Flavour News from my Homeoffice

Andrzej J. Buras

(Technical University Munich TUM-IAS)

QCD@Work 2024

(Trani, 17-21 June, 2024)

Overture

Trani

Symphony

Movement
$2^{\text {nd }}$
Movement
$3^{\text {rd }}$
Movement

Standard Model Predictions for
: Rare K and B Decays without
New Physics Infection
: Z' at Work

Movement

Disentangling New Physics in $K \rightarrow \pi v \bar{v}$ and $B \rightarrow \mathbf{K}\left(\mathbf{K}^{*}\right) \bar{v} \boldsymbol{v}$ Decays
: More Flavour News

1st Movement:

Standard Model Predictions
for Rare K and B Decays
without New Physics Infection

General Expression for Branching Ratios in the Standard Model

Calculable in the SM
Br (Decay) $=[$ CKM factor $]$.

Not predicted by SM

If CKM parameters are determined in a global fit that includes processes which are infected by New Physics, the resulting BR cannot be considered as genuine SM predictions.

Lattice QCD Presently known HQEFT with high precision
Dual QCD ChPT
$\left.\begin{array}{l}\text { Perturbative } \\ \text { Calculation } \\ 0, \text { NLO, NNLO }\end{array}\right]$
AJB:
Book Review in Physics Reports (1102.5650v6)

AJB: 2209.03968

Problems with SM Predictions for TH "clean" Rare K and B Decays

(AJB 2209.03968)
In a global fit New Physics can infect them through CKM parameters.

Tensions in the determination of $\left|\mathbf{V}_{\mathrm{cb}}\right|$ from inclusive vs exclusive tree level decays. (Lower the precision and should be presently avoided)

Hadronic uncertainties in some observables included in the fit are much larger than in many rare K and B decays. (Lower the precision and should be presently avoided)

Suggested Strategy

\(\begin{array}{cl}A J B+E . V e n t u r i n i \& 2109.11032
" \& 2203.11960\end{array}\)
AJB 2209.03968

Remove CKM dependence by calculating suitable ratios of branching ratios to $\Delta \mathbf{M}_{\mathrm{d}}, \Delta \mathbf{M}_{\mathrm{s}},\left|\varepsilon_{\mathrm{k}}\right|$

CKM can be fully eliminated for all rare B decays. For K decays only the dependence on β remains. (γ dependence irrelevant!!)

No New Physics!

Set $\Delta \mathbf{M}_{\mathrm{d}}, \Delta \mathbf{M}_{\mathrm{s}}, \varepsilon_{\mathrm{k}}$ and $\mathrm{S}_{\psi \mathrm{K}_{\mathrm{s}}}$ to experimental values ($\Delta \mathrm{F}=2$)
Very precise predictions for rare decays branching ratios independent of CKM parameters!

Rapid test of New Physics infection in the $\Delta \mathrm{F}=2$ sector using $\left|\mathrm{V}_{\mathrm{cb}}\right|-\gamma$ plots

```
BV1 + BV2
    +
```

AJB 2204.10337

Determination of CKM parameters from $\Delta F=2$ only.

Advantages over full global fits

$\Delta \mathrm{F}=2$ sector appears to be free of NP infection:
NP is not required.
The remaining observables outside the " $\Delta \mathrm{F}=2$ archipelago" that could be infected by NP can be predicted within the SM and the pulls can be better estimated.
$\left|\mathrm{V}_{\mathrm{cb}}\right|$ and $\left|\mathrm{V}_{\mathrm{ub}}\right|$ tensions can be avoided.

UT fitter CKM fitter PDG

Global Fitter

Standard Model Predictions for Rare K and B Decays without $\left|\mathrm{V}_{\mathrm{cb}}\right|$ uncertainties and New Physics Infection

but with

$\left|V_{c b}\right|$ Tension

$\left|\mathrm{V}_{\text {cb }}\right|_{\text {inclusive }}=(\mathbf{4 1 . 9 7} \pm 0.48) \cdot 10^{-3}$
$\mid \mathrm{V}_{\mathrm{cb}}$ lexclusive $\left.=\mathbf{(3 9 . 2 1} \pm 0.62\right) \cdot 10^{-3}$

Finauri \& Gambino (2310.20234)
(FLAG)
(2022)
(see also Bordone, Gubernari, van Dyk, Jung (1912.09335) Bordone, Capdevilla, Gambino (2107.00604)

Note: Changing $\left|V_{c b}\right|: 39 \cdot 10^{-3} \Rightarrow 42 \cdot 10^{-3}$

$$
\text { changes } \begin{aligned}
& \left|\mathbf{V}_{\mathrm{cb}}\right|^{2}: \text { by } 16 \%\left(\mathrm{~B}_{\mathrm{s}, \mathrm{~d}} \rightarrow \mu^{+} \mu^{-}, \Delta \mathrm{M}_{\mathrm{s}, \mathrm{~d}}\right) \\
& \left|\mathbf{V}_{\mathrm{cb}}\right|^{3}: \text { by } 25 \%\left(\mathrm{~K}^{+} \rightarrow \pi^{+} v \bar{v}, \varepsilon_{\mathrm{K}}\right) \\
& \left|\mathbf{V}_{\mathrm{cb}}\right|^{4}: \text { by } 35 \%\left(\mathrm{~K}_{\mathrm{L}} \rightarrow \pi^{0} v \overline{\mathrm{v}}, \mathrm{~K}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right)
\end{aligned}
$$

$\left|\mathrm{V}_{\mathrm{cb}}\right|$ tension is a disaster for those who spent
decades to calculate NLO and NNLO QCD Corrections
to basically all important rare K and B decays.

Achieving the reduction of TH uncertainties to $1 \%-2 \%$ level.

> Similar disaster for Lattice QCD which for $\Delta \mathbf{M}_{\mathrm{s}}, \Delta \mathbf{M}_{\mathrm{d}}, \varepsilon_{\mathrm{K}}$ and weak decay constants achieved accuracy below 5%. Moreover experimental data are very precise for them.

