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Stefano’s work I’m most familiar with: Threshold resummations

A short (and beautiful) review: S. Catani, hep-ph/9610413

Physical cross sections are always inclusive over arbitrarily soft

particles in the final state, because of finite detector resolution.

Inclusiveness plays a crucial role in QCD: infrared divergences

from virtual corrections are cancelled by radiation of undetected

real gluons.

The finite left-over of these cancellations give large contributions

if the tagged final state is forced to take most of the available

energy.



Schematically: (1− z)
√
s total energy carried by unobserved

radiation. Virtual and real emission corrections at order αS:

dwvirtual

dz
= −2C αS δ(1− z)

∫ 1−ε

0

dy

1− y
log

1

1− y
dwreal

dz
= +2C αS

1

1− z
log

1

1− z
θ(1− ε− z)

because of the bremsstrahlung spectrum dω/ω and the spectrum

for collinear emission, dk2
T /k

2
T .

The sum of the two contributions is finite as the infrared cut-off ε

goes to 0:

dw(z)

dz
=
dwvirtual

dz
+
dwreal

dz
= 2C αS

[
1

1− z
log

1

1− z

]
+

where ∫ 1

0

dz [D(z)]+f(z) =

∫ 1

0

dz D(z) [f(z)− f(1)]



• Virtual contribution concentrated at z = 1

• Real emission contribution spread over the interval x < z < 1,

where x is the fraction of total energy carried by the observed

final state.

Hence, the contribution of soft emission to the cross section is

proportional to ∫ 1

x

dz
dw

dz
= −C αS log2(1− x),

a finite left-over of the cancellation of infrared divergences.

As x→ 1 in the final state, the phase space for real emission is

suppressed, and the finite left-over becomes large.



At order n, at most two powers of log(1− x) for each power of αS

appear in the perturbative coefficients:

Cn(x)αnS = αnS

2n∑
m=1

cnm logm(1− x) + non singular terms

The perturbative expansion becomes unreliable; logarithmically

enhanced contributions must be resummed to all orders.



Examples:

1. lepton-nucleon scattering in the quasi-elastic limit:

x→ xBj =
Q2

2p · q
, x→ 1

2. production of heavy systems (Drell-Yan pairs, Higgs) close to

threshold:

x→ τ =
Q2

s
, s>∼Q

2

3. transverse momentum spectra in the small-qT region:

1− x→ q2
T

Q2
, q2

T � Q2



Threshold resummation performed in the space of Mellin

moments

F̂ (N) =

∫ 1

0

dxxN−1F (x); F (N) =
1

2πi

∫ N̄+i∞

N̄−i∞
dN x−N F̂ (N)

(Fourier transform in the case of transverse momentum).

Ĉn(N) = ĈLL
n (N) + ĈNLL

n (N) + . . .

CLL
n (N) =

2n∑
k=n+1

ĉnk logkN

CNLL
n (N) = ĉnn lognN



Three non trivial points



1. Eikonal emission exponentiates in QED because soft photons

are emitted independently. Gluon correlations are shown to

cancel in the soft limit.



2. The argument of the running coupling is set at the transverse

momentum of emitted gluons:

αS → αS(k2
T )

k2
T ≤ Q2(1− x)a; a = 1, 2

very different from Q2 in the threshold limit.

An important point: resummation of leading log terms of order

αkS logk+1N .







3. Exponentiation of next-to-leading logs



CN (Q2)

CLO
N (Q2)

= g0(Q2) expGN (Q2) +O

(
logkN

N

)

GDIS
N = log ∆q(Q

2, µ2) + log Jq(Q
2) + log ∆DIS

int (Q2)

GDY
N = 2 log ∆q(Q

2, µ2) + log ∆DY
int (Q2)

∆q(Q
2, µ2) =

∫ 1

0

dz
zN−1 − 1

1− z

∫ Q2(1−z)2

µ2

dq2

q2
A(αS(q2))

Jq(Q
2, µ2) =

∫ 1

0

dz
zN−1 − 1

1− z

[∫ Q2(1−z)

Q2(1−z)2

dq2

q2
A(αS(q2)) +B(αS(Q2(1− z)))

]

∆int(Q
2, µ2) =

∫ 1

0

dz
zN−1 − 1

1− z
D(αS(Q2(1− z)2))



