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~µµ = −gµ
e~
2mµ

~s

• in QED without quantum fluctuations

gµ = 2

• with quantum fluctuations: gµ 6= 2 at the 0.1% level

aµ ≡
gµ − 2

2
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Experimental status

INTRODUCTION

Experimental situation

Analysis of data collected during run 1, run 2 and run 3 have been published
B. Abi et al. [Muon g-2 Coll.], PRL 126, 120801 (2021)

D. P. Aguillard et al. [Muon g-2 Coll.], PRL 131, 161802 (2023)
D. P. Aguillard et al. [Muon g-2 Coll.], arXiv:2402.15410 [hep-ex]

Confirmation of BNL result

Uncertainty already reduced by a factor ∼3

cf. talk by A. Driutti

Muon g − 2 Coll., Phys. Rev. Lett. 126 (2021) 120801; Phys. Rev. Lett. 131 (2023) 161802; arXiv:2402.15410

present world average: aexp
µ = 116592059(22) · 10−11 (0.19 ppm)

M. Knecht, MITP Workshop 3-7/06/2024

=⇒∼ 0.14 ppm in the (very) near future
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Theoretical contributions to aµ

• QED: it accounts for more than 99.99% of the total, with negligible uncertainty at the present precision

• ElectroWeak: calculated up to three loops, with negligible uncertainty (∼ 153(1) · 10−11)

• QCD: the largest source of uncertainty, due to non-perturbative effects

• possible New Physics?
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QCD contributions

• Hadronic Light-by-Light (HLxL)

µ(p)

γ(k) kρ

had + 5 permutations of the qi

µ(p′)

q1µq2νq3λ

Fig. 31. Assignment of momenta for the calculation of the hadronic contribution of the light–by–light scattering to the muon
electromagnetic vertex.

Fig. 32. The invariant γγ mass spectrum obtained with the Crystal Ball detector [241]. The three spikes seen represent the
γγ → pseudoscalar (PS) → γγ excitations: PS=π0, η, η′.

continuum (see Fig. 33).
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Fig. 33. Hadronic light–by–light scattering is dominated by π0–exchange in the odd parity channel, pion loops etc. at long
distances (L.D.) and quark loops including hard gluonic corrections at short distances (S.D.). The photons in the effective
theory couple to hadrons via γ − ρ0 mixing.

As a contribution to the anomalous magnetic moment three of the four photons in Fig. 31 are virtual
and to be integrated over all four–momentum space, such that a direct experimental input for the non–
perturbative dressed four–photon correlator is not available. In this case one has to resort to the low energy
effective descriptions of QCD like chiral perturbation theory (CHPT) extended to include vector–mesons.
Note that early evaluations assumed that the main contribution to hadronic light-by-light scattering comes

57

F. Jegerlehner, arXiv:0902.3360

• Hadronic Vacuum Polarization (HVP)

µ

γ

had

µ

Fig. 19. Leading hadronic contribution to g − 2.

vector bosons ρ, ω, φ and by the order parameters of chiral symmetry breaking, like the quark condensates
〈q̄q〉 6= 0 (q = u, d, s). For the calculation of the hadronic contributions ahadµ to the g − 2 of the muon,
baryons like proton and neutron do not play a big role.

Quarks contribute to the electromagnetic current according to their charge

jµ had
em =

∑

c

(
2

3
ūcγ

µuc −
1

3
d̄cγ

µdc −
1

3
s̄cγ

µsc +
2

3
c̄cγ

µcc −
1

3
b̄cγ

µbc +
2

3
t̄cγ

µtc

)
. (100)

The hadronic electromagnetic current jµ had
em is a color singlet and hence includes a sum over colors indexed

by c. Its contribution to the electromagnetic current correlator Eq. (64) defines Π
′ had
γ (s), which enters the

calculation of the leading order hadronic contribution to ahadµ , diagrammatically given by Fig. 19.

Perturbative QCD fails to be a reliable tool for estimating ahadµ and known approaches to low energy QCD
like chiral perturbation theory as well as extensions of it which incorporate spin-1 bosons or lattice QCD
are far from being able to make precise predictions. We therefore have to resort to a semi-phenomenological
approach using dispersion relations together with the optical theorem and experimental data.

The basic relations are
– analyticity (deriving from causality), which allows to write the DR

Π′
γ(k2) − Π′

γ(0) =
k2

π

∞∫

0

ds
ImΠ′

γ(s)

s (s− k2 − iε)
. (101)

– optical theorem (deriving from unitarity), which relates the imaginary part of the vacuum polarization
amplitude to the total cross section in e+e−–annihilation

ImΠ′
γ(s) =

s

4πα(s)
σtot(e

+e− → anything) :=
α(s)

3
R(s) , (102)

with

R(s) = σtot/
4πα(s)2

3s
. (103)

The normalization factor is the point cross section (tree level) σµµ(e+e− → γ∗ → µ+µ−) in the limit
s ≫ 4m2

µ. We obtain the hadronic contribution if we restrict “anything” to hadrons. The complementary
leptonic part may be calculated reliable in perturbation theory and the production of a lepton pair at lowest
order is given by

Rℓ(s) =

√
1 − 4m2

ℓ

s

(
1 +

2m2
ℓ

s

)
, (ℓ = e, µ, τ), (104)

which may be read off from the imaginary part given in Eq. (75). This result provides an alternative way to
calculate the renormalized vacuum polarization function Eq. (73), namely, via the DR Eq. (66) which now
takes the form

39

F. Jegerlehner, arXiv:0902.3360

• two approaches for both contributions:
• first principle calculations with LQCD
• dispersion relations
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ūcγ

µuc −
1

3
d̄cγ

µdc −
1

3
s̄cγ

µsc +
2

3
c̄cγ

µcc −
1

3
b̄cγ

µbc +
2

3
t̄cγ

µtc

)
. (100)

The hadronic electromagnetic current jµ had
em is a color singlet and hence includes a sum over colors indexed

by c. Its contribution to the electromagnetic current correlator Eq. (64) defines Π
′ had
γ (s), which enters the

calculation of the leading order hadronic contribution to ahadµ , diagrammatically given by Fig. 19.

Perturbative QCD fails to be a reliable tool for estimating ahadµ and known approaches to low energy QCD
like chiral perturbation theory as well as extensions of it which incorporate spin-1 bosons or lattice QCD
are far from being able to make precise predictions. We therefore have to resort to a semi-phenomenological
approach using dispersion relations together with the optical theorem and experimental data.

