{0}^{(t)}}}\left\{1+\cdots \alpha_{s}+\cdots \alpha_{s}^{2}+\cdots \alpha_{s}^{3}+[\sim 1 \mathrm{GeV}]\left(\frac{1}{m_{c}}-\frac{1}{m_{b}}\right)+\cdots\right\} \\
\frac{f_{B}}{f_{D}}=0.669 \cdot(1+0.039+0.029+0.032+[\sim 0.46])
\end{gathered}
$$

- "Convergence of the perturbative series is questionable"

Four loop HQET heavy-to-light anomalous dimension

- Four-loop HQET heavy to light anomalous dimension [Grozin, JHEP 02, 198 (2024) arXiv:2311.09894]
For $n_{f}=4: \tilde{\gamma}_{j}=-\frac{\alpha_{s}}{\pi}-2.487726\left(\frac{\alpha_{s}}{\pi}\right)^{2}-6.292698\left(\frac{\alpha_{s}}{\pi}\right)^{3}-13.878042\left(\frac{\alpha_{s}}{\pi}\right)^{4}$
- This anomalous dimension can be used to calculate f_{B} / f_{D}

$$
\begin{gathered}
\frac{f_{B}}{f_{D}}=\sqrt{\frac{m_{D}}{m_{B}}}\left(\frac{\alpha_{s}^{(4)}\left(m_{c}\right)}{\alpha_{s}^{(4)}\left(m_{b}\right)}\right)^{-\frac{\tilde{y}_{0} 0}{2 \beta_{0}^{(t)}}}\left\{1+\cdots \alpha_{s}+\cdots \alpha_{s}^{2}+\cdots \alpha_{s}^{3}+[\sim 1 \mathrm{GeV}]\left(\frac{1}{m_{c}}-\frac{1}{m_{b}}\right)+\cdots\right\} \\
\frac{f_{B}}{f_{D}}=0.669 \cdot(1+0.039+0.029+0.032+[\sim 0.46])
\end{gathered}
$$

- "Convergence of the perturbative series is questionable"
- Without power correction: $f_{B} / f_{D}=0.736$, with $f_{B} / f_{D}=1.04$

Four loop HQET heavy-to-light anomalous dimension

- Four-loop HQET heavy to light anomalous dimension [Grozin, JHEP 02, 198 (2024) arXiv:2311.09894]

For $n_{f}=4: \tilde{\gamma}_{j}=-\frac{\alpha_{s}}{\pi}-2.487726\left(\frac{\alpha_{s}}{\pi}\right)^{2}-6.292698\left(\frac{\alpha_{s}}{\pi}\right)^{3}-13.878042\left(\frac{\alpha_{s}}{\pi}\right)^{4}$

- This anomalous dimension can be used to calculate f_{B} / f_{D}

$$
\begin{gathered}
\frac{f_{B}}{f_{D}}=\sqrt{\frac{m_{D}}{m_{B}}}\left(\frac{\alpha_{s}^{(4)}\left(m_{c}\right)}{\alpha_{s}^{(4)}\left(m_{b}\right)}\right)^{-\frac{\tilde{y}_{0} 0}{2 \beta_{0}^{(4)}}}\left\{1+\cdots \alpha_{s}+\cdots \alpha_{s}^{2}+\cdots \alpha_{s}^{3}+[\sim 1 \mathrm{GeV}]\left(\frac{1}{m_{c}}-\frac{1}{m_{b}}\right)+\cdots\right\} \\
\frac{f_{B}}{f_{D}}=0.669 \cdot(1+0.039+0.029+0.032+[\sim 0.46])
\end{gathered}
$$

- "Convergence of the perturbative series is questionable"
- Without power correction: $f_{B} / f_{D}=0.736$, with $f_{B} / f_{D}=1.04$
- Lattice: $f_{B} / f_{D}=0.896 \pm 0.009$

Four loop HQET heavy-to-light anomalous dimension

- Four-loop HQET heavy to light anomalous dimension [Grozin, JHEP 02, 198 (2024) arXiv:2311.09894]
For $n_{f}=4: \tilde{\gamma}_{j}=-\frac{\alpha_{s}}{\pi}-2.487726\left(\frac{\alpha_{s}}{\pi}\right)^{2}-6.292698\left(\frac{\alpha_{s}}{\pi}\right)^{3}-13.878042\left(\frac{\alpha_{s}}{\pi}\right)^{4}$
- This anomalous dimension can be used to calculate f_{B} / f_{D}

$$
\begin{gathered}
\frac{f_{B}}{f_{D}}=\sqrt{\frac{m_{D}}{m_{B}}}\left(\frac{\alpha_{s}^{(4)}\left(m_{c}\right)}{\alpha_{s}^{(4)}\left(m_{b}\right)}\right)^{-\frac{\tilde{y}_{0} 0}{2 \beta_{0}^{(4)}}}\left\{1+\cdots \alpha_{s}+\cdots \alpha_{s}^{2}+\cdots \alpha_{s}^{3}+[\sim 1 \mathrm{GeV}]\left(\frac{1}{m_{c}}-\frac{1}{m_{b}}\right)+\cdots\right\} \\
\frac{f_{B}}{f_{D}}=0.669 \cdot(1+0.039+0.029+0.032+[\sim 0.46])
\end{gathered}
$$

- "Convergence of the perturbative series is questionable"
- Without power correction: $f_{B} / f_{D}=0.736$, with $f_{B} / f_{D}=1.04$
- Lattice: $f_{B} / f_{D}=0.896 \pm 0.009$
- "The effect of the (poorly known) $1 / m_{c, b}$ correction is large."