Basic Strategy for Rare B and K Decays

AJB + E. Venturini (2109.11032)

Use as basic parameters

$$
\lambda,\left|\mathbf{V}_{\mathrm{cb}}\right|, \beta, \gamma
$$

Construct $\left|\mathbf{V}_{\mathrm{cb}}\right|$ independent Ratios $\mathbf{R}_{\mathrm{i}}(\beta, \gamma)$

16 Ratios involving
$\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}, \mathrm{B}_{\mathrm{d}} \rightarrow \mu^{+} \mu^{-}$
$\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} v \bar{v}, \mathrm{~B}^{0} \rightarrow \mathrm{~K}^{0 \times} \nu \bar{v}$
$\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}, \mathrm{~K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}, \mathrm{~K}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}$

Once γ and β will be precisely measured very good test of SM

Additional ratios with $\mathbf{B} \rightarrow \mathbf{K}\left(\mathbf{K}^{*}\right) \mu^{+} \mu^{-}, \mathrm{B}_{\mathrm{s}} \rightarrow \varphi \mu^{+} \mu^{-}$in 2209.03968

Recommended Parametrization of CKM Matrix

"Critical Exponents" of Flavour Physics

AJB + Venturini (2109.11032) (All decays TH clean)

$$
\begin{aligned}
& \operatorname{Br}\left(\mathbf{K}^{+} \rightarrow \pi^{+} v \bar{v}\right) \sim\left|\mathbf{V}_{\mathrm{cb}}\right|^{2.8}[\sin \gamma]^{1.4} \operatorname{Br}\left(\mathbf{K}_{\mathrm{L}} \rightarrow \pi^{0} v \overline{\mathrm{v}}\right) \sim\left|\mathbf{V}_{\mathrm{cb}}\right|^{4}[\sin \gamma]^{2}[\sin \beta]^{-} \\
& \operatorname{Br}\left(\mathbf{K}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right)_{\mathrm{SD}} \sim\left|\mathbf{V}_{\mathrm{cb}}\right|^{4}[\sin \gamma]^{2}[\sin \beta]^{2} \quad\left|\varepsilon_{\mathrm{K}}\right| \sim\left|\mathbf{V}_{\mathrm{cb}}\right|^{3.4}[\sin \gamma]^{1.67}[\sin \beta]^{0.87}
\end{aligned}
$$

$$
\operatorname{Br}\left(\mathbf{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right) \sim\left|\mathbf{V}_{\mathrm{cb}}\right|^{2} \quad \operatorname{Br}\left(\mathbf{B}_{\mathrm{d}} \rightarrow \mu^{+} \mu^{-}\right) \sim\left|\mathbf{V}_{\mathrm{cb}}\right|^{2}[\sin \gamma]^{2}
$$

$$
\operatorname{Br}\left(\mathbf{B}^{+} \rightarrow \mathrm{K}^{+} v \bar{v}\right) \sim\left|\mathbf{V}_{\mathrm{cb}}\right|^{2} \quad \mathrm{Br}\left(\mathbf{B}^{0} \rightarrow \mathrm{~K}^{0^{*}} v \bar{v}\right) \sim\left|\mathbf{V}_{\mathrm{cb}}\right|^{2}
$$

$$
\Delta \mathbf{M}_{\mathrm{s}} \sim\left|\mathbf{V}_{\mathrm{cb}}\right|^{2} \quad \Delta \mathbf{M}_{\mathrm{d}} \sim\left|\mathbf{V}_{\mathrm{cb}}\right|^{2}[\sin \gamma]^{2}
$$

$$
S_{\psi k_{s}}=\sin 2 \beta
$$

$\left|\mathrm{V}_{\mathrm{cb}}\right|$ Independent Ratios in the SM

AJB + E. Venturini (B-K Correlations)

$$
\mathbf{R}_{1}(\beta, \gamma)=\frac{\operatorname{Br}\left(\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}\right)}{\left[\overline{\operatorname{Br}}\left(\mathbf{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right)\right]^{1.4}}=\mathbf{C}_{1}(\sin \gamma)^{1.4}\left(\mathrm{~F}_{\mathrm{B}_{\mathrm{s}}}\right)^{-2.8}
$$

$$
\mathbf{R}_{2}(\beta, \gamma)=\frac{\operatorname{Br}\left(\mathbf{K}^{+} \rightarrow \pi^{+} v \bar{v}\right)}{\left[\overline{\operatorname{Br}}\left(\mathbf{B}_{\mathrm{d}} \rightarrow \mu^{+} \mu^{-}\right)\right]^{1.4}}=\mathbf{C}_{2}(\sin \gamma)^{-1.4}\left(\mathrm{~F}_{\mathrm{B}_{\mathrm{d}}}\right)^{-2.8}
$$

$$
\mathbf{R}_{3}(\beta, \gamma)=\frac{\operatorname{Br}\left(K_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}\right)}{\left[\overline{\operatorname{Br}}\left(\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right)\right]^{2}}=\mathrm{C}_{3}[\sin \beta \sin \gamma]^{2}\left(\mathrm{~F}_{\mathrm{B}_{\mathrm{s}}}\right)^{-4}
$$

$$
\mathbf{R}_{4}(\beta, \gamma)=\frac{\operatorname{Br}\left(K_{L} \rightarrow \pi^{0} v \bar{v}\right)}{\left[\overline{\operatorname{Br}}\left(\mathbf{B}_{\mathrm{d}} \rightarrow \mu^{+} \mu^{-}\right)\right]^{2}}=\mathbf{C}_{4}\left[\frac{\sin \beta}{\boldsymbol{\operatorname { s i n }} \gamma}\right]^{2}\left(\mathrm{~F}_{\mathrm{B}_{\mathrm{d}}}\right)^{-4}
$$