Since then, an impressive amount of work on this subject:

1. S. Catani and L. Trentadue, “Resummation of the QCD Perturbative Series

for Hard Processes,” Nucl. Phys. B 327 (1989), 323-352

2. S. Catani, L. Trentadue, G. Turnock and B. R. Webber, “Resummation of

large logarithms in e+ e- event shape distributions,” Nucl. Phys. B 407

(1993), 3-42

3. S. Catani, M. L. Mangano, P. Nason and L. Trentadue, “The Resummation of

soft gluons in hadronic collisions,” Nucl. Phys. B 478 (1996), 273-310

4. S. Catani, “Higher order QCD corrections in hadron collisions: Soft gluon

resummation and exponentiation,” Nucl. Phys. B Proc. Suppl. 54 (1997),

107-113

5. S. Catani, “Soft gluon resummation: A Short review,” [arXiv:hep-ph/9709503

[hep-ph]].

6. R. Bonciani, S. Catani, M. L. Mangano and P. Nason, “NLL resummation of

the heavy quark hadroproduction cross-section,” Nucl. Phys. B 529 (1998),

424-450 [erratum: Nucl. Phys. B 803 (2008), 234]

7. S. Catani, M. L. Mangano and P. Nason, “Sudakov resummation for prompt

photon production in hadron collisions,” JHEP 07 (1998), 024

8. S. Catani, M. L. Mangano, P. Nason, C. Oleari and W. Vogelsang, “Sudakov

resummation effects in prompt photon hadroproduction,” JHEP 03 (1999), 025

9. M. Cacciari and S. Catani, “Soft gluon resummation for the fragmentation of

light and heavy quarks at large x,” Nucl. Phys. B 617 (2001), 253-290

10. S. Catani, D. de Florian, M. Grazzini and P. Nason, “Soft gluon resummation

for Higgs boson production at hadron colliders,” JHEP 07 (2003), 028



11. R. Bonciani, S. Catani, M. L. Mangano and P. Nason, “Sudakov resummation

of multiparton QCD cross-sections,” Phys. Lett. B 575 (2003), 268-278

12. G. Bozzi, S. Catani, D. de Florian and M. Grazzini, “Transverse-momentum

resummation and the spectrum of the Higgs boson at the LHC,” Nucl. Phys.

B 737 (2006), 73-120

13. G. Bozzi, S. Catani, D. de Florian and M. Grazzini, “Higgs boson production

at the LHC: Transverse-momentum resummation and rapidity dependence,”

Nucl. Phys. B 791 (2008), 1-19

14. G. Bozzi, S. Catani, G. Ferrera, D. de Florian and M. Grazzini,

“Transverse-momentum resummation: A Perturbative study of Z production

at the Tevatron,” Nucl. Phys. B 815 (2009), 174-197

15. G. Bozzi, S. Catani, G. Ferrera, D. de Florian and M. Grazzini, “Production of

Drell-Yan lepton pairs in hadron collisions: Transverse-momentum

resummation at next-to-next-to-leading logarithmic accuracy,” Phys. Lett. B

696 (2011), 207-213

16. S. Catani and M. Grazzini, “QCD transverse-momentum resummation in

gluon fusion processes,” Nucl. Phys. B 845 (2011), 297-323

17. S. Catani, M. Grazzini and A. Torre, “Soft-gluon resummation for

single-particle inclusive hadroproduction at high transverse momentum,” Nucl.

Phys. B 874 (2013), 720-745

18. S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, “Universality of

transverse-momentum resummation and hard factors at the NNLO,” Nucl.

Phys. B 881 (2014), 414-443

19. S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Nucl. Phys. B

888 (2014), 75-91



20. S. Catani, M. Grazzini and A. Torre, “Transverse-momentum resummation for

heavy-quark hadroproduction,” Nucl. Phys. B 890 (2014), 518-538

21. S. Catani, D. de Florian, G. Ferrera and M. Grazzini, “Vector boson

production at hadron colliders: transverse-momentum resummation and

leptonic decay,” JHEP 12 (2015), 047

22. S. Catani, M. Grazzini and H. Sargsyan, “Transverse-momentum resummation

for top-quark pair production at the LHC,” JHEP 11 (2018), 061



A difficulty immediately arises. Define Σ̃(L,αS) by

CN (Q2)