The basic relations are
– analyticity (deriving from causality), which allows to write the DR

Π′
γ(k2) − Π′

γ(0) =
k2

π

∞∫

0

ds
ImΠ′

γ(s)

s (s− k2 − iε)
. (101)

– optical theorem (deriving from unitarity), which relates the imaginary part of the vacuum polarization
amplitude to the total cross section in e+e−–annihilation

ImΠ′
γ(s) =

s

4πα(s)
σtot(e

+e− → anything) :=
α(s)

3
R(s) , (102)

with

R(s) = σtot/
4πα(s)2

3s
. (103)

The normalization factor is the point cross section (tree level) σµµ(e+e− → γ∗ → µ+µ−) in the limit
s ≫ 4m2

µ. We obtain the hadronic contribution if we restrict “anything” to hadrons. The complementary
leptonic part may be calculated reliable in perturbation theory and the production of a lepton pair at lowest
order is given by

Rℓ(s) =

√
1 − 4m2

ℓ

s

(
1 +

2m2
ℓ

s

)
, (ℓ = e, µ, τ), (104)

which may be read off from the imaginary part given in Eq. (75). This result provides an alternative way to
calculate the renormalized vacuum polarization function Eq. (73), namely, via the DR Eq. (66) which now
takes the form

39

F. Jegerlehner, arXiv:0902.3360

• two approaches for both contributions:
• first principle calculations with LQCD
• dispersion relations

Fulvio Piccinini (INFN, Pavia) QCD@Work: Hadronic contribution to the muon g − 2 5 / 41



HLxL estimates

QCD contribution: HLxL

Lattice QCD: full calculations

RBC-UKQCD 19: PRL 124, 132002 (2020)

Mainz 21: Eur. Phys. J. C 81, 651 (2021); C 82, 664 (2022)

RBC-UKQCD 23: arXiv:2304.04423
M. Knecht, MITP Workshop 3-7/06/2024

aHLxL
µ = 91(19) · 10−11 (WP 2020) T. Aoyama et al., Phys. Rept. 887 (2020) 1
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The dispersive approach for HVP in a nutshell

aHLO
µ =

(αmµ

3π

)2 ∫ ∞
m2
π

ds
K(s)R(s)

s2

K(s) =

∫ 1

0

dx
x2(1− x)

x2 + (1− x)(s/m2
µ)

R(s) =
σ0(e+e− → hadrons + γ))

σpt

σpt =
4πα2

3s
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HVP-LO estimates

QCD contribution: HVP

• New lattice QCD result for HVP with 0.8% accuracy

aHVP;LO
µ = 7075(55) · 10−11

S. Borsanyi et al., Nature 593, 7857 (2021)

M. Knecht, MITP Workshop 3-7/06/2024

aHVP−LO
µ = 6931(40) · 10−11 (WP 2020, without BMWc) T. Aoyama et al., Phys. Rept. 887 (2020) 1

• the new CMD-3 result on pion form-factor introduced an additional puzzle F.V. Ignatov et al, arXiv:2302.08834
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Summary of the comparison data-theory

17 18 19 20 21 22

aµ × 109 − 1165900

BMWc ’20

CMD-3 ’23
(only π+π−)

WP ’20 BNL + FNAL ’23

5.0σ

Time-like (in WP ’20) Time-like (not in WP ’20) Lattice Experiment

courtesy of A. Gurgone
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? G. Abbiendi, C.M. Carloni Calame, U. Marconi, C. Matteuzzi, G. Montagna, O. Nicrosini, M. Passera, F. Piccinini,
R. Tenchini, L. Trentadue, G. Venanzoni,
Measuring the leading hadronic contribution to the muon g-2 via µe scattering
Eur. Phys. J. C 77 (2017) no.3, 139 - arXiv:1609.08987 [hep-ph]

? C. M. Carloni Calame, M. Passera, L. Trentadue and G. Venanzoni,
A new approach to evaluate the leading hadronic corrections to the muon g-2

Phys. Lett. B 746 (2015) 325 - arXiv:1504.02228 [hep-ph]
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Master formula

aHLO
µ =

α

π

∫ 1

0

dx (1− x) ∆αhad[t(x)]

t(x) =
x2m2

µ

x− 1
< 0

e.g. Lautrup, Peterman, De Rafael, Phys. Rept. 3 (1972) 193

Hadronst

? ∆αhad(t) can be directly measured in a (single) experiment involving

a space-like scattering process and aHLO
µ obtained through numerical integration

Carloni Calame, Passera, Trentadue, Venanzoni PLB 746 (2015) 325

? A data-driven, inclusive evaluation of aHLO
µ , but with space-like data
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From time-like to space-like evaluation of aHLO
µ

Time-like 7→ Space-like
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Smooth function

7→ Time-like: combination of many experimental data sets, control of RCs better than O(1%) on hadronic

channels required

7→ Space-like: in principle, one single experiment, it’s a one-loop effect, very high accuracy needed
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Main challenge: precision on shapes of differential distributions at the 10ppm level

Main sources of systematics on the theory side

• Radiative corrections to the signal

• Predictions for Background processes

High precision Monte Carlo simulation tools required
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First step towards precision: QED NLO and MC (2018)

p1 p3

p2 p4

µ− µ−

e− e−

t = t24 = t13

• analytical expression for tree level

dσ

dt
=

4πα2

λ(s,m2
µ,m2

e)

[
(s−m2

µ −m2
e)

2

t2
+
s

t
+

1

2

]
• VP gauge invariant subset of NLO rad. corr.

• factorized over tree-level: α→ α(t)
• QED NLO virtual diagrams and real emission diagrams with exact finite me and mµ effects

p2 p4

e− e−

p1 p3

µ− µ−

leptons

p2 p4

e− e−

p1 p3

µ− µ−

hadrons
+top

p1 p3

p2 p4

µ− µ−

e− e−

p1 p3

p2 p4

µ− µ−

e− e−

p1 p3

p2 p4

µ− µ−

e− e−

p1 p3

p2 p4

µ− µ−

e− e−

• tree-level Z-exchange important at the 10−5 level (∼ tGµ/4πα
√

2 in the Fermi theory)

• SM weak RCs at most at a few 10−6 level, negligible
Alacevich et al. JHEP 02 (2019) 155
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First realistic description of scattering events
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Figure 4. Left plot: the LO and NLO QED cross sections of the µ+e− → µ+e− process, as a
function of the electron scattering angle, for the different setup described in the text (upper panel);
relative NLO QED corrections (lower panel). Right plot: the same as in the left plot, as a function
of the muon scattering angle.

– 2 –

• many points fall out of the 2→ 2 correlation curve θµ − θe because of the radiative events

• NLO QED radiative corrections at the % level, enhanced by exclusive event selections
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Second step, towards photonic radiative corrections at NNLO (2020)

• exact calculation of corrections along one lepton line with all finite mass effects
p1 p3

p2 p4

µ− µ−

e− e−

1a

p1 p3

p2 p4
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e− e−

1b

p1 p3
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e− e−

1c

p1 p3

p2 p4

µ− µ−

e− e−

1d

Figure 1. Virtual QED corrections to the electron line in µe→ µe scattering. One-loop correction
(diagram 1a); sample topologies for the two-loop corrections (diagrams 1b-1d). The blob in diagram
1d denotes an electron loop insertion. On-shell scheme counterterms are understood.
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p2 p4
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e− e−

2a
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p2 p4
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2c
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p2 p4
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Figure 2. Sample diagrams for the one-loop QED corrections to single photon emission (diagrams
2a-2b); sample diagrams for the double bremsstrahlung process (diagrams 2c-2d).