V_{cb}-independent correlations between K and B Decays

$\mathrm{C}_{\mathrm{i}}=\mathrm{CKM}$

 independent known factors
Important V_{cb} - Independent Formulae

AJB + E. Venturini (2109.11032)

$$
\frac{\operatorname{Br}\left(\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}\right)}{\left|\varepsilon_{\mathrm{K}}\right|^{0.82}}=(1.31 \pm 0.05) \cdot 10^{-8}\left[\frac{\sin 22.2}{\sin \beta}\right]^{0.71}\left[\frac{\sin \gamma}{\sin 67^{\circ}}\right]^{0.015}
$$

$$
\frac{\operatorname{Br}\left(K_{L} \rightarrow \pi^{0} v \bar{v}\right)}{\left|\varepsilon_{K}\right|^{1.18}}=(3.87 \pm 0.06) \cdot 10^{-8}\left[\frac{\sin \beta}{\sin 22.2}\right]^{0.98}\left[\frac{\sin \gamma}{\sin 67^{\circ}}\right]^{0.030}
$$

$$
\left\{\left|\varepsilon_{\mathrm{K}}\right|_{\text {exp }}, S_{\psi \psi k_{s}}^{\mathrm{exp}}=\sin 2 \beta\right\} \Rightarrow\left\{\begin{array}{l}
\text { Most accurate } \\
\text { Predictions to } \\
\text { date }
\end{array}\right\}
$$

Note: practically γ-independent

14 additional ratios in 2109.11032

Important reduction of TH uncertainties in ε_{K} (Brod, Gorbahn, Stamou, 1911.06822)

Standard Model

$\operatorname{Br}\left(K^{+} \rightarrow \pi^{+} v \bar{v}\right)=(8.6 \pm 0.4) \cdot 10^{-11}$
$\operatorname{Br}\left(K_{L} \rightarrow \pi^{0} v \bar{v}\right)=(2.94 \pm 0.15) \cdot 10^{-11}$

AJB + Venturini (2109.11032)

Relativ to
1503.02693
(AJB, Buttazzo, Girrbach-Noe, Knegjens)

Reduction of uncertainties: In $\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}$ by factor 2.4 $\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} \nu \bar{v}$ by factor 4.0

News from NA62 and KOTO

$$
\begin{array}{|l|l}
\hline \operatorname{Br}\left(\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}\right)=(\mathbf{1 0 . 6} \pm \mathbf{3 . 8}) \cdot \mathbf{1 0}^{-11} \tag{NA62}\\
\operatorname{Br}\left(\mathrm{~K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}\right) \leq 2.0 \cdot 10^{-9} & \text { (NA62) } \\
\text { (KOTO) }
\end{array}
$$

$$
\left|V_{c b}\right|=42.6(4) \cdot 10^{-3} \quad\left|V_{c b}\right|_{\text {inl }}=42.0(5) \cdot 10^{-3}
$$

$$
\gamma=64.6(16)^{\circ} \quad \gamma=63.8(36)^{\circ} \quad \text { LHCb }
$$

$\left|\mathbf{V}_{\mathrm{cb}}\right|-\gamma$ Plot $=$ Rapid Test

Perfect consistency between $\Delta \mathbf{M}_{s}, \Delta \mathbf{M}_{\mathrm{d}}, \varepsilon_{K}, S_{\psi K}$
AJB + Venturini 2203.11960

Positive Tests

AJB + Venturini 2203.11960

Precise Lattice QCD and higher order QCD calculations are necessary to make the rapid tests reliable!

Rapid Test: cover picture of EPJC Vol. 83 number 1, January 2023

Particles and Fields

SM without uncertainties

Impact of New Physics

$$
\mathbf{V}_{\mathrm{cb}}-\gamma \text { Plot }
$$

Superior over UT-triangle plots: $\left|\mathrm{V}_{\mathrm{cb}}\right|$ seen, γ better exposed AJB 2204.10337

See CERN Courier July/Aug 2024 AJB

$\mathbf{R}_{i}(\beta, \gamma)$ can now be predicted in the SM

AJB 2209.03968

$$
\frac{\operatorname{Br}\left(K^{+} \rightarrow \pi^{+} v \bar{v}\right)}{\left[\overline{\operatorname{Br}}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)\right]^{1.4}}=53.69 \pm 2.75
$$

$$
\frac{\operatorname{Br}\left(\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}\right)}{\left[\operatorname{Br}\left(\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} v \bar{v}\right)\right]^{1.4}}=(1.90 \pm 0.13) \cdot 10^{-3}
$$

Many other results in 2209.03968

2nd Movement: \mathbf{Z}^{\prime} at Work

10 Years Anniversary (Z', 331)

AJB - Fulvia de Fazio - Jennifer Girrbach-Noe Collaboration

AJB

Fulvia

Jennifer

$$
\begin{aligned}
& 1211.1896 \\
& 1211.1237 \\
& 1303.3723 \\
& 1311.6729 \\
& 1404.3824 \\
& 1405.3850
\end{aligned}
$$

$\left.\begin{array}{cc}1512.02869 \\ 1604.02344 \\ 1912.09308 \\ 2301.02649\end{array}\right] \quad$ Without Jennifer

Peculiar Pattern of Flavour Data

```
\Delta\mp@subsup{\varepsilon}{\textrm{K}}{\textrm{NP}}=0
Indirect CP
Violation
```

but $\quad \begin{array}{r}\Delta\left(\frac{\varepsilon^{\prime}}{\varepsilon}\right)^{N P}>0 \quad \text { (significant) } \\ \\ \text { Direct CP Violation }\end{array}$ Direct CP Violation

Required $\bar{s} \mathrm{~d}$ coupling from New Physics \Rightarrow Impact on ε_{K}

```
|M
```

$\mathbf{S}_{\Psi K_{\mathrm{s}}}, \mathbf{S}_{\Psi \varphi} \quad$ but

$$
\begin{array}{|lc|}
\hline \operatorname{Br}\left(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right) & (\text {pull -5.1 } \sigma) \\
\operatorname{Br}\left(B_{s} \rightarrow \varphi \mu^{+} \mu^{-}\right) & (\text {pull -4.8 } \sigma) \tag{1.1,6}
\end{array}
$$

Required \bar{b} s coupling from New Physics \Rightarrow Impact on $\Delta M_{\mathrm{s},} S_{\psi \varphi}, \ldots$

Which NP scenario can reproduce this pattern?

$$
\varepsilon_{\mathrm{K}}, \varepsilon^{\prime} / \varepsilon, \Delta \mathrm{M}_{\mathrm{K}}, \mathrm{~K}^{+} \rightarrow \pi^{+} \nu \bar{v}, \mathrm{~K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}
$$