CLO
N (Q2)

= 1 + Σ̃(L,αS(Q2)) = 1 +
∞∑
k=1

hk(αS(Q2))Lk

Σ̃ arises as an expansion in powers of αS(Q2) of a function of

αS(Q2/Na). To NLL we have

αS

(
Q2

Na

)
=
αS(Q2)

1 + L

[
1− αS(Q2)

β1

β0

log(1 + L)

1 + L

]
; L = aαS(Q2)β0 log

1

N

which has a branch cut on the real positive N axis for L ≤ −1, or

N ≥ NL ≡ e
1
ᾱ ; ᾱ = aβ0αS(Q2)

because of the Landau singularity.

The inverse Mellin transform of CN (Q2)/CLO
N (Q2) does not exist.



One possible way out: take the term-by-term inverse Mellin

transform of Σ̃(L,αS):

Σ(z, αS(Q2)) =
∞∑
k=1

hkᾱ
k 1

2πi

∮ N̄+i∞

N̄−i∞
dN z−N logk

1

N

but the series is divergent! Proof:

1

2πi

∮ N̄+i∞

N̄−i∞
dN z−N logk

1

N
=

k!

2πi

[∮
dξ

ξk+1

logξ−1 1
z

Γ(ξ)

]
+

Σ(z, αS(Q2)) =
1

2πi

[
1

log 1
z

∮
dξ

ξ

logξ 1
z

Γ(ξ)

∞∑
k=1

k!hk

(
ᾱ

ξ

)k]
+



A second possible way out: taking the inverse Mellin transform of

each logkN term at the relevant (leading, next-to-leading...)

logarithmic level, the perturbative series converges. For example,

to leading log accuracy one has

1

2πi

∫ N̄+i∞

N̄−i∞
dN z−N logk

1

N
= k

[
logk−1(1− z)

1− z

]
+

+ NLL

The series now converges to

ΣLLx(z, αS(Q2)) = ᾱ

[
1

1− z
Σ̃′(ᾱ log(1− z), αS(Q2))

]
+

but only for z < zL = 1− e− 1
ᾱ again because of the Landau pole at

z = zL.



Similar situation in the case of the resummation of large

logarithms of q2
T/Q

2 in the small-qT region of the spectrum.

In this case

Mellin tr.

∫ 1

0

dz zN−1 f(z)→ Fourier tr.
1

2π

∫
d2b e−i

~b·~qT f(~qT)

The resummed cross section in ~b space has no inverse Fourier

transform, again because of the Landau pole of the running

coupling.



A solution (now universally adopted) was found by Stefano and

collaborators:



The minimal prescription. A very simple recipe: just take

σ(x,Q2) =
1

2πi

∫ c+i∞

c−i∞
dN x−N L(N,Q2)C(N,αS(Q2))

with 0 < c < NL.

c
NL

N space

Not a true inverse Mellin: the integrand is not analytical in any

right half-plane, because of the branch cut due to the Landau

pole.



The MP has a number of good properties:

• it is well defined for all values of x

• it is an asymptotic sum of the original, divergent perturbative

expansion

• the difference between the original series, truncated at the

best-approximation term, and the minimal prescription, is

suppressed more strongly than any power of Λ2/Q2.



Figure 1: Higgs production at the LHC.

Catani, De Florian, Grazzini, Nason, JHEP 0307(2003)028,

arXiv:hep-ph/0306211v1



Higgs production at the Tevatron.

Catani, De Florian, Grazzini, Nason, JHEP 0307(2003)028,

arXiv:hep-ph/0306211v1.



A minimal prescription for Fourier inversion in the case of ~qT

distributions: a deformation of the integration contour away from

the real axis.

Minimal in the sense that it gives back the right result when

applied to functions of ~b which do have a Fourier inverse.

E. Laenen, G. Sterman and W. Vogelsang, PRL 84(2000)4296;

A. Kulesza, G. Sterman and W. Vogelsang, PRD 66(2002)014011



Resummations can have a sizable impact:

The qT spectrum of Higgs production at the LHC

Left: NLL+LO compared with the LO spectrum

Right: uncertainty band from scale variations.