All the above contributions are infrared-divergent quantities and we choose to regularize
IR singularities by assigning a vanishingly small mass λ to the photon in the computation
of virtual and real contributions. Then we introduce a soft-hard slicing separator ωs, so
that it acts as a fictitious energy resolution parameter of the photon radiation phase space,
which is split into three sectors: the region labelled as (0γ, hard) corresponds to the region
of unresolved radiation up to ωs, the domain labelled as (1γ, hard) corresponds to the region
with one resolved photon (with energy > ωs) and additional unresolved radiation up to ωs,
the domain (2γ, hard) corresponds to the region with two resolved photons, where both
of them have energy larger than ωs. According to the above described splitting, the pure
O(α2) contribution to the cross section can be rewritten as follows:

dσα
2

= dσ0γ,hard(ωs) + dσ1γ,hard(ωs) + dσ2γ,hard(ωs) , (2.1)

where

dσ0γ,hard(ωs) = dσ2γ virt
0γ s; 0γ h(λ) + dσ1γ virt

1γ s; 0γ h(λ, ωs) + dσ0γ virt
2γ s; 0γ h(λ, ωs) (2.2)

dσ1γ, hard(ωs) = dσ1γ virt
0γ s; 1γ h(λ, ωs) + dσ0γ virt

1γ s; 1γ h(λ, ωs) (2.3)

dσ2γ, hard(ωs) = dσ0γ virt
0γ s; 2γ h(ωs) (2.4)

– 4 –
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All the above contributions are infrared-divergent quantities and we choose to regularize
IR singularities by assigning a vanishingly small mass λ to the photon in the computation
of virtual and real contributions. Then we introduce a soft-hard slicing separator ωs, so
that it acts as a fictitious energy resolution parameter of the photon radiation phase space,
which is split into three sectors: the region labelled as (0γ, hard) corresponds to the region
of unresolved radiation up to ωs, the domain labelled as (1γ, hard) corresponds to the region
with one resolved photon (with energy > ωs) and additional unresolved radiation up to ωs,
the domain (2γ, hard) corresponds to the region with two resolved photons, where both
of them have energy larger than ωs. According to the above described splitting, the pure
O(α2) contribution to the cross section can be rewritten as follows:

dσα
2

= dσ0γ,hard(ωs) + dσ1γ,hard(ωs) + dσ2γ,hard(ωs) , (2.1)

where

dσ0γ,hard(ωs) = dσ2γ virt
0γ s; 0γ h(λ) + dσ1γ virt

1γ s; 0γ h(λ, ωs) + dσ0γ virt
2γ s; 0γ h(λ, ωs) (2.2)

dσ1γ, hard(ωs) = dσ1γ virt
0γ s; 1γ h(λ, ωs) + dσ0γ virt

1γ s; 1γ h(λ, ωs) (2.3)

dσ2γ, hard(ωs) = dσ0γ virt
0γ s; 2γ h(ωs) (2.4)

– 4 –

• two independent calculations, with different IR singularities handling procedures (slicing and subtraction)

Carloni Calame et al., JHEP 11 (2020) 028,
P. Banerjee, T. Engel, A. Signer, Y. Ulrich, SciPost Phys. 9 (2020) 027

• implemented in Mesmer and McMule, perfect numerical agreement

• NNLO with finite mass effects and approximate up-down interference in Mesmer
• interference of LO µe→ µe amplitude with

+ many others

   NNLO double-virtual amplitudes where at least 2 photons connect the e and µ lines are approximated according
to the Yennie-Frautschi-Suura (’61) formalism to catch the IR divergent structure
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Second step, photonic radiative corrections at NNLO (2023)

• complete calculation of the amplitude f+f− → F+F− with mf = 0, mF 6= 0 R. Bonciani et al., PRL 128 (2022)

• “massification” to recover the leading me terms, i.e. neglecting powers of m2
e/Q

2

T. Engel, C. Gnendiger, A. Signer and Y. Ulrich, JHEP 02 (2019) 118

Y. Ulrich, PoS RADCOR2023 (2024) 077

• FKS` subtraction scheme

T. Engel, A. Signer, Y. Ulrich, JHEP 01 (2020) 085

• Next-to-soft stabilisation, to obtain numerical stability in real-virtual corrections with soft and/or collinear

photon configurations

T. Engel, A. Signer, Y. Ulrich, JHEP 04 (2022) 097; T. Engel, JHEP 07 (2023) 177

• with the above ingredients
• NNLO calculation neglecting terms ofO(m2

e/Q
2) in McMule

A. Broggio et al., JHEP 01 (2023) 112

Fulvio Piccinini (INFN, Pavia) QCD@Work: Hadronic contribution to the muon g − 2 17 / 41



NNLO virtual leptonic pairs (vacuum polarization insertion) (2021)

• any lepton (and hadron) in the VP blobs

• interfered with µe→ µe or µe→ µeγ amplitudes

(a) (b) (a)

+ · · ·

(c)

+ · · ·

• interfered with µe→ µe amplitude

(a)
(b)

+ · · ·

• 2-loop integral evaluated with dispersion relation techniques in Mesmer

used e.g. in the past for Bhabha: Actis et al., Phys. Rev. Lett. 100 (2008) 131602; Carloni Calame et al., JHEP 07 (2011) 126

gµν

q2 + iε
→ gµν

α

3π

∫ ∞
4m2

`

dz

z

R`(z)

q2 − z + iε
= gµν

α

3π

∫ ∞
4m2

`

dz

z

1

q2 − z + iε

1 +
4m2

`

2z


√√√√

1 −
4m2

`

z

• 2-loop integral evaluated (also) with hyperspherical method in McMule M. Fael, JHEP02 (2019) 027
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NNLO order of magnitude

McMule

M. Rocco, 16.05.23 – p.13/14

let the mule trot [2212.06481]: S1− θµ

McMule
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A. Broggio et al., JHEP 01 (2023) 112