New heavy gauge boson $Z^{\prime}: \Delta_{\mathrm{L}}^{\text {sd }}\left(\mathbf{Z}^{\prime}\right)=\left|\Delta_{\mathrm{L}}^{\text {sd }}\left(\mathbf{Z}^{\prime}\right)\right| \mathrm{e}^{\mathrm{i} \varphi}$

$$
\begin{aligned}
& \varepsilon_{\mathrm{K}}^{\mathrm{NP}} \sim \operatorname{Im}\left(\Delta_{\mathrm{L}}^{\text {sd }}\left(\mathbf{Z}^{\prime}\right)\right)^{2} \sim\left[\operatorname{Re} \Delta_{\mathrm{L}}^{\mathrm{sd}}\left(\mathbf{Z}^{\prime}\right)\right]\left[\operatorname{Im} \Delta_{\mathrm{L}}^{\text {sd }}\left(\mathbf{Z}^{\prime}\right)\right] \\
& \left(\varepsilon^{\prime} / \varepsilon \varepsilon^{\mathrm{NP}} \sim \operatorname{Im} \Delta_{\mathrm{L}}^{\text {sd }}\left(\mathbf{Z}^{\prime}\right)\right. \\
& \Delta \mathbf{M}_{\mathrm{K}}^{\mathrm{NP}} \backsim\left(\operatorname{Re} \Delta_{\mathrm{L}}^{\text {sd }}\left(\mathbf{Z}^{\prime}\right)\right)^{2}-\left(\operatorname{Im} \Delta_{\mathrm{L}}^{\text {sd }}\left(\mathbf{Z}^{\prime}\right)\right)^{2} \quad\left(\mathbf{K}^{0}-\overline{\mathbf{K}}^{0}\right)
\end{aligned}
$$

With $\operatorname{Re} \Delta_{\mathrm{L}}^{\text {sd }}\left(\mathbf{Z}^{\prime}\right) \ll \operatorname{Im} \Delta_{\mathrm{L}}^{\mathrm{Sd}}\left(\mathbf{Z}^{\prime}\right)$
(Imaginary coupling)
$\varepsilon_{\mathrm{K}}^{\mathrm{NP}} \simeq 0 \quad\left(\varepsilon^{\prime} / \varepsilon\right)^{\mathrm{NP}}$ can be enhanced
$\Delta \mathbf{M}_{\mathrm{K}}$ can be suppressed + Interesting implications (possibly required by \quad for $K \rightarrow \pi v \bar{v}$ Lattice QCD)

Aebischer AJB
Kumar
2302.00013

Monika Blanke
Based on the insights from Monika Blanke (0904.1545)

Kaon Physics without New Physics in ε_{k}

$$
\begin{aligned}
R_{\nu \bar{\nu}}^{+}=\frac{\mathcal{B}\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right)}{\mathcal{B}\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right)_{S M}}, \quad R_{\nu \bar{\nu}}^{0}=\frac{\mathcal{B}\left(K_{L} \rightarrow \pi^{0} \nu \bar{\nu}\right)}{\mathcal{B}\left(K_{L} \rightarrow \pi^{0} \nu \bar{\nu}\right)_{S M}}, \\
R_{\mu^{+} \mu^{-}}^{S}=\frac{\mathcal{B}\left(K_{S} \rightarrow \mu^{+} \mu^{-}\right)_{\mathrm{SD}}}{\mathcal{B}\left(K_{S} \rightarrow \mu^{+} \mu^{-}\right)_{S M}^{S D}}, \quad R_{\pi \ell^{+} \ell^{-}}^{0}=\frac{\mathcal{B}\left(K_{L} \rightarrow \pi^{0} \ell^{+} \ell^{-}\right)}{\mathcal{B}\left(K_{L} \rightarrow \pi^{0} \ell^{+} \ell^{-}\right)_{S M}}, \\
R_{\Delta M_{K}}=\frac{\Delta M_{K}^{B S M}}{\Delta M_{K}^{\exp }, \quad \Delta\left(\frac{\varepsilon^{\prime}}{\varepsilon}\right)=\kappa_{\varepsilon^{\prime}} \cdot 10^{-3}, \quad \Delta\left(\varepsilon_{K}\right)=\kappa_{\varepsilon} \cdot 10^{-3}},
\end{aligned}
$$

(Z' at work)

Aebischer, AJB, Kumar 2302.00013

J. Aebischer

Left-handed
couplings

B Physics without NP in Quark Mixing

Fine tuning in $\Delta \mathbf{M}_{\mathbf{q}} \quad \mathbf{q}=\mathrm{d}, \mathbf{s}$
suppression factor
$\mathbf{M}_{12}\left(\mathbf{Z}^{\prime}\right) \sim\left[1+\left(\frac{\Delta_{\mathrm{R}}^{\mathrm{bq}}\left(\mathbf{Z}^{\prime}\right)}{\Delta_{\mathrm{L}}^{\mathrm{bq}}\left(\mathbf{Z}^{\prime}\right)}\right)^{2}+2 \mathrm{~K}_{\mathrm{bq}} \frac{\Delta_{\mathrm{R}}^{\mathrm{bq}}}{\Delta_{\mathrm{L}}^{\mathrm{bq}}}\right] \frac{\Delta_{\mathrm{L}}^{\mathrm{bq}}\left(\mathbf{Z}^{\prime}\right)}{\mathbf{M}_{\mathbf{Z}^{\prime}}^{2}}$

$$
\mathbf{K}_{\mathrm{bq}}=\frac{\left\langle\widehat{\mathbf{Q}}_{1}^{\mathrm{LR}}\left(\mathbf{M}_{\mathrm{Z}^{\prime}}\right)\right\rangle^{\mathrm{bq}}}{\left\langle\widehat{\mathbf{Q}}_{1}^{\mathrm{VLL}}\left(\mathbf{M}_{\mathrm{Z}^{\prime}}\right)\right\rangle^{\mathrm{bq}}} \approx-5 \quad \Delta_{\mathbf{R}}^{\mathrm{bq}}\left(\mathbf{Z}^{\prime}\right) \approx 0.1 \Delta_{\mathrm{L}}^{\mathrm{bq}}\left(\mathbf{Z}^{\prime}\right)
$$