Bozzi, Catani, de Florian, Grazzini, NPB737(2006)73, hep-ph/0508068



The qT spectrum of Higgs production at the LHC

Left: NNLL+NLO compared with the LO spectrum

Right: uncertainty band from scale variations.

Bozzi, Catani, de Florian, Grazzini, NPB737(2006)73, hep-ph/0508068



The same subject was addressed later by Stefano, Pino

Marchesini and Bryan Webber from a different point of view,

suitable for implementation in shower Monte Carlo Codes:



Another chapter of Stefano’s and Marcello’s research:

perturbative QCD at high energy (small x)

Perturbative QCD predictions for hadronic processes at high pT

remarkably accurate:

• non-perturbative contributions suppressed by powers of Λ
pT

• logarithmic corrections to the naive partion model

systematically computable as a powes series in

αS(p2
T ) ∼ 1

β0 log
p2
T

Λ2

� 1

(asymptotic freedom)



OK for p2
t (or any other relevant scale) of order s and much larger

than Λ2.

In the regime s� p2
t � Λ2, powers of log x = log

p2
t

s appear in the

perturbative coefficients (small-x, or high-energy logarithms) and

spoil the convergence of the perturbative expansion.

Parton distribution functions f(z, p2
t ) poorly known in the relevant

region z ∼ x.

Resummation needed.
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A beautiful series of papers by Stefano in collaboration with Mike

Seymour:

S. Catani and M. H. Seymour

The Dipole formalism for the calculation of QCD jet

cross-sections at next-to-leading order

Phys. Lett. B 378 (1996), 287-301

S. Catani and M. H. Seymour

A General algorithm for calculating jet cross-sections in NLO
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A generalization of the subtraction method



The cancellation of infrared singularities is not easy to implement

numerically, because it takes place between processes with

different final states:

dσNLO = dσR
m+1partons + dσv

m partons

Both infrared divergent.

The subtraction method:

dσNLO =
[
dσR

m+1partons − dσA
m+1partons

]
+ dσA

m+1partons + dσv
m partons



with dσA chosen so that

1. it is observable-independent

2. it cancels the singularities in dσR

3. it can be integrated analytically in the singular region

The Catani-Seymour dipole formalism: a choice of dσA which is

completely general, i.e. not only observable-independent for a

given process, but also process independent.

Suitable for the implementation of QCD corrections in an event

generator.



More achievements in Marcello’s scientific work are worth

mentioning:

• early work on relativistic bound states

• large logarithms in electroweak radiative corrections

• gravitational scattering



Back-up slides



Resummed cross sections: a schematic derivation

Typical expression of an observable in QCD (eg, Drell-Yan cross

section):

σ(x,Q2) =

∫ 1

x

dy

y
L(y,Q2)C

(
x

y
, αS(Q2)

)
= L ⊗ C

The function L(y,Q2) is a parton luminosity, e.g.

L(y,Q2) =

∫ 1

y

dy′

y′
f1(y′, Q2) f2

(
y

y′
, Q2

)
in hadron-hadron collisions.

The coefficient function C is essentially a partonic cross section.



Resummation usually (but not always) perfomed in the space of

Mellin transformed quantities:

f(N) =

∫ 1

0

dxxN−1 f(x); f(x) =
1

2πi

∫ N̄+i∞

N̄−i∞
dN x−N f(N)

(a Laplace transform with respect to t = log 1
x , x = e−t).

• well defined and analytic in the half-plane Re N > N0 if f(x) is

at most as singular as x−N0 in x = 0

• In the space of the Mellin-conjugate variable N , convolution

products are turned into ordinary products:

σ(N,Q2) = L(N,Q2)C(N,αS(Q2)

• The region x→ 1 is mapped in the region N →∞:∫ 1

0

dxxN−1

[
logk(1− x)

1− x

]
+

=
1

k + 1
logk+1 1

N
+O(logkN)



Why Mellin moments?

C(z, αS) = δ(1− z) +
∞∑
n=1

∫ 1

0

dz1 . . . dzn
dwn(z1, . . . , zn)

dz1 . . . dzn
ΘPS(z; z1, . . . , zn)

The multi-gluon emission probability factorizes in the soft limit,

dwn(z1, . . . , zn)

dz1 . . . dzn
' 1

n!

n∏
i=1

dw(zi)

dzi

(easily seen in QED in the eikonal approximation) but the phase

space factor

ΘPS(z; z1, . . . , zn) = δ(z − z1z2 · · · zn)

does not ...



