

Measurement of Drell-Yan processes at ATLAS

Habio Anuli INFN -Sezione di Roma on behalf of the ALAS Collaboration

International Workshop on QCD QCD@Work - Trani, June 18-21, 2024

W and Z production in Drell-Yan processes

Drell-Yan di-lepton production of *W* and *Z* bosons offer clear signature, large statistics, and small background

- Benchmark for understanding of QCD processes
 - Test of state-of-the-art theory predictions: fixed-order perturbative QCD and parton shower models
 - Probe of proton structure (sensitivity to PDFs)
- High precision SM tests and extraction of SM parameters
- Background for other measurements and searches (BSM, Higgs, top,...)

arXiv:2404.06204

Phys.Lett.B854 (2024) 138725

Today's presentation:

- > Z double differential $(p_T, |y|)$ cross section at 8 TeV Eur. Phys. J. C 84, 315 (2024)
- > p_T^Z and p_T^W at 5 and 13 TeV with low pile-up data
- \succ Reanalysis of 7 TeV data for the *W* mass determination <u>arXiv:2403.15085</u>
- > W/Z cross sections at 13.6 TeV

Z double differential $(p_T, |y|)$ cross section

5D differential cross section decomposed as a sum of harmonic polynomials $P_i(\cos\theta,\phi)$ times polarization coefficients $A_{0-7}(p_T^Z, y^Z, m^Z)$.

$$\frac{d\sigma}{dp_T^Z dy^Z dm^Z d\cos\theta \, d\phi} = \frac{3}{16\pi} \frac{d\sigma^{U+L}}{dp_T^Z dy^Z dm^Z}$$
$$\left\{ (1 + \cos^2\theta) + \frac{1}{2} A_0 (1 - 3\cos^2\theta) + A_1 \sin 2\theta \cos\phi \right.$$
$$\left. + \frac{1}{2} A_2 \sin^2\theta \cos 2\phi + A_3 \sin\theta \cos\phi + A_4 \cos\theta \right.$$
$$\left. + A_5 \sin^2\theta \sin 2\phi + A_6 \sin 2\theta \sin\phi + A_7 \sin\theta \sin\phi \right\}$$

Angles defined in the Collins-Soper Frame

<u>EPJC84 (2024) 315</u>

- 20.8 fb⁻¹, $\sqrt{s} = 8$ TeV, $\overline{\mu} \sim 20$
- Analysis derived from JHEP 08 (2016) 159
- Three $Z \rightarrow \ell^+ \ell^-$ channels: ee_{CC}, µµ_{CC}, ee_{CF} • C: $|\eta^{\ell}| < 2.4$; F: $|\eta^{\ell}| > 2.4$
- $80 < m_{\ell\ell} < 100 \text{ GeV} (\text{Z pole})$

Main Backgrounds:

- Physics: $t\bar{t}$, Wt, Dibosons, $Z \rightarrow \tau \tau$ (from MC)
- Multi-jet and *W*+jet (CC~0.1%, CF~1.0%): estimated with data-driven methods
- Unpolarized cross sections and A_i from profile likelihood fit to truth-to-reco templates obtained in the full lepton phase space
 - Measurement of A_i consistent with 2016 publication (update in the forward region)
 - 2D differential $\frac{d^2\sigma}{dp_T d|y|}$ at the Z pole, up to |y| < 3.6 thanks to forward leptons
 - Precise measurement of α_s (<u>arXiv2309.12986</u>, see <u>talk</u> by E.Conroy on Tuesday)

Z double differential $(p_T, |y|)$ cross section

• Joint fit of the cross section and angular coefficients

$$N_{\exp}^{n}(A, \sigma^{U+L}, \beta, \gamma) = \left\{ \sum_{j} \sigma_{j}^{U+L} \times L \times \left[t_{8j}^{n}(\beta) + \sum_{i=0}^{7} A_{ij} \times t_{ij}^{n}(\beta) \right] \right\} \times \gamma^{n} + \sum_{B}^{\operatorname{bkgs}} T_{B}^{n}(\beta)$$

• $n: (\cos \theta, \phi)$ bin; $i: (p_T, |y|)$ bin. Fitting parameters: σ_i^{U+L}, A_{ji} , and nuisance parms (β and γ)

Absolute 2D differential cross section

- Statistical uncertainty dominates
- From 0.6 -> 1% for CC; 3% for CF
- Overall 1.8% uncert. from luminosity not included

Cross section ratio to most central |y| bin

<u>EPJC84 (2024) 315</u>

- p_T distribution softer at higher rapidities
- Expected and well reproduced by MC

Comparison with predictions

1.1 data 1.05

0.95

ATLAS

$1 d\sigma$ integrated over |y| < 1.6 σdp_T

• Compared to various q_T resummation calculations at N4LL, matched with N3LO pQCD MCFM/NNLOJET