AJB, De Fazio, Girrbach-Noe 1404.3824
AJB, Buttazzo, Girrbach-Noe 1408.0728
Crivellin, Hofer, Matias, Nierste, Pokorski, Rosiek 1504.07928

Strong Suppression of Z^{\prime} to $\mathbf{B}_{s}-\overline{\mathbf{B}}_{\mathbf{s}}$ Mixing

Requires $\quad \Delta_{\mathrm{R}}^{\mathrm{bs}}\left(\mathrm{Z}^{\prime}\right) \approx \mathbf{0 . 1} \Delta_{\mathrm{L}}^{\mathrm{bs}}\left(\mathrm{Z}^{\prime}\right)$
Non-negligible RH couplings

Implications for rare B-Decays

Θ Suppression of $\mathbf{B}^{+} \rightarrow \mathbf{K}^{+} \mu^{+} \mu^{-}, B_{s} \rightarrow \varphi \mu^{+} \mu^{-}, B \rightarrow K^{*} \mu^{+} \mu^{-}$

(+ Enhancement of $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} v \bar{v}, \mathrm{~B}^{\mathbf{0}} \rightarrow \mathrm{K}^{0} v \bar{v}$ up to $\mathbf{2 0 \%}$

News from Belle II

$$
\begin{gather*}
\operatorname{Br}\left(\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} v \overline{\mathrm{v}}\right)=(13 \pm 4) \cdot 10^{-6} \\
\operatorname{Br}\left(\mathrm{~B}^{+} \rightarrow \mathrm{K}^{+} v \overline{\mathrm{v}}\right)_{\mathrm{SM}}=(4.92 \pm \mathbf{0 . 3 0}) \cdot \mathbf{1 0}^{-6}
\end{gather*}{ }^{*} \quad \text { AJB + Stangl (2024) }
$$

News from CERN (LHCb, CMS, ATLAS)

$$
\begin{aligned}
& \overline{\operatorname{Br}}\left(\mathbf{B}_{\mathbf{s}} \rightarrow \mu^{+} \mu^{-}\right)=(3.45 \pm \mathbf{0 . 2 9}) \cdot 10^{-9} \\
& \overline{\operatorname{Br}}\left(\mathrm{~B}_{\mathbf{s}} \rightarrow \mu^{+} \mu^{-}\right)_{\mathbf{S M}}=(3.78 \pm \mathbf{0 . 1 2}) \cdot \mathbf{1 0}^{-9} \quad \text { AJB }+ \text { Venturini (2022) }
\end{aligned}
$$

*) Many analyses:
Bause et al. (2309.00075)
Becirevic et al. (2301.06990, 2309.02246)
Dreiner et al. (2309.03727)
He et al. (2309.12741)

Testing Z' Couplings (1409.4557)

AJB, J. Girrbach-Noe, C. Niehoff, D. Straub

$$
\mathbf{R}_{\mathrm{K}}=\frac{\operatorname{Br}(\mathbf{B} \rightarrow \mathrm{K} \nu \bar{v})}{\operatorname{Br}(\mathbf{B} \rightarrow K \nu \bar{v})_{\mathrm{SM}}}
$$

Left-handed

$$
\mathbf{R}_{\mathbf{K}^{*}}=\frac{\operatorname{Br}\left(\mathbf{B} \rightarrow \mathbf{K}^{*} v \overline{\mathbf{v}}\right)}{\operatorname{Br}\left(\mathbf{B} \rightarrow \mathbf{K}^{*} v \overline{\mathbf{v}}\right)_{\mathbf{S M}}}
$$

$$
\begin{aligned}
& \mathbf{R}_{\boldsymbol{\mu} \mu} \leftrightarrow \mathbf{B}_{\mathbf{s}} \rightarrow \boldsymbol{\mu} \overline{\boldsymbol{\mu}} \\
& \mathbf{R}_{\mathbf{K \mu \mu}} \leftrightarrow \mathbf{B}^{+} \rightarrow \mathbf{K}^{+} \boldsymbol{\mu} \overline{\boldsymbol{\mu}} \\
& \mathbf{R}_{\mathbf{K}^{*} \mu \mu} \leftrightarrow \mathbf{B}^{\mathbf{0}} \rightarrow \mathbf{K}^{\mathbf{0} *} \boldsymbol{\mu} \bar{\mu}
\end{aligned}
$$

3rd Movement:

Distangling New Physics in $K \rightarrow \pi v \bar{v}$ and $\mathbf{B} \rightarrow \mathbf{K}\left(\mathbf{K}^{*}\right) \overline{\boldsymbol{v}} \boldsymbol{v}$ Decays

Goal: Disentangling different New Physics contributions to the rare decays $K \rightarrow \pi+E$ and $B \rightarrow K\left(K^{*}\right)+E$ through kinematic distributions in the missing energy E

Step 1: WET with active or sterile neutrinos including Lepton Number violating operators with scalar and tensor currents

Step 2: Dark WET: new invisible particles in the final state: two dark scalars, two dark fermions, two dark vectors

Main Results

A.

Vector, scalar and tensor quark currents can be uniquely determined from experimental data of kinematic distributions
B. Measurements of kinematic distributions make it possible to disentangle the contributions of WET operators from most of the dark-sector operators
C. Sum Rules for vector currents in WET are also satisfied in some new dark-physics scenarios that mimic WET

- \quad SM + Scalar
—— SM + Tensor
- $\mathrm{SM}+$ Vector LRs
---- SM + Vector L
--.--- SM + Vector R

---- SM + Scalar LRs
.-...- SM + Scalar LRa
- $\mathrm{SM}+$ Scalar LoR
- SM + Tensor
- SM + Vector LRs
---- SM + Vector L
.-.--- SM + Vector R

AJB + J.Harz + M. Mojahed

4th Movement More Flavour News

Dual QCD Approach for Weak Decays

Successful low energy approximation of QCD for $\mathbf{K} \rightarrow \pi \pi K^{0}-\mathbf{K}^{0}$ mixing (Large \mathbf{N} framework)