Recent developments in HQET: Non-local matrix elements

HQET Non local matrix elements

- Non local matrix elements arise in many process: e.g. proton pdf

HQET Non local matrix elements

- Non local matrix elements arise in many process: e.g. proton pdf
- In B decays such as $B \rightarrow K^{*} \gamma$ we encounter

The B meson light-cone distribution amplitude (LCDA)
Fourier transform of $\langle B| \bar{b}(0)[0, t n] q_{s}(t n)|0\rangle$

HQET Non local matrix elements

- Non local matrix elements arise in many process: e.g. proton pdf
- In B decays such as $B \rightarrow K^{*} \gamma$ we encounter

The B meson light-cone distribution amplitude (LCDA)
Fourier transform of $\langle B| \bar{b}(0)[0, t n] q_{s}(t n)|0\rangle$

- B meson LCDA also arises when the B meson is in the final state E.g. $W, Z \rightarrow B \gamma$ [Grossman, König, Neubert, JHEP 04, 101 (2015)]

HQET Non local matrix elements

- Non local matrix elements arise in many process: e.g. proton pdf
- In B decays such as $B \rightarrow K^{*} \gamma$ we encounter

The B meson light-cone distribution amplitude (LCDA)
Fourier transform of $\langle B| \bar{b}(0)[0, t n] q_{s}(t n)|0\rangle$

- B meson LCDA also arises when the B meson is in the final state E.g. $W, Z \rightarrow B \gamma$ [Grossman, König, Neubert, JHEP 04, 101 (2015)]
- Such processes were recently considered in
- [Beneke, Finauri, Vos, Wei, JHEP 09, 066 (2023) arXiv:2305.06401]
- [Ishaq, Zafar, Rehman, Ahmed, arXiv:2404.01696]

QCD LCDA of Heavy Mesons from boosted HQET
[Beneke, Finauri, Vos, Wei, JHEP 09, 066 (2023) arXiv:2305.06401]

QCD LCDA of Heavy Mesons from boosted HQET
[Beneke, Finauri, Vos, Wei, JHEP 09, 066 (2023) arXiv:2305.06401]

- The process $W^{ \pm} \rightarrow B \pm \gamma$ has three scales

QCD LCDA of Heavy Mesons from boosted HQET
[Beneke, Finauri, Vos, Wei, JHEP 09, 066 (2023) arXiv:2305.06401]

- The process $W^{ \pm} \rightarrow B \pm \gamma$ has three scales hard scale Q

QCD LCDA of Heavy Mesons from boosted HQET
[Beneke, Finauri, Vos, Wei, JHEP 09, 066 (2023) arXiv:2305.06401]

- The process $W^{ \pm} \rightarrow B \pm \gamma$ has three scales hard scale $Q \gg$ heavy quark scale m_{Q}

QCD LCDA of Heavy Mesons from boosted HQET
[Beneke, Finauri, Vos, Wei, JHEP 09, 066 (2023) arXiv:2305.06401]

- The process $W^{ \pm} \rightarrow B \pm \gamma$ has three scales hard scale $Q \gg$ heavy quark scale $m_{Q} \gg$ QCD scale Λ_{QCD}

QCD LCDA of Heavy Mesons from boosted HQET
[Beneke, Finauri, Vos, Wei, JHEP 09, 066 (2023) arXiv:2305.06401]

- The process $W^{ \pm} \rightarrow B \pm \gamma$ has three scales hard scale $Q \gg$ heavy quark scale $m_{Q} \gg$ QCD scale Λ_{QCD}
- Match the QCD LCDA

QCD LCDA of Heavy Mesons from boosted HQET
[Beneke, Finauri, Vos, Wei, JHEP 09, 066 (2023) arXiv:2305.06401]

- The process $W^{ \pm} \rightarrow B \pm \gamma$ has three scales hard scale $Q \gg$ heavy quark scale $m_{Q} \gg$ QCD scale Λ_{QCD}
- Match the QCD LCDA

$$
\left\langle H\left(p_{H}\right)\right| \bar{Q}(0) \not \hbar_{+} \gamma^{5}\left[0, t n_{+}\right] q\left(t n_{+}\right)|0\rangle=-i f_{H} n_{+} \cdot p_{H} \int_{0}^{1} d u e^{i u t n_{+} \cdot p_{H}} \phi(u ; \mu)
$$

QCD LCDA of Heavy Mesons from boosted HQET
[Beneke, Finauri, Vos, Wei, JHEP 09, 066 (2023) arXiv:2305.06401]

- The process $W^{ \pm} \rightarrow B \pm \gamma$ has three scales hard scale $Q \gg$ heavy quark scale $m_{Q} \gg$ QCD scale $\Lambda_{Q C D}$
- Match the QCD LCDA
$\left\langle H\left(p_{H}\right)\right| \bar{Q}(0) \grave{n}_{+} \gamma^{5}\left[0, t n_{+}\right] q\left(t n_{+}\right)|0\rangle=-i f_{H} n_{+} \cdot p_{H} \int_{0}^{1} d u e^{i u t n_{+} \cdot p_{H}} \phi(u ; \mu)$ to a perturbative function convoluted with HQET LCDA

QCD LCDA of Heavy Mesons from boosted HQET

[Beneke, Finauri, Vos, Wei, JHEP 09, 066 (2023) arXiv:2305.06401]