Mesmer

diagrams in figures 4, 5 and 6 plus the interference of the diagram in figure 1 (b) with the
diagrams in figure 3. Also real radiation is added (i.e. the interference of the diagrams in
figure 7 with the very same diagrams without loop insertion), as well as all the contributions
described in sections 5.1 and 5.2. As we know from previous studies on NLO [44] and
NNLO photonic [49] (and also hadronic [54]) corrections, the real radiation can give large
contributions, in particular for the electron scattering angle distribution. For this reason in
refs. [44, 49] the additional acoplanarity cut (cut 2 as defined in the introduction to this
section) was introduced, in order to partially remove hard radiation effects.
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Figure 13: Left: differential KNNLO factor on θe distribution, including the complete
set of NNLO virtual leptonic pair corrections. Right: the same observable including the
acoplanarity cut.
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Figure 14: Left: differential KNNLO factor on θµ distribution, including the complete
set of NNLO virtual leptonic pair corrections. Right: the same observable including the
acoplanarity cut.
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E. Budassi et al., JHEP 11 (2021) 098

• NNLO corrections at the 10−4 − 10−3 level

• eventually fixed order calculations need to be matched to resummation of higher order

corrections, through PS techniques (e.g. BaBaYaga) or YFS techniques (e.g. KKMC/SHERPA)
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NNLO order of magnitude

McMule

M. Rocco, 16.05.23 – p.13/14

let the mule trot [2212.06481]: S1− θµ
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A. Broggio et al., JHEP 01 (2023) 112

Mesmer

diagrams in figures 4, 5 and 6 plus the interference of the diagram in figure 1 (b) with the
diagrams in figure 3. Also real radiation is added (i.e. the interference of the diagrams in
figure 7 with the very same diagrams without loop insertion), as well as all the contributions
described in sections 5.1 and 5.2. As we know from previous studies on NLO [44] and
NNLO photonic [49] (and also hadronic [54]) corrections, the real radiation can give large
contributions, in particular for the electron scattering angle distribution. For this reason in
refs. [44, 49] the additional acoplanarity cut (cut 2 as defined in the introduction to this
section) was introduced, in order to partially remove hard radiation effects.
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E. Budassi et al., JHEP 11 (2021) 098

• NNLO corrections at the 10−4 − 10−3 level

• eventually fixed order calculations need to be matched to resummation of higher order

corrections, through PS techniques (e.g. BaBaYaga) or YFS techniques (e.g. KKMC/SHERPA)
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NNLO hadronic contributions (2019)

• using the dispersion relation approach

3

of α(t) will not be considered as part of class I (al-
though of the same order), because its effect is com-
monly included in the ratio R(s) as final-state ra-
diation and, therefore, it is already incorporated in
the NLO hadronic corrections in Eq. (13) [50, 51].

II. QED one-loop diagrams in combination with one
hadronic vacuum polarization insertion in the t-
channel photon (Fig. 1c). Their contribution to the
differential cross section is proportional to Πh(t)
and a combination of one-loop QED corrections to
µe scattering.

III. Real photon emission diagrams with a vacuum
polarization insertion in the t-channel photon
(Fig. 1d). They contain terms proportional either
to Πh(te) or to Πh(tµ), where te (tµ) is the square
of the difference of the initial and final electron
(muon) momenta. In general, te 6= tµ because of
the presence of the final-state photon.

All the diagrams in classes I–III are factorizable, since
each of them can be reduced to the product of a QED
amplitude multiplied by the function Πh(q2) evaluated
at some q2 value fixed by the external kinematics. A
fourth class of non-factorizable diagrams must also be
considered:

IV. One-loop QED amplitudes with a hadronic vacuum
polarization insertion in the loop. They can be
further subdivided into vertex and box corrections
(Fig. 1e).

We point out that there are no light-by-light contribu-
tions to the µe cross section at NNLO (order α4) – they
appear at N3LO (order α5). Moreover, we remind the
reader that, at the level of precision addressed in this
letter, the analysis of future µe scattering data will also
require the study of µe scattering processes with final
states containing hadrons. Final states of Bhabha scat-
tering containing hadrons were studied in [35].

We calculated the amplitudes in class IV employing
the dispersion relation in Eq. (10). The factor Πh(q2)/q2

appearing in the loop – where q now stands for the loop
momentum – is replaced by the r.h.s. of Eq. (10), where
q appears only in the denominator of the term 1/(q2−z).
Therefore, the dispersion relation effectively replaces the
dressed propagator with a massive one, where z plays the
role of a fictitious squared photon mass. This allows to
interchange the integration order and evaluate, as a first
step, the one-loop amplitudes with a “massive” photon.
The results obtained for the z-dependent scattering am-
plitudes are then convoluted with the ratio R(s).

All four classes of diagrams were generated using
FeynArts [52] with a modified version of the QED model
that contains, besides leptons and photons, a fictitious
massive gauge boson (the “massive” photon arising from
the dispersion relation). The amplitudes were calculated

and reduced to one-loop tensor integrals with Form [53]
via the FormCalc [54] package, and exported as a Fortran
code for the numerical evaluation of the dispersive and
phase-space integrals. Two independent parametriza-
tions of the 3-body phase space were employed to cross-
check the hard bremsstrahlung cross section. For the nu-
merical evaluation of Πh(q2) in the spacelike region, ap-
pearing in classes I–III, we relied on the native implemen-
tation available in the Fortran libraries alphaQEDc17 and
KNT18VP. The one-loop tensor coefficients were computed
with the library Collier [55], which features dedicated
expansions for the evaluation in numerically unstable re-
gions (small Gram or other kinematical determinants).
We particularly benefited from this library when we con-
voluted the z-dependent amplitudes with the R(s) ratio
provided by alphaQEDc17 or KNT18VP. Indeed, in per-
forming the dispersive integrations in class IV diagrams,
the squared photon “mass” z appearing inside the loop
functions can acquire values which are orders of magni-
tude larger than the typical energy scale of the scatter-
ing process. Collier provides numerically stable results
in this treacherous region and allows the numerical in-
tegration to converge. The dispersive integrations were
performed with the subroutines in QUADPACK [56], while
for the phase space integration we employed the VEGAS

algorithm [57] in the Cuba library [58].

(a) NLO (b) class I (c) class II

(d) class III (e) class IV

FIG. 1. (a) Diagram contributing to the hadronic correction
to µe scattering at NLO. (b–e) Examples of diagrams con-
tributing to the four classes of hadronic corrections at NNLO.
Electrons, muons and photons are depicted with thin, thick
and wavy lines, respectively. The grey blobs indicate hadronic
vacuum polarization insertions.

To check our results, we produced an independent
Mathematica implementation using FeynCalc [59, 60]
and Package-X [61]. The results obtained by FeynCalc

in terms of scalar one-loop functions were then eval-
uated numerically using analytic expressions provided
by Package-X. The use of Mathematica’s arbitrary-
precision numbers, with a large number of digits, allowed

4

us to keep track of precision at all steps and avoid insta-
bilities during the numerical dispersive and phase-space
integrations. We found perfect agreement between the
two implementations.

