

Introduction

The QCD phase diagram features a variety of phases in the $\mu_B - T$ plane. Nonetheless, determining the equations of state and phase-transition lines from the first-principles QCD is difficult.

Holographic Hardwall Model

$$S_{0} = \frac{N_{c}^{2}}{8\pi^{2}L^{3}} \int d^{5}x \sqrt{g} \left(R - 2\Lambda\right) - \frac{\theta N_{f}N_{c}}{24\pi^{2}L} \int d^{5}x \sqrt{g} \frac{d^{5}x}{4\pi^{2}L} \frac{d^{5}x}{4\pi^{2}L} \int d^{5}x \sqrt{g} \frac{d^{5}x}{4\pi^{2}L} \frac{d^{5}x}{4\pi^$$

L is the radius of AdS.

Parameter θ : Dilaton coupling and different choices of compactification. The cosmological constant Λ : Asymptotical AdS_5 geometries.

Methodology

- An IR cutoff z_0 is implemented to break the conformal symmetry.
- The equations of motion are solved with suitable **boundary conditions**.
- The holographic renormalization procedure is applied to determine the on-shell action.
- The phase with the lowest free energy and the equations of state are identified.
- Phenomenological methods are employed to establish the phase diagram in physical units.

Solutions/Phases

The diagonal metric ansatz:

 $ds^{2} = -rac{g(z)}{h(z)}L^{2}dt^{2} + rac{L^{2}}{z^{2}}d\vec{x}^{2} + rac{L^{2}}{g(z)}dz^{2}$

and the gauge field ansatz $A_0 = \phi(z)$. There are four boundary conditions: one each for g and h, and two for ϕ . There are three possible geometries:

- **Thermal AdS:** zero denisty, confined phase.
- 2. Charged Black Hole: finite density, deconfined phase.
- 3. Charged AdS: finite density, confined phase.

QCD@WORK 2024, ITALY — XI-Edition

Holographic phases of QCD K. P. Yogendran Akash Singh,

Indian Institute of Science Education and Research, Mohali

Charged AdS

vanishing densities

The charged AdS is a **horizonless geometry** in the bulk that represents a finite-density confined phase of the boundary theory.

$$g = z^2 \left(1 - \left(1 - \frac{g_0}{z_0^2} \right) \frac{z^4}{z_0^4} + \frac{\theta N_f}{9N_c} Q^2 (z^6 - z^4 z_0^2) \right);$$

Scalar Glueball mass: $\implies z_0^{-1} = 290 \text{ MeV}$

Two free parameters: Q and $g_0 = g(z_0)$

 ρ -meson mass: $\implies \bar{g}_0 \simeq 6$.

Perturbation of the Vector field, with boundary conditions given by $a_{\nu}(k,0) =$ $\partial_z a_\nu(k, z_0) = 0.$

$$z\partial_z(rac{g}{z^3}\partial_z V(z))+k^2V(z)$$

The equation of state relating charge density Q with μ is determined by:

• Simple boundary condition: $\phi(z_0) = 0 \implies 0$ The deconfinement phase transition at T = 0

$$\left(\frac{\mu\alpha_g}{M_g}\right)^2 > \frac{6N_c}{\theta N_f} \left(1 + \sqrt{4 + 3}\right)$$

 $arepsilon = p - rac{N_c^2}{4\pi^2 z_c^6} (z_0^2 + g_0)$ The equation of state: Physically motivated boundary condition:

$$\rho = \frac{\theta N_f N_c}{12\pi^2} Q \qquad g_0 = \bar{g}_0 + \frac{8\pi^2}{N_c^2} \left(p - \frac{2\pi^2 z_0^2}{\theta N_f N_c} \rho^2 \right)$$

- Nambu-Jona-Lasinio: Temperature and chemical potential dependent constituent quark mass.
- Van der Waals: Isospin-symmetric nuclear matter (in-medium ChPT). The equation of state: $\varepsilon = \alpha + \beta \sqrt{p} + \gamma p$

Phase diagram

A similar analysis with a softwall model suggests low density confined phase.

$$h=z^4; \quad \phi(z)=\pm\mu+Qz^2;$$

Rinaldi: 2018

- = 0

$$Q = \frac{\mu}{z_0^2}$$

$$B\alpha_\rho \left(\frac{M_g}{M_\rho}\right)^2$$

Klevansky:1992 Fiorilla:2012

Condensate solutions

A complex scalar field ψ is included to break $U(1)_B$ symmetry spontaneously through the action.

$$S = S_0 - \lambda_s \int d^5 x \sqrt{g} \left(|D\psi| \right)$$

- Scaling dimension $\Delta \quad m^2 L^2 = \Delta (\Delta d)$
- Asymptotic analysis $\psi \sim \psi_+ z^{\Delta_+} + \psi_- z^{\Delta_-} + \dots$
- Breaking symmetry spontaneously $\psi_{-}=0$; $\psi_+ \neq 0$

Phase	sign	Onset μ (MeV)	0
VdW	-ve	1426.8	
VdW	+ve	1235.4	
NJL	-ve	_	
NJL	+ve	1139.7	

Conclusions and Discussion

- A simple 5-D holographic hardwall model provided low density confined phase resulting in a complete phase diagram.
- The probe analysis of baryon condensates in the confined phase at zero temperature identifies a critical chemical potential beyond which the condensate disappears.
- An ongoing study for backreacted condensate solutions with physical boundary conditions is suggesting a similar result for vanishing condensate at high chemical potential.
- Improve the model by incorporating the Running coupling, Isospin, and Chiral condensate.
- D3/D7 hardwall model with backreaction can provide finite density confined phase with baryons as solitons.

References

[1] Akash Singh and K. P. Yogendran. Confined phases at finite density in the Hardwall model. arxiv, 2407.xxxxx. [2] Akash Singh and K. P. Yogendran. Phases of nuclear matter from AdS Hardwall models. arxiv, 24xx.xxxx.

cf: Costa: 2019