- The process $W^{ \pm} \rightarrow B \pm \gamma$ has three scales hard scale $Q \gg$ heavy quark scale $m_{Q} \gg$ QCD scale $\Lambda_{Q C D}$
- Match the QCD LCDA
$\left\langle H\left(p_{H}\right)\right| \bar{Q}(0) \pitchfork_{+} \gamma^{5}\left[0, t n_{+}\right] q\left(t n_{+}\right)|0\rangle=-i f_{H} n_{+} \cdot p_{H} \int_{0}^{1} d u e^{i u t n_{+} \cdot p_{H}} \phi(u ; \mu)$ to a perturbative function convoluted with HQET LCDA

$$
\left\langle H_{v}\right| \bar{h}_{v}(0) \hbar_{+} \gamma^{5}\left[0, t n_{+}\right] q_{s}\left(t n_{+}\right)|0\rangle=-i F_{\text {stat }}(\mu) n_{+} \cdot v \int_{0}^{\infty} d \omega e^{i \omega t n_{+} \cdot v} \varphi_{+}(\omega ; \mu)
$$

QCD LCDA of Heavy Mesons from boosted HQET

[Beneke, Finauri, Vos, Wei, JHEP 09, 066 (2023) arXiv:2305.06401]

- The process $W^{ \pm} \rightarrow B \pm \gamma$ has three scales hard scale $Q \gg$ heavy quark scale $m_{Q} \gg$ QCD scale Λ_{QCD}
- Match the QCD LCDA
$\left\langle H\left(p_{H}\right)\right| \bar{Q}(0) \not \hbar_{+} \gamma^{5}\left[0, t n_{+}\right] q\left(t n_{+}\right)|0\rangle=-i f_{H} n_{+} \cdot p_{H} \int_{0}^{1} d u e^{i u t n_{+} \cdot p_{H}} \phi(u ; \mu)$ to a perturbative function convoluted with HQET LCDA
$\left\langle H_{v}\right| \bar{h}_{v}(0) \hbar_{+} \gamma^{5}\left[0, t n_{+}\right] q_{s}\left(t n_{+}\right)|0\rangle=-i F_{\text {stat }}(\mu) n_{+} \cdot v \int_{0}^{\infty} d \omega e^{i \omega t n_{+} \cdot v} \varphi_{+}(\omega ; \mu)$
- Factorization allows to resum large logs between $\Lambda_{Q C D}$ and m_{Q} and m_{Q} and the hard scale Q

QCD LCDA of Heavy Mesons from boosted HQET

- Starting with HQET LCDA at soft scale $\mu_{s}=1 \mathrm{GeV}$ (red, solid)

QCD LCDA of Heavy Mesons from boosted HQET

- Starting with HQET LCDA at soft scale $\mu_{s}=1 \mathrm{GeV}$ (red, solid)
- Evolved in HQET to the matching scale μ (red, dotted)

QCD LCDA of Heavy Mesons from boosted HQET

- Starting with HQET LCDA at soft scale $\mu_{s}=1 \mathrm{GeV}$ (red, solid)
- Evolved in HQET to the matching scale μ (red, dotted)
- Matched to $\phi(u)$ (green, solid)

QCD LCDA of Heavy Mesons from boosted HQET

- Starting with HQET LCDA at soft scale $\mu_{s}=1 \mathrm{GeV}$ (red, solid)
- Evolved in HQET to the matching scale μ (red, dotted)
- Matched to $\phi(u)$ (green, solid)
- Evolved in QCD to the hard scale m_{W} (blue, solid)

QCD LCDA of Heavy Mesons from boosted HQET

- Starting with HQET LCDA at soft scale $\mu_{s}=1 \mathrm{GeV}$ (red, solid)
- Evolved in HQET to the matching scale μ (red, dotted)
- Matched to $\phi(u)$ (green, solid)
- Evolved in QCD to the hard scale m_{W} (blue, solid)
- The branching ratio
$\operatorname{Br}(W \rightarrow B \gamma)=\left(2.58 \pm 0.21_{\text {in }}{ }_{-0.08}^{+0.05} \mu_{h}{ }_{-0.08}^{+0.05} \mu_{b}{ }_{-0.13}^{+0.18}{ }_{-0.34}^{+0.61}{ }_{-0.98}^{+2.95} \lambda_{B}\right) \cdot 10^{-12}$

QCD LCDA of Heavy Mesons from boosted HQET

- Starting with HQET LCDA at soft scale $\mu_{s}=1 \mathrm{GeV}$ (red, solid)
- Evolved in HQET to the matching scale μ (red, dotted)
- Matched to $\phi(u)$ (green, solid)
- Evolved in QCD to the hard scale m_{W} (blue, solid)
- The branching ratio
$\operatorname{Br}(W \rightarrow B \gamma)=\left(2.58 \pm 0.21_{\text {in }}{ }_{-0.08}^{+0.05} \mu_{h}{ }_{-0.08}^{+0.05} \mu_{b}{ }_{-0.13}^{+0.18}{ }_{-0.34}^{+0.61} \beta_{-0.98}^{+2.95} \lambda_{B}\right) \cdot 10^{-12}$ dominated by low scale HQET LCDA parameters: λ_{B}, β

$$
W^{+} \rightarrow B^{+} \ell^{+} \ell^{-}
$$

[Ishaq, Zafar, Rehman, Ahmed, arXiv:2404.01696]

$$
W^{+} \rightarrow B^{+} \ell^{+} \ell^{-}
$$

[Ishaq, Zafar, Rehman, Ahmed, arXiv:2404.01696]