- Agreement within theory uncertainties
- 2-3% difference in the p_T peak region

 $d\sigma$ - integrated over p_T d|y'

pp → Z

NNPDF4.0

- Smaller experimental and theoretical uncertainties
- No dependence on q_T resummation (after p_T integration)
- Default simulation uses DY_{TURBO}+MCFM+ aN3LO PDF set
- -0.4% correction due to ISR QED and NLO EW

HERAPDF2.0

∧ ATLASpdf21

Comparison between $\sqrt{s} = 8 \text{ TeV}, 20.2 \text{ fb}^{-1}$ different NNLO PDF sets • Reasonable agreement

- for MSH20 and CT18A
- Some shape deviations for all sets

Total cross section (for |y| < 3.6): $\sigma_{z} = 1055.3 \pm 0.7$ (stat.) ± 2.2 (syst.) ± 19.0 (lum.) pb

stat. 🕀 syst. 🕀 lumi

Measurement of W and Z $p_{\rm T}$ at $\sqrt{s} = 5.02$ an

- Data from 2017 and 2018 dedicated runs at low pile-up (μ ~2)
 - 255 pb⁻¹ at $\sqrt{s} = 5.02$ TeV; 338 pb⁻¹ at $\sqrt{s} = 13.0$ TeV
 - Measured: p_T for W^+ , W^- , W^{\pm} , Z and their ratios W^+/W^- , W/Z

• Event selection:

- $p_T^{\ell} > 25 \,\text{GeV}, \ |\eta_{\ell\ell}| < 2.4$
- W: $m_T > 50 \text{ GeV}$; $E_T^{miss} > 25 \text{ GeV}$; 2nd lepton vetoed
- Z: $66 < m_T < 116 \, \text{GeV}$

	W ightarrow e u	$W ightarrow \mu u$	Z ightarrow ee	$Z ightarrow \mu \mu$
$\sqrt{s} = 13$ TeV	$2.2 imes10^{6}$	$2.2 imes10^{6}$	$1.7 imes10^5$	$2.1 imes10^5$
$\sqrt{s}=5.02~{ m TeV}$	$7.1 imes10^5$	$7.5 imes10^5$	$5.2 imes10^4$	$7.0 imes10^4$

• Backgrounds:

- EW (single-, di-bosons, top,..) from MC
- QCD multi-jet: data driven
- Spectra unfolded using Iterative Bayesian Unfolding method

 $- p_T^W$ from hadronic recoil u_T $\rightarrow p_T^L$ from p_T^l

 p_T distributions

DY Turbo + PDFs Parton showers Distributions compared to predictions: $\sqrt{s} = 13 \text{ TeV}, 338 \text{ pb}^{-1}$ ŦĽ**A**S 10=1 ق 10⁻² ATLAS V. 338 00-1 ATA TAS 338 pb s = 5.02 TeV, 255 pb-Å -s5=0\$2.07≥Vte2652\$\$\$ pb esummation calculation: DYTurbo + 10=3 erepeter PDFS 10 Report House By thing & AZNLO YTURBO NNLO+NNLI state of the art calculations AZNLO DY THE RECONSTITUTION 10-1 10 POSINTER Henwig7 NNLO+NNLL) PVINISH AZD 101.1 1105 1.05 0.95 best overall agreement across the Q 0.95 0.95 pectra 0.99 0:65 10¹ 10² ,10¹, 10¹ 0.85.8 0.85 p^W_T [GeV] 102 [Set 10¹ 10¹ 10¹ *p*^{*Z*}_T [GeV] p^W_T [GeV] Parton shower approach: PYTHIA, HERWIG7 and SHERPA be Significant differences among MCs √SATLAS 338 pb-1 7# 11/B (TeV), 33388 ptb 10= $\mathfrak{F}_{\mathfrak{s}}$ Generally good agreement at low p_T direct of the la 5.02 TeV. 255 pb √s = 5.02 TeV, 255 pb⁻ • IERPA matches data best at high p_T W = Powheg+Pythia8 AZNLO M/ Salay2/2/57 → P - Data $v / Z \rightarrow \ell \ell$ BOHNENEPHININBLAZNLO Powheg+Pythia8 AZNLO DYTURBOONDURENNIZL TV-19701888 ANILO+NNLL han AZNLO Sherpa2.2.1 Rola Herwia7 NIPowheg_Herwig7 Extrate Aline [JHEP 09 (2014) 145] ASIA 5894 Terwig7 10.4 ther validated by these 0.3 1:05 1.05 0.95 surements (developed for the W-620,0 <u>2</u> 0.**0.9** mass measurement) 1011 1,0² 10¹ 1.0²10² 0.85 0.85.8 102 PF [PR p_T^Z [GeV] 1010 10¹ p_T^W [GeV] pT #GeGeVI pTV [GeV]