W. Bardeen

AJB

J.-M. Gérard

$\Delta I=1 / 2$ Rule

$$
\mathrm{R}_{\mathrm{exp}}=\frac{\mathrm{A}\left(\mathrm{~K} \rightarrow(\pi \pi)_{\mathrm{l}=0}\right)}{\mathrm{A}\left(\mathrm{~K} \rightarrow(\pi \pi)_{\mathrm{l}=2}\right)}=22.4
$$

Puzzle since 1954 (Gell-Mann + Pais) $\mathbf{R}_{\mathrm{th}}=\sqrt{2} \quad$ (without QCD)

$$
\left.\begin{array}{l}
1986 \\
2014
\end{array}\right] \quad R=16 \pm 2 \quad \begin{array}{ll}
D \\
Q \\
2020 & R=19.19 \pm 4.8
\end{array}
$$

Dual QCD

Bardeen, AJB, Gérard (Current-Current Operators)

RBC-UKQCD
Lattice Collaboration

AJB
F. de Fazio
J. Girrbach-Noe
(1404.3824)

$\varepsilon^{\prime} / \varepsilon$ Controversy

$$
\left(\varepsilon^{\prime} / \varepsilon\right)_{\exp }=(16.6 \pm 2.3) \cdot 10^{-4}
$$

$$
\left(\varepsilon^{\prime} / \varepsilon\right)_{\mathrm{SM}}=(14 \pm 5) \cdot 10^{-4}
$$

Hep-arxiv: 2101.00020
Chiral Perturbation Theory (Pich et al) No Anomaly

$$
\left(\varepsilon^{\prime} / \varepsilon\right)_{S M}=(5 \pm 2) \cdot 10^{-4}
$$

$\begin{aligned} & \text { Insight from } \\ & \text { Dual QCD }\end{aligned}+\begin{gathered}\text { NNLO } \\ \text { QCD }\end{gathered}$
(AJB + Gérard) Anomaly

$$
\left(\varepsilon^{\prime} / \varepsilon\right)_{\mathrm{SM}}=(21.7 \pm 8.4) \cdot 10^{-4}
$$

RBC - UKQCD
No Anomaly

Hopefully this controversy will be clarified in this decade

Reviews AJB: 2101.00020, 2203.12632 2307.15737

Good News on $\varepsilon^{\prime} / \varepsilon$

$\varepsilon^{\prime} / \varepsilon=$ QCD Penguins - Electroweak Penguin

$\left(\frac{\varepsilon^{\prime}}{\varepsilon}\right)_{\text {SM }}^{\text {EWP }}=-(7 \pm 1) \cdot 10^{-4} \quad$ (RBC - UKQCD and DQCD)

Perfect
Agreement!

Chiral Pert Th: $\approx(-3.5 \pm 2.0) \cdot 10^{-4}$
Disagreements on QCD Penguin contribution.

\[

\]

Main Activities in the Homeoffice in Ottobrunn

NLO QCD in WET and SMEFT (in Homeoffice)

WET	$\mu \leq \mathbf{E W}$	$\begin{aligned} & S U(3)_{\mathrm{c}} \otimes U(1)_{\text {QED }} \\ & S M+\text { New Physics Operators } \end{aligned}$
$\Delta \mathrm{F}=1$	(Non-Leptonic)	J. Aebischer, C. Bobeth, AJB M. Misiak (2107.10262) (2107.12391)
$\Delta \mathrm{F}=2$	(Non-Leptonic)	J. Aebischer, C. Bobeth, AJB (2009.07276)
SMEFT	$\mu \geq$ EW	J. Aebischer, AJB, J. Kumar
$\Delta \mathrm{F}=2$	(Non-Leptonic)	(2203.11224) (2202.01225)

Λ_{NP}

New Physics
 (New Forces, New Particles)

Renormalization Group Evolution

Energy

 Gap$\Lambda_{\text {SM }}$

$$
0(\text { few } \mathrm{GeV})
$$

Standard Model Effective Field Theory (SMEFT)
Unbroken $\operatorname{SU}(3)_{\mathrm{C}} \otimes \mathrm{SU}(2)_{\mathrm{L}} \otimes \mathrm{U}(1)_{\mathrm{Y}}$

SM particles, interactions

New Physics

+ Contact Interactions (new operators)

In full (D=6) generality 1350 real parameters

1149 complex phases

Jenkins, Manohar, Trott

$$
\begin{array}{ll}
& S U(3)_{\mathrm{c}} \otimes U(1)_{\text {QED }} \\
\text { SM } & + \text { New Physics Effects }
\end{array}
$$

Scale of decaying mesons

Non-perturbative QCD

$$
\begin{aligned}
& \Lambda_{\mathrm{NP}} \gg \Lambda_{\mathrm{SM}} \approx 0(100 \mathrm{GeV}) \\
& \begin{array}{l}
\text { Buchmüller, Wyler } \\
\text { Warsaw Basis }
\end{array} \\
& \hline
\end{aligned}
$$

Messages to take to your Homeoffice

\mathbf{V}_{cb} - independent ratios and $\mathbf{V}_{\mathrm{cb}}-\gamma$ plots will play important roles in the search for New Physics

The sextet

$$
\begin{aligned}
& \mathbf{K}^{+} \rightarrow \pi^{+} v \bar{v}, \mathbf{K}_{\mathbf{L}} \rightarrow \pi^{0} v \bar{v}, \mathbf{B} \rightarrow \mathbf{K} v \bar{v} \\
& \mathbf{B} \rightarrow \mathbf{K}^{*} v \bar{v}, \mathbf{B}_{\mathbf{s}} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}, \mathbf{B}_{\mathbf{d}} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}
\end{aligned}
$$

can reveal NP easier than

$$
\begin{aligned}
& \mathbf{B} \rightarrow \mathbf{K} \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}, \mathbf{B} \rightarrow \mathbf{K}^{*} \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-} \\
& \text {(smaller long-distance uncertainties) }
\end{aligned}
$$

It is crucial that several lattice QCD groups calculate $\Delta \mathbf{M}_{\mathrm{d}}, \Delta \mathrm{M}_{\mathrm{s}}, \varepsilon^{\prime} / \varepsilon, \Delta I=1 / 2$ rule with $2+1$ + 1 flavours

Coming Years : Flavour Precision Era

LHC

Upgrade $\mathrm{E}=14 \mathrm{TeV}$ (CERN)