- Using the scale hierarchy $m_{W} \sim m_{b}>\Lambda_{\mathrm{QCD}}$

$$
W^{+} \rightarrow B^{+} \ell^{+} \ell^{-}
$$

[Ishaq, Zafar, Rehman, Ahmed, arXiv:2404.01696]

- Using the scale hierarchy $m_{W} \sim m_{b}>\Lambda_{\mathrm{QCD}}$
$\mathcal{M}\left(W^{+} \rightarrow B^{+} \ell^{+} \ell^{-}\right)=e \bar{\ell} \gamma^{\mu} \ell \int_{0}^{\infty} d \omega T_{\mu}\left(\omega, m_{b}, q^{2}, \mu_{F}\right) \Phi_{B}^{+}\left(\omega, \mu_{F}\right)+\mathcal{O}\left(m_{b}^{-1}\right)$
where T_{μ} is the perturbative hard-scattering kernel

$$
W^{+} \rightarrow B^{+} \ell^{+} \ell^{-}
$$

[Ishaq, Zafar, Rehman, Ahmed, arXiv:2404.01696]

- Using the scale hierarchy $m_{W} \sim m_{b} \gg \Lambda_{\mathrm{QCD}}$
$\mathcal{M}\left(W^{+} \rightarrow B^{+} \ell^{+} \ell^{-}\right)=e \bar{\ell} \gamma^{\mu} \ell \int_{0}^{\infty} d \omega T_{\mu}\left(\omega, m_{b}, q^{2}, \mu_{F}\right) \Phi_{B}^{+}\left(\omega, \mu_{F}\right)+\mathcal{O}\left(m_{b}^{-1}\right)$
where T_{μ} is the perturbative hard-scattering kernel
- Calculating T_{μ} at $\mathcal{O}\left(\alpha_{s}\right)$

$$
W^{+} \rightarrow B^{+} \ell^{+} \ell^{-}
$$

[lshaq, Zafar, Rehman, Ahmed, arXiv:2404.01696]

- Using the scale hierarchy $m_{W} \sim m_{b} \gg \Lambda_{\mathrm{QCD}}$

$$
\mathcal{M}\left(W^{+} \rightarrow B^{+} \ell^{+} \ell^{-}\right)=e \bar{\ell} \gamma^{\mu} \ell \int_{0}^{\infty} d \omega T_{\mu}\left(\omega, m_{b}, q^{2}, \mu_{F}\right) \Phi_{B}^{+}\left(\omega, \mu_{F}\right)+\mathcal{O}\left(m_{b}^{-1}\right)
$$

where T_{μ} is the perturbative hard-scattering kernel

- Calculating T_{μ} at $\mathcal{O}\left(\alpha_{s}\right)$

$$
W^{+} \rightarrow B^{+} \ell^{+} \ell^{-}
$$

- The theoretical prediction is sensitive to

$$
\frac{1}{\lambda_{B}} \equiv \int_{0}^{\infty} \frac{d \omega}{\omega} \phi_{B}^{+}(\omega)
$$

$$
W^{+} \rightarrow B^{+} \ell^{+} \ell^{-}
$$

- The theoretical prediction is sensitive to

$$
\frac{1}{\lambda_{B}} \equiv \int_{0}^{\infty} \frac{d \omega}{\omega} \phi_{B}^{+}(\omega)
$$

- This paper uses $\lambda_{B}=0.35 \pm 0.15 \mathrm{GeV}$

$$
W^{+} \rightarrow B^{+} \ell^{+} \ell^{-}
$$

- The theoretical prediction is sensitive to

$$
\frac{1}{\lambda_{B}} \equiv \int_{0}^{\infty} \frac{d \omega}{\omega} \phi_{B}^{+}(\omega)
$$

- This paper uses $\lambda_{B}=0.35 \pm 0.15 \mathrm{GeV}$

Searching for $B^{+} \rightarrow \ell^{+} \nu_{\ell} \gamma$ Belle got $\lambda_{B}=0.36_{-0.09}^{+0.25} \mathrm{GeV}$ [Gelb et al. [Belle] PRD 98, 112016 (2018)]

$$
W^{+} \rightarrow B^{+} \ell^{+} \ell^{-}
$$

- The theoretical prediction is sensitive to

$$
\frac{1}{\lambda_{B}} \equiv \int_{0}^{\infty} \frac{d \omega}{\omega} \phi_{B}^{+}(\omega)
$$

- This paper uses $\lambda_{B}=0.35 \pm 0.15 \mathrm{GeV}$

Searching for $B^{+} \rightarrow \ell^{+} \nu_{\ell} \gamma$ Belle got $\lambda_{B}=0.36_{-0.09}^{+0.25} \mathrm{GeV}$ [Gelb et al. [Belle] PRD 98, 112016 (2018)]

- Observing the process at the LHC could constrain λ_{B}

Recent developments in HQET: Local non-diagonal matrix elements (Form factors)

Local non-diagonal matrix elements (Form factors)

- In the $\mathrm{SM}, B \rightarrow D$ transitions are described by two form factors and $B \rightarrow D^{*}$ transitions are described by four form factors
- In the $\mathrm{SM}, B \rightarrow D$ transitions are described by two form factors and $B \rightarrow D^{*}$ transitions are described by four form factors
- At the leading power in heavy quark symmetry all of these form factors are described by one universal Isgur-Wise function ξ

Local non-diagonal matrix elements (Form factors)