Fabio Anulli - Drell-Yan processes at ATLAS — QCD@Work 2024

⊖ 6995.95 0.90

0.85.8

p^W_T [GeV]

10²

10101

Xiv:2404.06204

Measurement of the W-boson mass and width arXiv:2403.15085

Vector boson production at 13.6 TeV PLB854 (2024) 13872

- 29.1 fb⁻¹, $\sqrt{s} = 13.6$ TeV, collected in 2022 (initial RUN 3 data set)
- Test theory predictions at a new center-of-mass energy
- Early validation of detector performances and software
- Measurements:
 - Inclusive fiducial&total cross sections: $\sigma^{W^+}, \sigma^{W^-}$ and σ^Z
 - Ratios: $\sigma^{W^+}/\sigma^{W^-}$, $\sigma^{W^{\pm}}/\sigma^Z$, and $\sigma^{t\bar{t}}/\sigma^{W^{\pm}}$
 - $\sigma^{t\bar{t}}$ from ATLAS PLB 848.138376 (test the proton's parton content)
- Comparison to theory (NNLO + NNLL QCD and NLO EW accuracy), with different PDF sets

Fiducial cross section extracted with a binned profile likelihood fit

- Total cross section: $\sigma^{tot} = \sigma^{fid}/A$, where A is the acceptance
- Dominant source of uncertainties:
- W^{\pm} : luminosity, multijet background
- Z: luminosity, lepton efficiency

Good agreement with predictions, though ATLASpdf21 and NNPDF4.0 tend to give higher cross sections in all cases

- Ratios benefits from cancellations of some systematic uncertainties
- Good agreement with SM predictions for the W/Z ratios
- Slightly lower than predictions for $t\bar{t}/W$ ratios
 - important uncertainties from $t\bar{t}$ modelling

Summary

• The high quality of collected data allows for precise measurements of SM processes

• Drell-Yan processes are a powerful tools to:

- test state-of-the-art theory predictions
- study the proton structure
- measure precisely SM constants to probe the consistency of global EW fits and of different BSM scenarios
- We've presented a variety of measurements with different data sets
 - Revised W-mass measurement with 7-TeV data
 - 2D differential cross sections with the Run2 at 8 TeV (also A_i , sin θ_W , and α_s , not shown here)
 - Dedicated low-pileup Runs at 5 and 13 TeV, for p_T^V measurements
 - Study of vector boson production in association to HF jets at 13 TeV
 - First studies with RUN3 data at 13.6 TeV

• Many more results from ATLAS on the way!

BACKUP SLIDES

Fabio Anulli - Measurement of $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ — ICHEP 2022

Angular coefficients in Z-boson production

Motivations:

- Spin correlation between initial quarks and decay leptons
- Probe fixed-order QCD predictions
- Probe parton-shower approach
- Ingredient for future precision EW measurements
- 5-dimension differential cross section decomposed as a sum of harmonic polynomials $P_i(\cos\theta,\phi)$ times polarization coefficients $A_{0-7}(p_T^{~Z}, y^Z, m^Z)$.

Unpolarized cross section

$$\frac{d\sigma}{dp_T^Z dy^Z dm^Z d\cos\theta \, d\phi} = \frac{3}{16\pi} \frac{d\sigma^{U+L}}{dp_T^Z dy^Z dm^Z}$$

$$\left\{ (1 + \cos^2\theta) + \frac{1}{2} A_0 (1 - 3\cos^2\theta) + A_1 \sin 2\theta \cos\phi + \frac{1}{2} A_2 \sin^2\theta \cos 2\phi + A_3 \sin\theta \cos\phi + A_4 \cos\theta + A_5 \sin^2\theta \sin 2\phi + A_6 \sin 2\theta \sin\phi + A_7 \sin\theta \sin\phi \right\}$$

Angles defined in the Collins-Soper Frame

- A_0 Transverse polarization
- A_2 Longitudinal polarization
- *A*₁ interference between T and L polarizations
- A₃ and A₄ sensitive to the Weinberg angle
- LO: only A_4 different from zero
- NLO: A_0 -- A_4 non zero,
 - $A_0 = A_2$ (Lam-Tung relation)
- NNLO: also A_5, A_6, A_7 slightly different from zero at large p_T^Z

• Consistent with previous measurements, with the exception of CDF result No deviation from SM fit seen

Measurement of the W-boson width

Fabio Anulli - Drell-Yan processes at ATLAS — QCD@Work 2024

arXiv:2403.15085

Vector boson production at 13.6 TeV: Results PLB854 (2024) 138725

Fiducial cross sections

Good agreement with predictions, though ATLASpdf21 and NNPDF4.0 tend to give higher cross sections in all cases