... unless one goes to Mellin moments:

C(N,αS) =

∫ 1

0

dz zN−1 C(z, αS)

= 1 +

∞∑
n=1

1

n!

∫ 1

0

dz1 · · · dzn
n∏
i=1

dw(zi)

dzi

∫ 1

0

dz zN−1δ(z − z1 · · · zn)

= 1 +
∞∑
n=1

1

n!

[∫ 1

0

dz1 z
N−1
1

dw(z1)

dz1

]
. . .

[∫ 1

0

dzn z
N−1
n

dw(zn)

dzn

]
Hence

C(N,αS) = exp

∫ 1

0

dz zN−1 dw

dz

Multigluon emission exponentiates in the soft limit.



Some details: consider the production of a heavy object with

energy Q0, plus n gluons of energies ω1, . . . , ωn. The differential

cross section in the eikonal approximation takes the form

dC ∼ dω1

ω1

dθ1

θ1
. . .

dωn
ωn

dθn
θn

δ(
√
s−Q0 − ω1 . . .− ωn)

Define z = Q0√
s

and

ω1 =
√
s(1− z1)

ω2 =
√
sz1(1− z2)

. . .

ωn =
√
sz1 . . . zn−1(1− zn)

We have

J =

∣∣∣∣d(ω1, . . . , ωn)

d(z1, . . . , zn)

∣∣∣∣ = sn/2zn−1
1 zn−2

2 . . . zn−1



Furthermore

ω1 . . . ωn =
√
szn−1

1 zn−2
2 . . . zn−1(1− z1) . . . (1− zn)

and

ω1 + . . .+ ωn =
√
s(1− z1 + z1 − z1z2 + . . .− z1z2 . . . zn)

=
√
s(1− z1z2 . . . zn)

Hence, after angular integration,

dC ∼
[
dz1

1− z1
log

1

1− z1

]
. . .

[
dzn

1− zn
log

1

1− zn

]
δ(z − z1 . . . zn)



Recalling that
dw

dz
= 2C αS

[
1

1− z
log

1

1− z

]
+

and using the leading-log result∫ 1

0

dz zN−1

[
logp(1− z)

1− z

]
+

=
1

p+ 1
logp+1 1

N
+O(logpN)

= −
∫ 1− 1

N

0

dz

1− z
logp(1− z) +O(logpN)

we find

C(N,αS) = exp
[
CαS log2N +O(logN)

]
Strictly valid in QED; in QCD, complications arise because of

gluon emission from gluon lines and because of color structure,

but the essential features remain the same.



Extension to QCD

QCD corrections essentially amount to the replacement

αS → αS(k2
T ) in the computation of the single-gluon emission

probability:

2CαS

[
1

1− z
log

1

1− z

]
+

→ 2C

[
1

1− z

∫ Q2

Q2(1−z)

dk2
T

k2
T

αS(k2
T )

]
+

The running coupling can then be expanded in powers of αS(Q2)

αS(k2
T ) =

αS(Q2)

1 + αS(Q2)β0 log
k2
T

Q2

= αS(Q2)

∞∑
n=0

(−αS(Q2)β0)n logn
k2
T

Q2

and the expansion integrated term by term. One gets

C(N,αS) = exp[logN g1(αS logN)]

where the function g1 has a Taylor expansion in its argument,

starting at order 1.



2C

[
1

1− z

∫ Q2

Q2(1−z)

dk2
T

k2
T

αS(k2
T )

]
+

= 2C

[
1

1− z

∫ αS(Q2)

αS(Q2(1−z))

dα

β(α)
αS(k2

T )

]
+



For a generic process one can prove the generalized result

Cres(N,αS(Q2)) = g0(αS) expS (L, ᾱ)

S(L, ᾱ) =
1

ᾱ
g1(L) + g2(L) + ᾱ g3(L) + ᾱ2 g4(L) + . . .

ᾱ = aαS(Q2)β0; a = 1, 2; L = ᾱ log
1

N

which defines an improved expansion (in powers of αS with

αS logN fixed) for Cres(N,αS): g1 gives the leading-log (LL)

approximation, g1 and g2 give the next-to-leading-log

approximation (NLL), and so on.