- In the $\mathrm{SM}, B \rightarrow D$ transitions are described by two form factors and $B \rightarrow D^{*}$ transitions are described by four form factors
- At the leading power in heavy quark symmetry all of these form factors are described by one universal Isgur-Wise function ξ
- Including $1 / m_{c} \& 1 / m_{b}$ power corrections there are three functions

Local non-diagonal matrix elements (Form factors)

- In the $\mathrm{SM}, B \rightarrow D$ transitions are described by two form factors and $B \rightarrow D^{*}$ transitions are described by four form factors
- At the leading power in heavy quark symmetry all of these form factors are described by one universal Isgur-Wise function ξ
- Including $1 / m_{c} \& 1 / m_{b}$ power corrections there are three functions and the number grows at higher powers

Local non-diagonal matrix elements (Form factors)

- In the SM, $B \rightarrow D$ transitions are described by two form factors and $B \rightarrow D^{*}$ transitions are described by four form factors
- At the leading power in heavy quark symmetry all of these form factors are described by one universal Isgur-Wise function ξ
- Including $1 / m_{c} \& 1 / m_{b}$ power corrections there are three functions and the number grows at higher powers

HQET order	
All	
$1 / m_{c, b}^{0}$	1
$1 / m_{c, b}^{1}$	3
$1 / m_{c}^{2}$	20
$1 / m_{c, b}^{2}$	32

Table from [Bernlochner, Ligeti, Papucci, Prim, Robinson, Xiong, PoS ICHEP2022, 758 (2022)]

Local non-diagonal matrix elements (Form factors)

- [Bernlochner, Ligeti, Papucci, Prim, Robinson, Xiong, PRD 106, 096015 (2022), arXiv:2206.11281] suggested supplemental power-counting that reduces these numbers

Local non-diagonal matrix elements (Form factors)

- [Bernlochner, Ligeti, Papucci, Prim, Robinson, Xiong, PRD 106, 096015 (2022), arXiv:2206.11281] suggested supplemental power-counting that reduces these numbers
- The QCD Lagrangian before the $1 / m_{Q}$ expansion is

$$
\mathcal{L}=\bar{h}_{v} i v \cdot D h_{v}+\bar{h}_{v} i \not D_{\perp} \frac{1}{2 m_{Q}+i v \cdot D} i \not D_{\perp} h_{v}
$$

where $D_{\perp}^{\mu}=D^{\mu}-(v \cdot D) v^{\mu}$. For $v=(1, \overrightarrow{0}): \quad D_{\perp}^{\mu}=\vec{D}$

Local non-diagonal matrix elements (Form factors)

- [Bernlochner, Ligeti, Papucci, Prim, Robinson, Xiong, PRD 106, 096015 (2022), arXiv:2206.11281] suggested supplemental power-counting that reduces these numbers
- The QCD Lagrangian before the $1 / m_{Q}$ expansion is

$$
\mathcal{L}=\bar{h}_{v} i v \cdot D h_{v}+\bar{h}_{v} i \not D_{\perp} \frac{1}{2 m_{Q}+i v \cdot D} i \not D_{\perp} h_{v}
$$

where $D_{\perp}^{\mu}=D^{\mu}-(v \cdot D) v^{\mu}$. For $v=(1, \overrightarrow{0}): \quad D_{\perp}^{\mu}=\vec{D}$

- The postulated power counting is in powers of $i D_{\perp}$:

Local non-diagonal matrix elements (Form factors)

- [Bernlochner, Ligeti, Papucci, Prim, Robinson, Xiong, PRD 106, 096015 (2022), arXiv:2206.11281] suggested supplemental power-counting that reduces these numbers
- The QCD Lagrangian before the $1 / m_{Q}$ expansion is

$$
\mathcal{L}=\bar{h}_{v} i v \cdot D h_{v}+\bar{h}_{v} i \not D_{\perp} \frac{1}{2 m_{Q}+i v \cdot D} i \not D_{\perp} h_{v}
$$

where $D_{\perp}^{\mu}=D^{\mu}-(v \cdot D) v^{\mu}$. For $v=(1, \overrightarrow{0}): \quad D_{\perp}^{\mu}=\vec{D}$

- The postulated power counting is in powers of $i D_{\perp}$:
- Currents involve one $i D_{\perp}$

Local non-diagonal matrix elements (Form factors)

- [Bernlochner, Ligeti, Papucci, Prim, Robinson, Xiong, PRD 106, 096015 (2022), arXiv:2206.11281] suggested supplemental power-counting that reduces these numbers
- The QCD Lagrangian before the $1 / m_{Q}$ expansion is

$$
\mathcal{L}=\bar{h}_{v} i v \cdot D h_{v}+\bar{h}_{v} i \not D_{\perp} \frac{1}{2 m_{Q}+i v \cdot D} i \not D_{\perp} h_{v}
$$

where $D_{\perp}^{\mu}=D^{\mu}-(v \cdot D) v^{\mu}$. For $v=(1, \overrightarrow{0}): \quad D_{\perp}^{\mu}=\vec{D}$

- The postulated power counting is in powers of $i D_{\perp}$:
- Currents involve one $i D_{\perp}$
- Lagrangian insertions involves two $i \not D_{\perp}$'s

Local non-diagonal matrix elements (Form factors)