Channel	$\sigma^{\text{fid}} + \delta \sigma_{\text{stat}} = 0$	Acceptance A	$\sigma^{\text{tot}} + \delta \sigma_{\text{stat}} = [\text{pb}]$
$7 \rightarrow a^+a^-$	740 + 22	0.374 ± 0.011	1081 + 82
$Z \rightarrow e^{-}e^{-}$	740 ± 22	0.374 ± 0.011	1007 ± 82
$Z \to \mu \ \mu$	747 ± 23	0.374 ± 0.011	1997 ± 62
$Z \rightarrow \ell^+ \ell$	744 ± 20	$0.3/4 \pm 0.011$	1989 ± 77
$W^- \to e^- \bar{\nu}$	3380 ± 170	0.381 ± 0.009	8880 ± 490
$W^- \to \mu^- \bar{\nu}$	3310 ± 130	0.381 ± 0.009	8680 ± 390
$W^- \rightarrow \ell^- \bar{\nu}$	3310 ± 120	0.381 ± 0.009	8690 ± 390
$W^+ \rightarrow e^+ \nu$	4350 ± 200	0.366 ± 0.009	11880 ± 620
$W^+ \to \mu^+ \nu$	4240 ± 160	0.365 ± 0.010	11620 ± 530
$W^+ \to \ell^+ \nu$	4250 ± 150	0.366 ± 0.009	11620 ± 520
$W^{\pm} \rightarrow \ell^{\pm} \nu$	7560 ± 270	0.372 ± 0.009	20310 ± 890

Vork 2024

at 13.6 TeV PLB854 (2024) 138725

Cross-section ratios

- Ratios benefits from cancellations of some systematic uncertainties
- Good agreement with SM predictions for the W/Z ratios
- Slightly lower than predictions for *tt*/*W* ratios

Dominant source of uncertainties:

- W^+/W^- : multi-jet bkgd
- W^{\pm}/Z : jet-related uncertainties
- *tt*/W: *tt* modelling, jet and multi-jet bkg.

Z + Heavy Flavor jets

Inclusive and differential Z + > 1 *b*-jet, Z + > 2 *b*-jets, Z + > 1 *c*-jet JETS MEASUREMENTS

• Access to *b-quark*, *c-quark* and *gluon* PDFs

• Potentially sensitive to the proton *Intrinsic Charm* (IC) component

Precise test of pQCD predictions and MC modelling

• Z+HF bkgd for VHbb analyses and various BSM searches

• Test predictions of different Flavor number Schemes (5/4/3 FS)

• This analysis: $\sqrt{s} = 13$ TeV, 140 fb⁻¹ (full RUN2)

- supersedes [JHEP 07 (2020) 044] Z + ≥ 1 b-jet and Z + ≥ 2 b-jets based on 36 fb⁻¹
- $Z + \ge 1$ c-jet first time in ATLAS
- Selected samples: \geq 4M, ~0.3M, and \geq 4M for 1*b*-, 2*b* and 1*c*-jet

Z + HF jets: Statistical to EPJC cross sections

Source of uncertainty	$Z(\to \ell\ell) + \ge 1 \text{ b-jet}$	$Z(\rightarrow \ell \ell) + \ge 2 b$ -jets	$Z(\rightarrow \ell \ell) + \geq 1 c$ -jet
	[%]	[%]	
Flavour tagging	3.6	5.7	10.3
Jet	2.4	4.3	6.5
Lepton	0.3	0.3	0.4
$E_{\rm T}^{\rm miss}$	0.4	0.5	0.3
Z+jets background	0.6	1.5	1.6
Top background	0.1	0.3	< 0.1
Other backgrounds	< 0.1	0.2	0.1
Pile-up	0.6	0.6	0.2
Unfolding	3.3	5.8	5.0
Luminosity	0.8	0.9	0.7
Total [%]	5.6	9.4	13.2

- Large production rate:
 - results dominated by systematic uncertainties

arXiv:2403.15093

- X2 improved precision w.r.t. JHEP 07, 044 (2020)
- Dominant uncertainties:
 - flavor tagging
 - unfolding
 - jet energy scale and resolution
- Statistical uncertainties very small

Z + HF jets: Differential cross sections

Best description by 5FS MGaMC+Py8 FxFx F.O. underestimate data at high p_T^Z F.O: large uncertainties at low p_T^Z m_{bb} shape not well reproduced by any simulation $\Delta \phi_{bb}$ (not shown) instead generally well reproduced 5FS predictions starts to deviate from data above ~50 GeV Worst agreement F.O. predictions Shape looks better for MGaMG+ Py8 4FS

arXiv:2403.15093