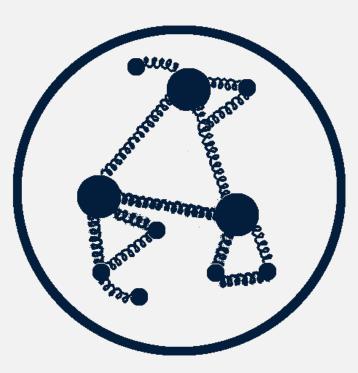
UNIVERSITY OF OXFORD

QCD Measurements with ATLAS


18/06/24

Eimear Conroy – University of Oxford, on behalf of the ATLAS Collaboration

QCD@Work 2024

Introduction

- ATLAS: General purpose LHC experiment, with the power to precisely measure a broad range of physics processes
- Many recent QCD-sensitive measurements...
- ... in several different topologies
 - Jets (inlusive, dijet, multijet)
 - Z boson
 - Lund plane/jet substructure
 - and more!
- ... with a range of different aims
 - PDF fitting
 - α_s extraction
 - Theory benchmarking

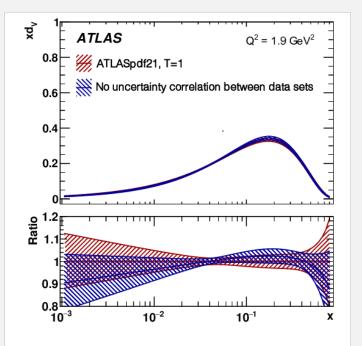
ATLASpdf21 Fit

Eur. Phys. J. C 82 (2022) 438

Analysis strategy

ATLAS datasets also routinely included by global PDF fitters

 $Q^2_{min} = 10 \ GeV^2$ cut placed on HERA data to avoid regions requiring additional treatment e.g. small-x resummation


Simultaneously fitting as many useful ATLAS datasets as possible

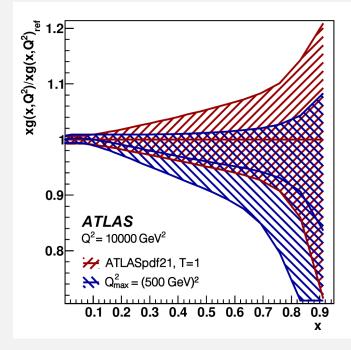
- LHC: Medium-high x, Q², quark flavour separation, direct sensitivity to gluon at high x
- **HERA:** Wide x, Q² range

Data set	\sqrt{s} [TeV]	NNLO QCD analysis performed in <u>xFitter</u> , independently cross-checked	
Inclusive $W, Z/\gamma^*$	7	Parameterisation:	
$t\bar{t}$	8		
W^{\pm} + jets	8	$xf(x) = Ax^{B}(1-x)^{C}(1+Dx+Ex^{2}+Fx^{3})$ (extra gluon term: $-A'_{g}x^{B'_{g}}(1-x)^{C'_{g}}$)	
Z + jets	8		
Inclusive Z/γ^*	8	if needed – Number sum rule	
Inclusive W	8	 Constraints → Sum rules ✓ - Momentum sum rule 	
Inclusive isolated γ	8, 13		
$t\bar{t}$	13	• Using starting scale $\Omega_{12}^2 = 1.9 \text{ GeV}^2$ and $\alpha (m) = 0.118$ we fit six	
Inclusive jets	8	 Using starting scale Q₀² = 1.9 GeV² and α_s(m_z) = 0.118 we fit six parton distributions using 21 free parameters 	
		Previous ATLAS fits: 15/16	