The lepton masses were kept different from zero
throughout the calculation, so that the matrix elements
were free of collinear singularities. Ultraviolet singulari-
ties were regularized via conventional dimensional regu-
larization and UV-finite results were obtained in the on-
shell renormalization scheme. The amplitudes of class II
and the boxes of class IV develop IR poles which are can-
celled by those arising from the phase space integration
of the real emission diagrams of class III. We employed
both the FKS subtraction scheme [62, 63] as well as the
traditional QED procedure to assign a vanishingly small
mass to the photon to remove the soft singularities and
to obtain an IR-finite cross section.

RESULTS

The ratio of the NNLO hadronic corrections to the
µe differential cross section, with respect to the squared
momentum transfer te, and the LO prediction,

KNNLO
h (te) =

dσNNLO
h

dte
/
dσ0
dte

, (15)

is shown in Fig. 2 for the processes µ+e− → µ+e− (up-
per panel) and µ−e− → µ−e− (lower panel) for Eµ =
150 GeV. The black lines indicate the total hadronic con-
tribution arising from classes I–IV, while the blue ones
show the sum of the contributions of classes II, III, and
IV, but not I. The reason for this split is the follow-
ing. The goal of the MUonE experiment is to determine
∆αh(t) = −Πh(t), the leading hadronic contribution to
the running of the effective fine-structure constant in the
spacelike region, from µe scattering data. In order to
extract the NLO hadronic correction to the µe differ-
ential cross section, given by Eq. (13), which contains
Πh(t), the experimental data will have to be subtracted,
via a Monte Carlo event generator, of the total NNLO
hadronic corrections (classes I–IV). If, instead of ∆αh(t),
one wants to extract the hadronic corrections to the re-
summed photon propagator, then the corrections of class
I should not be subtracted from data, as their contri-
bution to the differential cross section accounts for the
second-order reducible hadronic contribution to the run-
ning of α(t).

The difference in KNNLO
h (t) between muon and an-

timuon is due to the box diagrams in classes II and IV,
and to electron-muon interference terms in the real emis-
sion (class III). These contributions to the cross section
are equal in size but with opposite sign for µ+ and µ−.
The same pattern is observed at NLO [17].

Figure 2 shows that, when the muon/antimuon beam
has an energy of 150 GeV, for most of the kinematic re-
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FIG. 2. KNNLO
h (te) factor for a positive (upper panel) and

negative (lower panel) muon beam of energy Eµ = 150 GeV.
The total hadronic NNLO correction are depicted in black,
while the contributions of class I (II-IV) are shown separately
in red (blue).

gion scanned by the squared momentum transfer te the
factor KNNLO

h (te) is of order 10−4–10−5. These correc-
tions are therefore larger than the O(10−5) precision ex-
pected at the MUonE experiment. Moreover, our Fortran
code, available upon request, can calculate the NNLO
hadronic corrections to any µe scattering differential dis-
tribution with arbitrary kinematical cuts and can there-
fore be implemented in future full NNLO µe scattering
Monte Carlo codes.

At NLO, the tiny contribution of the top quark to the
vacuum polarization can be separated from the hadronic
one. At NNLO, these contributions mix with each other.
The plots in Fig. 2 were obtained adding Πtop(q2) to
Πh(q2), so that the full top quark contribution has been
included in the shown NNLO prediction. Its effect is
however totally negligible.

As our calculation of the NNLO hadronic corrections to
the µe differential cross section is based on the hadronic
e+e− annihilation data, the precision of our prediction is
limited by the experimental error on the R(s) ratio. We

Fael, Passera, Phys. Rev. Lett. 122 (2019) 192001

• corrections of the order of 10−4

• hyperspherical integration method to calculate hadronic NNLO corrections, where the hadronic vacuum

polarization is employed in the space-like region (used in McMule) M. Fael, JHEP02 (2019) 027
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Towards N3LO on the electron line

Y. Ulrich, N3LO kick-off workstop/thinkstart, Durham, 3-5 August 2022

Towards (dominant) N3LO corrections for µe → µe

• All virtual (three loops)

e

µ

e

µ

• Single real emission (two loops)

e

µ

• Double real emission (one loops)

e

µ

e

µ

• Triple real

e

µ

e

µ

M. Fael MUonE Collaboration Meeting 16 May 2023 4
M. Fael, MUonE Collaboration Meeting, 16/05/2023, CERN

• this contribution will allow improved perturbative predictions and more reliable theoretical

uncertainty estimates
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Recent progress

• the three-loop form factor with finite fermion mass is now available

M. Fael, F. Lange, K. Schönwald, M. Steinhauser, Phys. Rev. Lett 128 (2022) 172003

M. Fael, F. Lange, K. Schönwald, M. Steinhauser, Phys. Rev.D 106 (2022) 034029

M. Fael, F. Lange, K. Schönwald, M. Steinhauser, Phys. Rev.D 107 (2023) 094017

• All order subtraction scheme FKS` availale

T. Engel, A. Signer, Y. Ulrich, JHEP 01 (2020) 085

• very recent generalisation of the LBK theorem to multi-photon emission =⇒ extension of

next-to-soft stabilisation to multiple radiation

T. Engel, JHEP 03 (2024) 004

• real-virtual-virtual corrections recently recalculated with me → 0

S. Badger, J. Krys, R. Moodle, S. Zoia, JHEP 11 (2023) 041

V.S. Fadin, R.N. Lee, JHEP 11 (2023) 148
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Fixed target experiment =⇒ bound electron effects

• very recently estimated

R. Plestid and M.B. Wise, arXiv:2403.12184

• for C
1

σ

dσ

dt
=

1

σ0

dσ0

dt
(1−Kf(t))

• K = 4.5 · 10−4, scaling as 1/ZA

7
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FIG. 1. The function f(t), as defined in Eq. (55), for
√
s =

405 MeV, plotted over the interval tmin ≤ t ≤ 0 where the
largest momentum transfer is given by tmin = −(s −m2

µ)2/s.
keep terms linear in p, and the appropriate identities are

(p ⋅ k) ≃ (p ⋅ k )0[1 − ∣p∣ cos θ

me
+ p2

2m2
e

] , (50)

(p ⋅ k′) ≃ (p ⋅ k′)0[1 − ∣p∣ cos θ

me
+ p2

2m2
e

] , (51)

(p ⋅ p′) ≃ (p ⋅ p′)0[1 − ∣p∣ cos θ

me
+ p2

2m2
e

] , (52)

where we (again) use cos θee′ ≂ cos θeν′ ≂ cos θeν ≡ cos θ.
Next, we expand in p2 and ϵ. After averaging over angles
in the bound state, we may make the replacement,

1

2E
∑
spins

∣M∣2 → 1

2m
{ ∑

spins

∣M∣20[1 + ϵ

me
]

− 8e4m2
µ(p ⋅ p′)0 [ ϵme

+ 1

3

p2

m2
e

] }.
(53)

Upon integration against the spectral function and using
the relevant sum rules, we find,

dσ

dt
≃ dσ(0)

dt
[1 + 1

ZAme

[3ϵA + ⟨V̂1⟩A]
− f(t)
ZAme

(11

3
ϵA + ⟨V̂1⟩A)] ,

(54)

where the Mandelstam variable t for an electron at rest
is defined as t ≃ −2(p ⋅p′)0 = −2meE

′ in the limit of small
electron mass. The function f(t) (plotted in Fig. 1 for√
s = 405 MeV) is obtained from Eq. (53) after dividing

through by the leading order answer,

f(t) = m2
µ(p ⋅ p′)0(p ⋅ k)20 + (p ⋅ k′)20 −m2

µ(p ⋅ p′)0
= −2m2

µt(s + t −m2
µ)2 + (s −mµ)2 + 2m2

µt
.