Precision

$\mathrm{B}_{\mathrm{d}, \mathrm{s}}$ - Meson Decays
LHCb, CMS ATLAS, Belle II

$$
\begin{array}{cc}
\mathrm{K}^{+} \rightarrow \pi^{+} \nu \bar{v}\left(10^{-10}\right) & \text { (CERN) } \\
\mathrm{K}_{\mathrm{L}} \rightarrow \boldsymbol{\pi}^{0} v \tilde{v}\left(\mathbf{3} \cdot 10^{-11}\right) & \begin{array}{c}
\text { J-PARC } \\
\end{array} \\
& \text { (Japan) }
\end{array}
$$

Lepton Flavour
Violation
$\mu \rightarrow \mathbf{e} \gamma$
$\mu \rightarrow$ eee
$\tau \rightarrow \mu \gamma, \tau \rightarrow 3 \mu$
Neutrinos

Electric Dipole Moments

Improved

 LatticeGauge Theory Calculations

2024-2046 : Expedition Attouniverse \rightarrow Zeptouniverse
 $$
10^{-18} \mathrm{~m} \rightarrow 10^{-21} \mathrm{~m}
$$

Hopefully meeting Z', Leptoquarks, Vector-Like Quarks and Leptons

Zeptouniverse Guide

GAUGE THEORY OF Weak Decays

The Standard Model and the Expedition to New Physics Summits

Exciting Years!

739 pages 1350 references University Press

Flavour Physics (2024-)

Flavour Physics (2024-)

(2034)

Zeptouniverse

Crevasses

New Physics Summits

SMEFT Energy gap

Allan Buras

SM

SMEFT
Energy gap

Allan Buras

SM

SMEFT
Energy gap
Allan Buras

Thank You!

Backup

Footprints of Majorana Neutrinos in Rare K and B Decays

AJB + Julia Harz

All existing calculations of $\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}$ and $\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}$ assumed until recently that neutrinos are of Dirac type.

What if neutrinos are Majorana neutrinos? First pioneering studies:

1912.10433 2009.04494

T. Li, X.-D. Ma, M. A. Schmidt

Main Messages from these Studies

Lepton Number Violating operators
$\left(\bar{d}_{\mathrm{R}}^{\mathrm{i}} \mathrm{d}_{\mathrm{L}}^{\mathrm{j}}\right)\left(\bar{v}_{\alpha}^{\mathrm{c}} \mathrm{v}_{\beta}\right)$ $\left(\bar{d}_{\mathrm{L}}^{\mathrm{i}} \mathrm{d}_{\mathrm{R}}^{\mathrm{j}}\right)\left(\overline{\mathrm{v}}_{\alpha}^{\mathrm{c}} \mathrm{v}_{\beta}\right)$
(LNV) $(\Delta L=2)$

Enter $\mathrm{L}_{\text {eff }}$ as dim $=7$ operators. $\quad v \equiv \mathrm{P}_{\mathrm{L}} v$
dim6
$\left(\overline{\mathrm{d}}_{\mathrm{L}}^{\mathrm{i}} \gamma^{\mu} \mathrm{d}_{\mathrm{L}}^{\mathrm{j}}\right)\left(\bar{v}_{\alpha}^{\mathrm{c}} \gamma^{\mu} v_{\beta}\right) \quad\left(\overline{\mathrm{d}}_{\mathrm{R}}^{\mathrm{i}} \gamma^{\mu} \mathrm{d}_{\mathrm{R}}^{\mathrm{j}}\right)\left(\bar{v}_{\alpha}^{\mathrm{c}} \gamma^{\mu} v_{\beta}\right) \quad(\mathrm{LNC}) \quad(\Delta \mathrm{L}=0)$

Difference between LNV and LNC seen in s-distributions, $\mathbf{s}=$ the invariant mass 2 of $v \bar{v}$

Scale $\Lambda_{N P}^{\mathrm{LNV}} \approx 20 \mathrm{TeV}$ can be probed

All neutrino generations involved as opposed to neutrinoless double beta decay

Main Goals of AJB - JH Collaboration

AJB + Julia Harz

Closer look at the impact of Majorana neutrinos on the $\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}-\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}$ plane

Generalization to $\mathrm{B} \rightarrow \mathrm{K} v \bar{v}, \mathrm{~B} \rightarrow \mathrm{~K}^{*} v \bar{v}, \mathrm{~B} \rightarrow \mathrm{X} v \bar{v}$

Efficient strategies that would allow NA62, KOTO and Belle II to find possible footprints of Majorana neutrinos in their data.

Strategies valid in the presence of right-handed currents, LFUV and LFV

$$
\Delta C_{v}=\left|C_{v}^{N P}\right| e^{i \varphi_{v}} \quad C_{s}=\left|C_{s}\right| e^{i \varphi_{s}}
$$

Present Anomalies

Anomaly in
Angular Distribution
$B \rightarrow K^{*} \mu^{+} \mu^{-} \quad\left(P_{5}^{1}\right)$

Violation of CKM Unitarity $V_{u s}, V_{u d}$

$$
\mathbf{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}
$$

$$
\begin{aligned}
\mathbf{B}^{+} & \rightarrow \mathbf{K}^{+} \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-} \\
\mathbf{B}_{\mathbf{s}} & \rightarrow \boldsymbol{\varphi} \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}
\end{aligned}
$$

\oplus
B

Neutrino
Anomalies

New Particles behind Anomalies

Top candidates

Review:
Z^{\prime} boson $\quad: \quad$ heavy neutral gauge boson (Spin 1)

Leptoquarks : Spin 0 or Spin 1 (provide interactions between quarks and leptons)

Dinosaurs of
Flavour Physics?