- [Bernlochner, Ligeti, Papucci, Prim, Robinson, Xiong, PRD 106, 096015 (2022), arXiv:2206.11281] suggested supplemental power-counting that reduces these numbers
- The QCD Lagrangian before the $1 / m_{Q}$ expansion is

$$
\mathcal{L}=\bar{h}_{v} i v \cdot D h_{v}+\bar{h}_{v} i \not D_{\perp} \frac{1}{2 m_{Q}+i v \cdot D} i \not D_{\perp} h_{v}
$$

where $D_{\perp}^{\mu}=D^{\mu}-(v \cdot D) v^{\mu}$. For $v=(1, \overrightarrow{0}): \quad D_{\perp}^{\mu}=\vec{D}$

- The postulated power counting is in powers of $i \square_{\perp}$:
- Currents involve one $i D_{\perp}$
- Lagrangian insertions involves two $i \not D_{\perp}$'s

Many subleading contributions arise from Lagrangian insertions

Local non-diagonal matrix elements (Form factors)

- [Bernlochner, Ligeti, Papucci, Prim, Robinson, Xiong, PRD 106, 096015 (2022), arXiv:2206.11281]
suggested supplemental power-counting that reduces these numbers
- The QCD Lagrangian before the $1 / m_{Q}$ expansion is

$$
\mathcal{L}=\bar{h}_{v} i v \cdot D h_{v}+\bar{h}_{v} i \not D_{\perp} \frac{1}{2 m_{Q}+i v \cdot D} i \not D_{\perp} h_{v}
$$

where $D_{\perp}^{\mu}=D^{\mu}-(v \cdot D) v^{\mu}$. For $v=(1, \overrightarrow{0}): \quad D_{\perp}^{\mu}=\vec{D}$

- The postulated power counting is in powers of $i \square_{\perp}$:
- Currents involve one $i D_{\perp}$
- Lagrangian insertions involves two $i \not D_{\perp}$'s

Many subleading contributions arise from Lagrangian insertions

- The paper conjectures that terms entering at third order or higher should be suppressed

Local non-diagonal matrix elements (Form factors)

- [Bernlochner, Ligeti, Papucci, Prim, Robinson, Xiong, PRD 106, 096015 (2022), arXiv:2206.11281] suggested supplemental power-counting that reduces these numbers
- The QCD Lagrangian before the $1 / m_{Q}$ expansion is

$$
\mathcal{L}=\bar{h}_{v} i v \cdot D h_{v}+\bar{h}_{v} i \emptyset_{\perp} \frac{1}{2 m_{Q}+i v \cdot D} i \emptyset_{\perp} h_{v}
$$

where $D_{\perp}^{\mu}=D^{\mu}-(v \cdot D) v^{\mu}$. For $v=(1, \overrightarrow{0})$: $\quad D_{\perp}^{\mu}=\vec{D}$

- The postulated power counting is in powers of $i D_{\perp}$:
- Currents involve one $i \not D_{\perp}$
- Lagrangian insertions involves two $i \not D_{\perp}$'s Many subleading contributions arise from Lagrangian insertions
- The paper conjectures that terms entering at third order or higher should be suppressed
- The paper calls this residual chiral (RC) expansion

Local non-diagonal matrix elements (Form factors)

- [Bernlochner, Ligeti, Papucci, Prim, Robinson, Xiong, PRD 106, 096015 (2022), arXiv:2206.11281]
suggested supplemental power-counting: residual chiral expansion

Local non-diagonal matrix elements (Form factors)

- [Bernlochner, Ligeti, Papucci, Prim, Robinson, Xiong, PRD 106, 096015 (2022), arXiv:2206.11281]
suggested supplemental power-counting: residual chiral expansion

HQET order	All	IW functions RC Expansion
$1 / m_{c, b}^{0}$	1	1
$1 / m_{c, b}^{1}$	3	3
$1 / m_{c}^{2}$	20	1
$1 / m_{c, b}^{2}$	32	3

Local non-diagonal matrix elements (Form factors)

- [Bernlochner, Ligeti, Papucci, Prim, Robinson, Xiong, PRD 106, 096015 (2022), arXiv:2206.11281]
suggested supplemental power-counting: residual chiral expansion

HQET order	All	IW functions RC Expansion
$1 / m_{c, b}^{0}$	1	1
$1 / m_{c, b}^{1}$	3	3
$1 / m_{c}^{2}$	20	1
$1 / m_{c, b}^{2}$	32	3

$$
R\left(D^{(*)}\right) \equiv \operatorname{Br}\left(\bar{B} \rightarrow D^{(*)} \tau \bar{\nu}_{\tau}\right) / \operatorname{Br}\left(\bar{B} \rightarrow D^{(*)} \ell \bar{\nu}_{\ell}\right), \quad \ell=e, \mu
$$

Local non-diagonal matrix elements (Form factors)

- [Bernlochner, Ligeti, Papucci, Prim, Robinson, Xiong, PRD 106, 096015 (2022), arXiv:2206.11281]
suggested supplemental power-counting: residual chiral expansion

HQET order	All	IW functions RC Expansion
$1 / m_{c, b}^{0}$	1	1
$1 / m_{c, b}^{1}$	3	3
$1 / m_{c}^{2}$	20	1
$1 / m_{c, b}^{2}$	32	3

$$
R\left(D^{(*)}\right) \equiv \operatorname{Br}\left(\bar{B} \rightarrow D^{(*)} \tau \bar{\nu}_{\tau}\right) / \operatorname{Br}\left(\bar{B} \rightarrow D^{(*)} \ell \bar{\nu}_{\ell}\right), \quad \ell=e, \mu
$$