(55)

For a shape-only measurement, the relevant quantity is

1

σ

dσ

dt
≃ 1

σ(0)
dσ(0)

dt
(1 − f(t)

ZAme
[11

3
ϵA + ⟨V̂1⟩A]) , (56)

To get a sense of the size of this correction we may assume
a carbon target, taking ϵC = 1.03 keV [8] and ⟨V1⟩C =−2.40 keV [9]. We find,

1

ZAme
[11

3
ϵA + ⟨V̂1⟩A] ≈ 45 × 10−5 . (57)

This is almost two orders of magnitude larger than the
theory-error target of MUonE. Using

√
s = 405 MeV and√−t =√−tpeak = 330 MeV [2] we find that this correction

amounts to a 5 × 10−5 shift which is a sizeable effect,
when compared to the 10−5 error budget demanded by
MUonE [3]. Notice that there is no delicate cancellation
in Eq. (57) in contrast to the accidental cancellation in
Eq. (46), and the binding correction is of natural size.

VII. DISCUSSION AND CONCLUSIONS

Using a simple perturbative analysis, the virial the-
orem, and the Koltun sum rule [6], we have identified
a new model independent relationship between the ex-
pectation value of the single body potential operator,
and binding corrections to high energy scattering. We
have studied these corrections in detail for νe → νe and
µe → µe scattering. We find that due to rotational sym-
metry, corrections begin at O(ϵA/me) where ϵA is the
binding energy of the target atom. Our main results are
Eq. (43) for νe → νe scattering, and Eqs. (54) and (56)
for µe→ µe scattering.

In our analysis we have treated the final state electron
as a free-particle solution (which amounts to using the
impulse approximation). In general there will be pertur-
bative corrections from Coulomb exchange with the final
state system ∣B⟩ that are not included in the radiative
corrections to νe → νe and µe → µe scattering involving
free electrons. The effect of final state interactions can
be estimated in the case of hydrogen, but it is presently
unclear if any universal form exists for many-body atoms.
These corrections should be computed in the future and
added to the binding corrections discussed in this paper.

The results presented here are important for ultra-
precise measurements of muon electron scattering, as is
planned for the MUonE experiment. Unlike in neutrino
flux measurements, where the total cross section is most
important, for MUonE the most relevant observable is
the differential distribution with respect to the angles of
outgoing muon and electron. The binding corrections
discussed here will impact extractions of hadronic vac-
uum polarization from MUonE. Importantly, the error
budget there is ∼ 10−5 and even for light nuclei (e.g., car-
bon with Z4/3 ≈ 11) atomic binding corrections must be
incorporated.
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Fixed target experiment =⇒ bound electron effects

• very recently estimated

R. Plestid and M.B. Wise, arXiv:2403.12184

• for C
1

σ

dσ

dt
=

1

σ0

dσ0

dt
(1−Kf(t))

• K = 4.5 · 10−4, scaling as 1/ZA
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FIG. 1. The function f(t), as defined in Eq. (55), for
√
s =

405 MeV, plotted over the interval tmin ≤ t ≤ 0 where the
largest momentum transfer is given by tmin = −(s −m2

µ)2/s.
keep terms linear in p, and the appropriate identities are

(p ⋅ k) ≃ (p ⋅ k )0[1 − ∣p∣ cos θ

me
+ p2

2m2
e

] , (50)

(p ⋅ k′) ≃ (p ⋅ k′)0[1 − ∣p∣ cos θ

me
+ p2

2m2
e

] , (51)

(p ⋅ p′) ≃ (p ⋅ p′)0[1 − ∣p∣ cos θ

me
+ p2

2m2
e

] , (52)

where we (again) use cos θee′ ≂ cos θeν′ ≂ cos θeν ≡ cos θ.
Next, we expand in p2 and ϵ. After averaging over angles
in the bound state, we may make the replacement,

1

2E
∑
spins

∣M∣2 → 1

2m
{ ∑

spins

∣M∣20[1 + ϵ

me
]

− 8e4m2
µ(p ⋅ p′)0 [ ϵme

+ 1

3

p2

m2
e

] }.
(53)

Upon integration against the spectral function and using
the relevant sum rules, we find,

dσ

dt
≃ dσ(0)

dt
[1 + 1

ZAme

[3ϵA + ⟨V̂1⟩A]
− f(t)
ZAme

(11

3
ϵA + ⟨V̂1⟩A)] ,

(54)

where the Mandelstam variable t for an electron at rest
is defined as t ≃ −2(p ⋅p′)0 = −2meE

′ in the limit of small
electron mass. The function f(t) (plotted in Fig. 1 for√
s = 405 MeV) is obtained from Eq. (53) after dividing

through by the leading order answer,

f(t) = m2
µ(p ⋅ p′)0(p ⋅ k)20 + (p ⋅ k′)20 −m2

µ(p ⋅ p′)0
= −2m2

µt(s + t −m2
µ)2 + (s −mµ)2 + 2m2

µt
.

(55)

For a shape-only measurement, the relevant quantity is

1

σ

dσ

dt
≃ 1

σ(0)
dσ(0)

dt
(1 − f(t)

ZAme
[11

3
ϵA + ⟨V̂1⟩A]) , (56)

To get a sense of the size of this correction we may assume
a carbon target, taking ϵC = 1.03 keV [8] and ⟨V1⟩C =−2.40 keV [9]. We find,

1

ZAme
[11

3
ϵA + ⟨V̂1⟩A] ≈ 45 × 10−5 . (57)

This is almost two orders of magnitude larger than the
theory-error target of MUonE. Using

√
s = 405 MeV and√−t =√−tpeak = 330 MeV [2] we find that this correction

amounts to a 5 × 10−5 shift which is a sizeable effect,
when compared to the 10−5 error budget demanded by
MUonE [3]. Notice that there is no delicate cancellation
in Eq. (57) in contrast to the accidental cancellation in
Eq. (46), and the binding correction is of natural size.