Vector-like quarks : Left and right components transform identically under SU(2) \llcorner

SM Relation for $\Delta \mathbf{M}_{s}, \Delta \mathbf{M}_{\mathrm{d}},\left|\varepsilon_{\mathrm{K}}\right|, \beta$

AJB: 2209.03968

$$
R \equiv \frac{\left|\varepsilon_{\mathrm{K}}\right|^{1.18}}{\Delta \mathrm{M}_{\mathrm{d}} \Delta \mathrm{M}_{\mathrm{s}}}=(8.22 \pm 0.18) \cdot 10^{-5}\left(\frac{\sin \beta}{\sin 22.2^{\circ}}\right)^{1.027} \mathrm{~K} \mathrm{ps}^{2}
$$

$$
\begin{aligned}
K=\left(\frac{\widehat{B}_{\mathrm{K}}}{0.7625}\right)^{1.18}\left[\frac{210.6 \mathrm{MeV}}{\sqrt{\widehat{\mathrm{~B}}_{\mathrm{B}_{\mathrm{d}}}} \mathrm{~F}_{\mathrm{B}_{\mathrm{d}}}}\right]^{2}\left[\frac{256.1 \mathrm{MeV}}{\sqrt{\widehat{\mathrm{~B}}_{\mathrm{B}_{\mathrm{s}}}} \mathrm{~F}_{\mathrm{B}_{\mathrm{s}}}}\right]^{2} \\
\text { HPQCD }
\end{aligned}
$$

$$
R_{\exp }=(8.26 \pm 0.06) \cdot 10^{-5} p^{2} \quad K=1.00 \pm 0.07
$$

$\operatorname{Br}\left(\mathrm{K}^{+} \rightarrow \mu^{+} v \overline{\mathrm{v}}\right)_{\mathrm{SM}}$ and $\operatorname{Br}\left(\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} v \overline{\mathrm{v}}\right)_{\mathrm{SM}}$

AJB + E. Venturini (2109.11032)

$$
\underbrace{\operatorname{Br}\left(\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}\right)_{\exp }=\left(10.6_{-3.5}^{+4.0}\right) \cdot 10^{-11}}_{\text {NA62 }} \frac{\operatorname{Br}\left(\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}\right)_{\exp } \leq 3.0 \cdot 10^{-9}}{\text { KOTO }}
$$

$\operatorname{Br}\left(\mathrm{K}^{+} \rightarrow \pi^{+} v \overline{\mathrm{v}}\right)_{\mathrm{Sm}}=(8.60 \pm 0.42) \cdot 10^{-11} \quad \mathrm{~V}_{\mathrm{cb}}$ and γ independent

$$
\operatorname{Br}\left(\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} v \overline{\mathrm{v}}\right)_{\mathrm{SM}}=(2.94 \pm \mathbf{0 . 1 5}) \cdot 10^{-11}
$$

The Story of $\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}$continues

$$
\begin{array}{ll}
\overline{\operatorname{Br}}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=(3.78 \pm 0.12) \cdot 10^{-9} & \begin{array}{l}
\text { AJB + Venturini } \\
\\
\\
\overline{\operatorname{Br}}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=(3.45 \pm 0.29) \cdot 11960 \\
\\
\overline{\operatorname{Br}}\left(B_{s} \rightarrow \boldsymbol{1 0}^{+} \mu^{-}\right)=(3.47 \pm 0.14) \cdot \mathbf{1 0}^{-9} \\
\text { HFLAV } \\
\text { (CMS, LHCb, ATLAS) } \\
\\
\text { UTfitter } \\
2212.1051
\end{array}
\end{array}
$$

Bobeth, Gorbahn, Stamou (2013) NLO EW Hermann, Misiak, Steinhauser (2013) NNLO QCD Beneke, Bobeth, Szafron $(2017,2019)$ QED

Searching for Majorana Footprints through LNC Sum Rules

LNC Sum Rules

AJB, J. Girrbach-Noe, C. Niehoff, D. Straub (1409.4557)

$$
\left(r_{1}^{L N C}=r_{2}^{L N C}=1\right)
$$

$$
\left.F_{L}=F_{L}^{S M}\left[\frac{\left(\kappa_{\eta}-2\right) R_{K}+4 R_{K^{*}}}{\left(\kappa_{\eta}+2\right) R_{K^{*}}}\right] r_{1}^{L N V} \quad \right\rvert\, \begin{aligned}
& r_{1}^{L N V} \neq 1 \\
& r_{2}^{L N V} \neq 1
\end{aligned}
$$

$\operatorname{Br}\left(\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{s}} v \bar{v}\right)=\operatorname{Br}\left(\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{s}} v \bar{v}\right)_{\mathrm{SM}}\left[\frac{\kappa_{\eta} \mathbf{R}_{\mathrm{K}}+2 \mathbf{R}_{\mathbf{K}^{*}}}{\kappa_{\eta}+2}\right] \mathrm{r}_{2}^{\mathrm{LNv}}$

$$
R_{K}=\frac{\operatorname{Br}(B \rightarrow K v \bar{v})}{B_{S M}(B \rightarrow K v \bar{v})} \quad R_{K^{*}}=\frac{\operatorname{Br}\left(B \rightarrow K^{*} v \bar{v}\right)}{\operatorname{Br}\left(B \rightarrow K^{*} v \bar{v}\right)_{S M}}
$$

$$
\kappa_{\eta}=1.33 \pm 0.05 \text { (formfactor) } \quad F_{L}^{S M}=0.49 \pm 0.04
$$

\mathbf{K}^{*} Iongitudinal polarization fraction

Vector Z' Couplings to Leptons

$\Delta C_{9}\left(\Lambda_{N P}\right) \neq 0$
$\Delta \mathrm{C}_{10}\left(\boldsymbol{\Lambda}_{\mathrm{NP}}\right)=\mathbf{0}$
AJB + Stangl (2407.xxx)

Strong Suppression of Z^{\prime} to $\Delta F=2$ Process

K-System
$\mathrm{B}_{\mathrm{s}, \mathrm{d}}$-Systems
$\operatorname{Re} \Delta_{\mathrm{L}}^{\mathrm{Sd}}\left(\mathbf{Z}^{\prime}\right) \ll \operatorname{Im} \Delta_{\mathrm{L}}^{\text {sd }}\left(\mathbf{Z}^{\prime}\right)$
$\Delta_{\mathrm{R}}^{\mathrm{bq}}\left(\mathrm{Z}^{\prime}\right) \approx 0.1 \Delta_{\mathrm{L}}^{\mathrm{bq}}\left(\mathrm{Z}^{\prime}\right)$

Negligible RH couplings

Non-negligible RH couplings