- The paper obtained $R(D)=0.288(4)$ HFLAV 2024 SM: $R(D)=0.298(4)$, experiment $R(D)=0.342(26)$

Local non-diagonal matrix elements (Form factors)

- [Bernlochner, Ligeti, Papucci, Prim, Robinson, Xiong, PRD 106, 096015 (2022), arXiv:2206.11281]
suggested supplemental power-counting: residual chiral expansion

HQET order	All	IW functions RC Expansion
$1 / m_{c, b}^{0}$	1	1
$1 / m_{c, b}^{1}$	3	3
$1 / m_{c}^{2}$	20	1
$1 / m_{c, b}^{2}$	32	3

$$
R\left(D^{(*)}\right) \equiv \operatorname{Br}\left(\bar{B} \rightarrow D^{(*)} \tau \bar{\nu}_{\tau}\right) / \operatorname{Br}\left(\bar{B} \rightarrow D^{(*)} \ell \bar{\nu}_{\ell}\right), \quad \ell=e, \mu
$$

- The paper obtained $R(D)=0.288(4)$

HFLAV 2024 SM: $R(D)=0.298(4)$, experiment $R(D)=0.342(26)$

- The paper obtained $R\left(D^{*}\right)=0.249(3)$ HFLAV 2024 SM: $R\left(D^{*}\right)=0.254(5)$, experiment $R\left(D^{*}\right)=0.287(12)$

Local non-diagonal matrix elements (Form factors)

- [Bernlochner, Ligeti, Papucci, Prim, Robinson, Xiong, PRD 106, 096015 (2022), arXiv:2206.11281]
suggested supplemental power-counting: residual chiral expansion

HQET order	All	IW functions RC Expansion
$1 / m_{c, b}^{0}$	1	1
$1 / m_{c, b}^{1}$	3	3
$1 / m_{c}^{2}$	20	1
$1 / m_{c, b}^{2}$	32	3

$$
R\left(D^{(*)}\right) \equiv \operatorname{Br}\left(\bar{B} \rightarrow D^{(*)} \tau \bar{\nu}_{\tau}\right) / \operatorname{Br}\left(\bar{B} \rightarrow D^{(*)} \ell \bar{\nu}_{\ell}\right), \quad \ell=e, \mu
$$

- The paper obtained $R(D)=0.288(4)$

HFLAV 2024 SM: $R(D)=0.298(4)$, experiment $R(D)=0.342(26)$

- The paper obtained $R\left(D^{*}\right)=0.249(3)$ HFLAV 2024 SM: $R\left(D^{*}\right)=0.254(5)$, experiment $R\left(D^{*}\right)=0.287(12)$
- [Bernlochner, Papucci, Robinson, arXiv:2312.07758] applied the same method to $\Lambda_{b} \rightarrow \Lambda_{c} / \nu$

Recent developments in HQET: New directions

New theoretical framework for heavy quark resonances

- New framework using on-shell recursion techniques to express resonant amplitude as a product of on-shell subamplitudes [Manzari, Robinson, arXiv:2402.12460]

New theoretical framework for heavy quark resonances

- New framework using on-shell recursion techniques to express resonant amplitude as a product of on-shell subamplitudes [Manzari, Robinson, arXiv:2402.12460]

- Left: Toy example calculation in this framework

Right: Belle data with a D_{2}^{*} resonance

Study of F-wave Bottom Mesons in HQET

- Study of F-wave Bottom Mesons in HQET [Garg, Upadhyay, PTEP 2022, 093B08 (2022) arXiv:2207.02498]
- Info from, e.g., D mesons, used to calculate B meson properties

Study of F-wave Bottom Mesons in HQET

- Study of F-wave Bottom Mesons in HQET [Garg, Upadhyay, PTEP 2022, 093B08 (2022) arXiv:2207.02498]
- Info from, e.g., D mesons, used to calculate B meson properties
- Adding $L=3$ with $s_{Q}=1 / 2$ gives $7 / 2$ and $5 / 2$ angular momentum

Study of F-wave Bottom Mesons in HQET

- Study of F-wave Bottom Mesons in HQET [Garg, Upadhyay, PTEP 2022, 093B08 (2022) arXiv:2207.02498]
- Info from, e.g., D mesons, used to calculate B meson properties
- Adding $L=3$ with $s_{Q}=1 / 2$ gives $7 / 2$ and $5 / 2$ angular momentum
- Adding the light quark spin $1 / 2$ to $5 / 2$ gives $J=2$ and $J=3$ doublet

Study of F-wave Bottom Mesons in HQET

- Study of F-wave Bottom Mesons in HQET [Garg, Upadhyay, PTEP 2022, 093B08 (2022) arXiv:2207.02498]
- Info from, e.g., D mesons, used to calculate B meson properties
- Adding $L=3$ with $s_{Q}=1 / 2$ gives $7 / 2$ and $5 / 2$ angular momentum
- Adding the light quark spin $1 / 2$ to $5 / 2$ gives $J=2$ and $J=3$ doublet
- Adding the light quark spin $1 / 2$ to $7 / 2$ gives $J=3$ and $J=4$ doublet

Study of F-wave Bottom Mesons in HQET

- Study of F-wave Bottom Mesons in HQET

[Garg, Upadhyay, PTEP 2022, 093B08 (2022) arXiv:2207.02498]

- Info from, e.g., D mesons, used to calculate B meson properties
- Adding $L=3$ with $s_{Q}=1 / 2$ gives $7 / 2$ and $5 / 2$ angular momentum
- Adding the light quark spin $1 / 2$ to $5 / 2$ gives $J=2$ and $J=3$ doublet
- Adding the light quark spin $1 / 2$ to $7 / 2$ gives $J=3$ and $J=4$ doublet