VII. DISCUSSION AND CONCLUSIONS

Using a simple perturbative analysis, the virial the-
orem, and the Koltun sum rule [6], we have identified
a new model independent relationship between the ex-
pectation value of the single body potential operator,
and binding corrections to high energy scattering. We
have studied these corrections in detail for νe → νe and
µe → µe scattering. We find that due to rotational sym-
metry, corrections begin at O(ϵA/me) where ϵA is the
binding energy of the target atom. Our main results are
Eq. (43) for νe → νe scattering, and Eqs. (54) and (56)
for µe→ µe scattering.

In our analysis we have treated the final state electron
as a free-particle solution (which amounts to using the
impulse approximation). In general there will be pertur-
bative corrections from Coulomb exchange with the final
state system ∣B⟩ that are not included in the radiative
corrections to νe → νe and µe → µe scattering involving
free electrons. The effect of final state interactions can
be estimated in the case of hydrogen, but it is presently
unclear if any universal form exists for many-body atoms.
These corrections should be computed in the future and
added to the binding corrections discussed in this paper.

The results presented here are important for ultra-
precise measurements of muon electron scattering, as is
planned for the MUonE experiment. Unlike in neutrino
flux measurements, where the total cross section is most
important, for MUonE the most relevant observable is
the differential distribution with respect to the angles of
outgoing muon and electron. The binding corrections
discussed here will impact extractions of hadronic vac-
uum polarization from MUonE. Importantly, the error
budget there is ∼ 10−5 and even for light nuclei (e.g., car-
bon with Z4/3 ≈ 11) atomic binding corrections must be
incorporated.
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Backgrounds

• pion pair production forbidden kinematically with the available
√
s

• single π0 production possible

p2

p1

p4

p3

p5

• π0 production calculated and shown to be well below 10−5 w.r.t. µe→ µe

E. Budassi et al., PLB 829 (2022) 137138

• lepton pair production

• µ±e− → µ±e−`+`−

• µ±N → µ±N`+`−
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µ±e− → µ±e−`+`− (same pert. order as virtual pairs) E. Budassi et al., JHEP 11 (2021) 098

• it also contributes at NNLO accuracy

(b) (c) (e) (f)

+ · · ·

• the emission of an extra electron pair µe→ µe e+e− is potentially a dramatically large background,

because of the presence of “peripheral” diagrams which develop powers of collinear logarithms upon

integration
G. Racah, Il Nuovo Cimento 14 (1937) 83-113; L.D. Landau, E.M. Lifschitz, Phys. Z. Sowjetunion 6 (1934) 244; H.J. Bhabha, Proc. Roy. Soc. Lond. A152 (1935) 559;

R.N. Lee, A.A. Lyubyakin, V.A. Smirnov, Phys. Lett. B 848 (2024) 138408

• µ±e− → µ±e−`+`− calculated with finite mass effects and implemented in Mesmer
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simulation of 5 · 105 points of µ±e− → µ±e−`+`−
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Figure 21: Left: Differential KNNLO factor on tee distribution for real e+e− radiation with
realistic event selection, with acoplanarity cut. Right: the same for θe.

to section 5. The effectiveness of the additional cuts in suppressing real electron pair
radiation events can be visualised with the scatter plot of the θe-θµ angles correlation
displayed in figure 22. The upper panel shows, with red points, the scatter distribution of

Figure 22: Scatter plot of (θe, θµ) points for 5 · 105 µ−e− → µ−e−e+e− simulated events.

the coordinates (θe, θµ) for a sample of 5 · 105 events for the process µ−e− → µ−e−e+e−

– 23 –

E. Budassi et al., JHEP 11 (2021) 098
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Real pair emission from scattering on nucleus: µ±N → µ±N`+`−

G. Abbiendi et al., Phys. Lett B854 (2024) 138720

• it can mimic the signal if one particle is not reconstructed or two tracks overlap within resolution

• cross section scaling ∼ Z2

• GEANT4: “for the process of e+e− pair production the muon deflection is neglected”

A.G. Bogdanov et al., IEEE transactions on nuclear science, 53, n. 2, April 2006

=⇒ a dedicated calculation implemented in the Monte Carlo generator Mesmer
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• approximation: scattering on the external nucleus field

• finite extension of the nucleus through a form factor

FZ(q) =
1

Ze

∫ ∞
0

dr r2ρZ(r)
sin(qr)

qr

• q : momentum transferred to the nucleus
• ρZ : nuclear charged density

• different models for charge density
J. Heeck, R. Szafron, Y. Uesaka, PRD 105 (2022) 053006

• FZ(q) = 1 (conservative)
• 1 parameter Fermi model (1pF)

ρZ(r) =
ρ0

1 + exp r−c
z

• Fourier Bessel expansion (FB)

ρZ(r) =
n∑

k

ak j0

(
kπr

R

)
, r ≥ R

= 0 > R

• modified-harmonic oscillator model

Background calculation

• The possible backgrounds must be implemented in the MC code for detailed simulations:

• µ±e− → µ±e− π0 with π0 → γγ [PLB 829 (2022) 137138] ✓
• µ±e− → µ±e− ℓ+ℓ− with ℓ = e, µ [JHEP 11 (2021) 098] ✓
• µ±X → µ±X ℓ+ℓ− where X is a nucleus (WIP)

• Since the initial-state e− are bound in a low-Z target (Be or C), the lepton pair production

muon-nucleus scattering is expected to be the main source of experimental background.

• It can resemble the signal if one particle is not reconstructed (2 tracks events).

• Model: scattering in external e.m. field with a nuclear form factor correction

FZ(q) =
1

Ze

∫ ∞

0
dr r2ρZ(r)

sin(qr)

qr

q : momentum transferred to the nucleus, ρZ : nuclear charge density

• Good approximation for small angles: θµ < 5 mrad −→ q2 < 0.5 GeV2.

• Different models for ρZ to evaluate the theoretical uncertainty on the FZ(q) model.
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Background/signal ratio
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Figure 9: Differential cross section with respect to the muon angle
ϑµ for two-track events and different form factor models. The
relative differences between the different cases are reported in the
lower panel.

precision requirements of MUonE make unreliable the
simulation of the process through the Geant4 toolkit,
where, for instance, the outgoing muon scattering an-
gle is neglected. Starting from the exact phase space,
with energy conservation within the leptonic system, i.e.
treating the nucleus as an external electromagnetic field,
we consider the complete tree-level matrix element, in-
cluding all diagrams and finite fermion mass effects. The
finite extension of the nucleus is described through a
nuclear form factor, with different models (and related
parameters) taken from the existing literature. The cal-
culation has been implemented in the Monte Carlo event
generator Mesmer, available for detailed simulations of
the MUonE experiment.

We presented a collection of numerical results for typ-
ical event selections currently used for MUonE simula-
tions. We find that the production of µ+µ− pairs re-
mains below the MUonE precision target of 10−5 with
respect to the elastic signal, while the production of
e+e− pairs can be potentially dangerous. In particular,
with basic acceptance cuts, the background cross section
can be of the order of 10−3 times the signal cross section.
The acoplanarity and elasticity cuts are crucial for the
reduction of the background-to-signal ratio at the 10−4

level. Since the comparison of different nuclear form
factor models shows an agreement on differential distri-
butions below the percent level, a reliable background
subtraction through Monte Carlo simulation is feasible
for the MUonE precision requirement. As an indepen-
dent handle, the fact that the differential cross sections
for events with three tracks are of the same order of the
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Figure 10: Differential cross section with respect to the muon
angle ϑµ for two-track events and different event selections.
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Figure 11: The background-to-signal ratio Rbs as a function of
the muon angle ϑµ for different event selections.

irreducible two-track signatures allows to perform inde-
pendent cross-checks on the two-track background esti-
mate by measuring the three-track cross sections mul-
tiplied by the calculation of the ratio of two-track over
three-track differential cross sections. In this ratio, the
uncertainties on the nuclear form factor tend to cancel.

As a last comment on the phenomenological results
discussed in the present study, we stress that they
should be properly quantified by means of detailed anal-
ysis involving also detector simulation and track recon-
struction, which will be carried out within the MUonE
experimental collaboration.

In view of the relevance of the considered process as
a background to the high-precision differential measure-
ments of MUonE, also QED corrections to the tree-level
approximation should be considered, for a fully reliable
estimate of the numerical impact of the process. In fact,
such corrections are expected to give effects on the shape
of the distributions at the few per cent level. This is left
for a future investigation.
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G. Abbiendi, E. Budassi, C.M. Carloni Calame, A. Gurgone, F.P., Phys.Lett.B 854 (2024) 138720
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Possible New Physics contamination in the ∆α(t) determination?

A. Masiero, P. Paradisi and M. Passera, Phys. Rev. D102 (2020) 075013

P.S.B. Dev, W. Rodejohann, X.-J. Xu and Y. Zhang, JHEP 05 (2020) 053

• Effects of heavy (MNP � 1 GeV) NP mediators investigated through EFT with dim-6 operators

• excluded (at the 10−5 level) by existing data

• Effects of light (MNP ≤ 1 GeV) NP mediators investigated with spin-dependent general models

• spin−0 NP mediators (ALPs)

• spin−1 NP mediators (Dark Photons, light Z′ vector bosons)

• excluded (at the 10−5 level) by existing data

HVP determination with MUonE data will be robust against New Physics
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Possible New Physics studies with MUonE (in complementary regions to ∆αh)

• interesting proposals for NP searches at MUonE (new light mediators) in 2→ 3 processes

• invisibly decaying light Z′ in µe→ µeZ′

Asai et al., Phys. Rev. D106 (2022) 5

• a relevant background can be µe→ µeπ0, in addition to µe→ µeγ

• long-lived mediators with displaced vertex signatures µe→ µeA′ → µee+e−

Galon et al., Phys.Rev.D 107 (2023) 095003

• through scattering off the target nuclei µN → µNX → µNe+e−

Grilli di Cortona and E. Nardi, Phys. Rev. D105 (2022) L111701
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Summary

• Given its precision requirements, MUonE represents a challenge for
• QED corrections
• background calculation

• at present we have two independent Monte Carlo tools, Mesmer and McMule featuring
• NLO QED corrections
• NNLO QED corections from single lepton legs
• YFS inspired approximation to the full NNLO QED in Mesmer
• full NNLO QED with electron “massification” in McMule
• pair production in Mesmer

• µ±e− → µ±e−`+`−

• µ±N → µ±N`+`−

• efforts for N3LO started

• work in progress for matching with higher order QED corrections
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Past MUonE topical meetings

• MUonE theory workshops

• Theory Kickoff Workshop, Padova, 4-5 September 2017

• MITP Workshop, Mainz 19-23 February 2018

• 2nd Workstop/ThinkStart, Zürich, 4-7 February 2019

• N3LO kick-off workstop/thinkstart IPPP Durham, 3-5 August 2022

• MITP Workshop, Mainz 14-18 November 2022

• MITP Workshop, Mainz 03-07 June 2024

• Five General MUonE Collaboration Meetings
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THANK YOU!
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Few slides from R. Pilato for an exp. update

MITP Workshop, 03-07/06/2024, Mainz, Germany
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The experimental apparatus 

Eµ = 160 GeV

Be (C) target
1.5 cm

6 Si strip detectors (3 XY points)

M2 beam line
10 cm

5

After LS3:
full apparatus with 40 stations

BMS ….

R. Pilato, MITP Workshop, 3-7 June 2024
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40 stations
(60 cm Be) + 3 years of data taking = ~0.3% statistical 

accuracy on aµ
HLO

Achievable accuracy

Main challenge: 
keep systematic accuracy at the 
same level of the statistical one

Systematic uncertainty 
of 10 ppm in the signal region

● Longitudinal alignment (<10 µm)
● Knowledge of the beam energy 

(few MeV)
● Multiple scattering (<1%)
● Angular intrinsic resolution
● Non-uniform detector response

Competitive with the latest 
theoretical predictions

Main systematic effects:

(~4x1012 events 
Ee > 1 GeV)

6
R. Pilato, MITP Workshop, 3-7 June 2024
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● 2017: dedicated test beam to study multiple scattering.
● 2018: test beam to study elastic scattering properties and event selection.

● 2021: first joint test CMS-MUonE
           with a few 2S modules prototypes (parasitic).

● 2022:
● test with 1 tracking station.
● test the calorimeter.

● 2023: test with 2 tracking stations + calorimeter.

● 2025: run with a scaled version of the complete apparatus:
● 3 tracking stations;
● Calorimeter;
● Muon ID;
● Beam Momentum Spectrometer (BMS).

Staged approach
towards the full experiment

7
R. Pilato, MITP Workshop, 3-7 June 2024
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TB 2023
μ-e elastic scattering event selection

● Single μin candidate.
● μout, eout pair candidate.

● Loose χ2
vtx cut.

● |zvtx – ztarget| < 3 cm.
● Acoplanarity cut

(elastic events
are planar).

Initial selection 

15

Work in progress:
● Exploit dedicated MC generators

to study the backgrounds.
● Study the main sources of systematic

error using tracker data:
● Angular intrinsic resolution;
● Beam energy scale.

R. Pilato, MITP Workshop, 3-7 June 2024
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Run 2025

● MUonE recently submitted a proposal for a phase 1 of the 
experiment to the SPSC, concerning a small scale version 
of the final apparatus.

● If approved, MUonE will request 4 weeks of data taking in 2025.

16

MUonE Phase 1 Experiment Proposal

R. Pilato, MITP Workshop, 3-7 June 2024
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