Table 2: Obtained masses for $1 F$ bottom mesons

J^{P}	Masses of $1 F$ Bottom Mesons (MeV)					
	Non-Strange		Strange			
	Calculated	$[10]$	$[23]$	Calculated	$[10]$	$[23]$
$2^{+}\left(1^{3} F_{2}\right)$	6473.6	6412	6387	6518.28	6501	6358
$3^{+}\left(1 F_{3}\right)$	6478.93	6420	6396	6523.21	6515	6369
$3^{+}\left(1 F_{3}^{\prime}\right)$	6447.76	6391	6358	6506.05	6468	6318
$4^{+}\left(1^{3} F_{4}\right)$	6450.14	6380	6364	6508.01	6475	6328

- Ref. [10] [Ebert, Faustov, Galkin, EPJ C 66, 197-206 (2010)]
- Ref. [23] [Godfrey, Moats, Swanson, PRD 94, 054025 (2016)]

Analysis of 2 S singly heavy baryons in HQET

- Analysis of 2 S singly heavy baryons in HQET [Vishwakarma, Upadhyay, arXiv:2208.02536]

Analysis of $2 S$ singly heavy baryons in HQET

- Analysis of 2 S singly heavy baryons in HQET [Vishwakarma, Upadhyay, arXiv:2208.02536]
- Info from, e.g., $2 S$ baryons: $\bar{\Xi}_{c}(2970)$ and $\Lambda_{b}(6070)$, and HQET is used to calculate 2 S baryon properties

Analysis of 2 S singly heavy baryons in HQET

- Analysis of 2 S singly heavy baryons in HQET [Vishwakarma, Upadhyay, arXiv:2208.02536]
- Info from, e.g., 2 S baryons: $\equiv_{c}(2970)$ and $\Lambda_{b}(6070)$, and HQET is used to calculate 2 S baryon properties

J^{P}	Baryons	$Q=c$			$Q=b$			
		Calculated	[17]	[5]	Calculated	[17]	[45]	[5]
$\frac{1}{2}^{+}$	Λ	$\mathbf{2 7 6 6 . 6} \pm 2.4$	2769		6093	6089		$\Lambda_{b}(6070)$
	Ξ	2942	2959	$\Xi_{c}(2970)$	6267	6266	6208	
	Σ	2901	2901		6246	6213		
	Ξ^{\prime}	3028	2983		6369	6329	6328	
	Ω	3154	3088		6487	6450	6438	
$\frac{3}{2}^{+}$	Σ^{*}	2948	2936		6262	6226		
	$\Xi^{\prime *}$	3074	3026		6381	6342	6343	
	Ω^{*}	3190	3123		6507	6461	6462	

- Ref. [17] [Ebert, Faustov, Galkin, PRD 84, 014025 (2011)]
- Ref. [45] [Kakadiya, Shah, Rai, IJMPA 37, 2250053 (2022)]

Conclusions

Conclusions

- Arguably, this year marks the 35th anniversary of HQET

Conclusions

- Arguably, this year marks the 35th anniversary of HQET Isgur, Wise,
"Weak Decays of Heavy Mesons in the Static Quark Approximation," Phys. Lett. B 232, 113-117 (1989)

Conclusions

- Arguably, this year marks the 35th anniversary of HQET Isgur, Wise,
"Weak Decays of Heavy Mesons in the Static Quark Approximation," Phys. Lett. B 232, 113-117 (1989)
- HQET is a mature field where
- Some perturbative corrections are known to fourth order
- Some non-perturbative power corrections are known fourth order

Conclusions

- Arguably, this year marks the 35th anniversary of HQET Isgur, Wise,
"Weak Decays of Heavy Mesons in the Static Quark Approximation," Phys. Lett. B 232, 113-117 (1989)
- HQET is a mature field where
- Some perturbative corrections are known to fourth order
- Some non-perturbative power corrections are known fourth order
- Reviewed recent developments in HQET

Conclusions

- Arguably, this year marks the 35th anniversary of HQET Isgur, Wise,
"Weak Decays of Heavy Mesons in the Static Quark Approximation," Phys. Lett. B 232, 113-117 (1989)
- HQET is a mature field where
- Some perturbative corrections are known to fourth order
- Some non-perturbative power corrections are known fourth order
- Reviewed recent developments in HQET
- Theoretical progress mirrors the experimental progress

Conclusions

- Arguably, this year marks the 35th anniversary of HQET Isgur, Wise,
"Weak Decays of Heavy Mesons in the Static Quark Approximation," Phys. Lett. B 232, 113-117 (1989)
- HQET is a mature field where
- Some perturbative corrections are known to fourth order
- Some non-perturbative power corrections are known fourth order
- Reviewed recent developments in HQET
- Theoretical progress mirrors the experimental progress
- Non-perturbative effects are the leading source of uncertainty

Conclusions

- Arguably, this year marks the 35th anniversary of HQET Isgur, Wise,
"Weak Decays of Heavy Mesons in the Static Quark Approximation," Phys. Lett. B 232, 113-117 (1989)
- HQET is a mature field where
- Some perturbative corrections are known to fourth order
- Some non-perturbative power corrections are known fourth order
- Reviewed recent developments in HQET
- Theoretical progress mirrors the experimental progress
- Non-perturbative effects are the leading source of uncertainty
- More work to do!