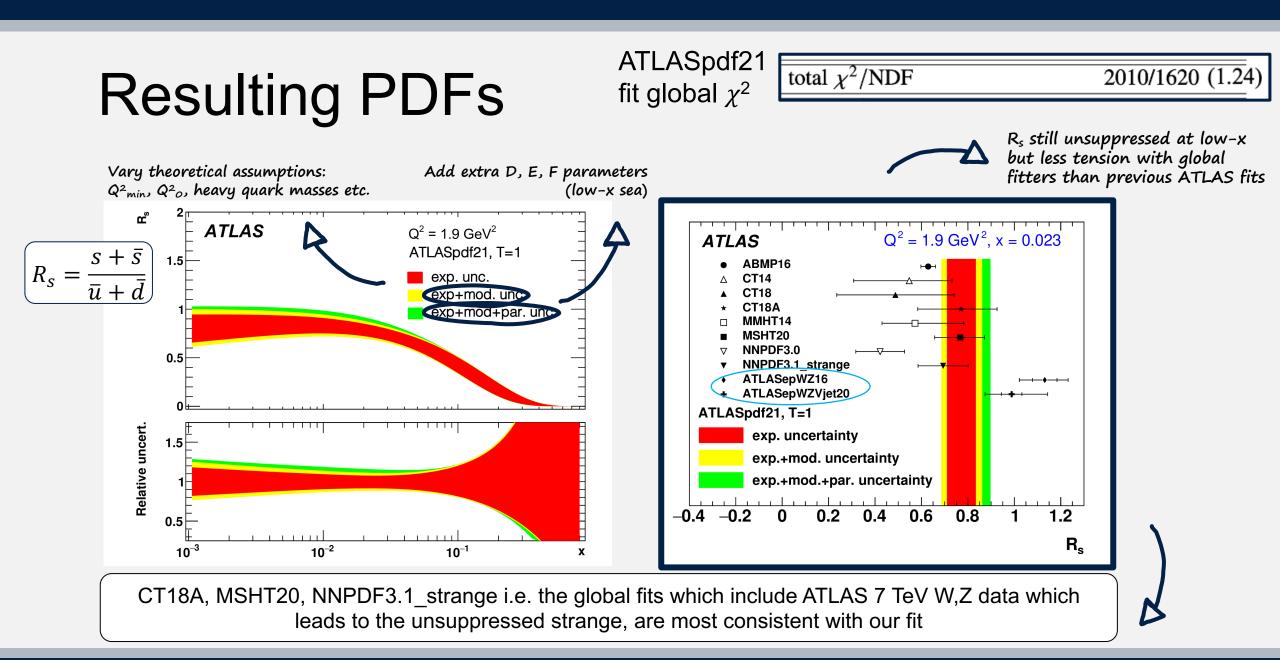
Analysis highlights

Accounting for correlations

Not accounting for systematic correlations → PDFs varying up to 20% (especially d-type)

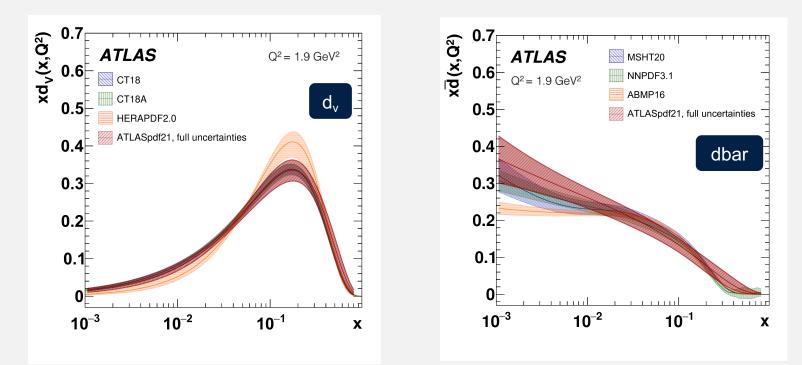

Many datasets \rightarrow Possible tensions Enhanced χ^2 tolerance xg(x,Q²)/xg(x,Q²)_{ref} **ATLAS** $Q^2 = 1.9 \, \text{GeV}^2$ ₩ ATLASpdf21, T=1 ★ ATLASpdf21, T=3 0.6 10⁻³ 10⁻² **10**⁻¹ X

Enhanced tolerance from T=1 to T=3 (MSHT dynamic tolerance procedure) Careful consideration also made of scale uncertainties and treatment of jet data



Don't want to fit away BSM effects at high scale

Possible BSM effects



High Q² cut on input data has little impact on shape & uncertainties

Comparison with global PDFs

ATLASpdf21 agrees as well with the global fits as they do with each other

d_v, dbar distributions brought more in line with global fitters (which include Tevatron and fixed target DIS, DY data) than to HERAPDF. → ATLAS data replicates features of these

data instead

ATLASpdf21 **CT18A** MSHT20 **HERAPDF2.0 CT18** Lower χ^2 for these data than the global 2010/1641 2135/1641 2133/1641 2218/1641 2262/1641 (1.22)(1.30)(1.30)(1.35)(1.37)fitters

NNPDF3.1

2109/1641

(1.29)

α_s from multijet TEEC at 13 TeV

JHEP 07 (2023) 85

α_s measurements

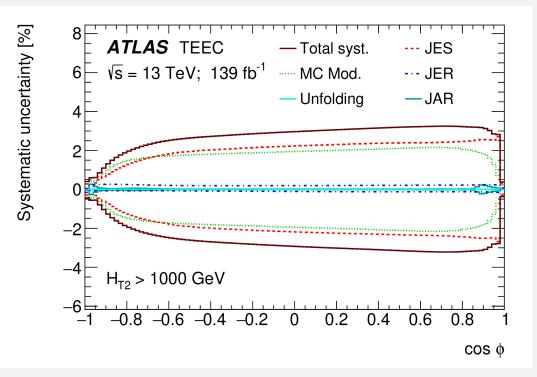
Beneficial to have several measurements with different sensitive observables and theory predictions

- $\alpha_s \rightarrow$ least precisely determined coupling of a fundamental interaction
 - Orders of magnitude!
 - This needs to be better → Cross-section calculations for LHC, key observables for e⁺e⁻
- How?
 - 1. Lattice QCD analysis of hadron spectroscopy (most precise)
 - 2. Hadronic τ decays
 - 3. Global fits of EW observables
 - 4. Hadron-hadron collisions (jets, ttbar, W, Z...)
- Two major theory limitations:
 - Accuracy of the perturbative predictions
 - Size of non-perturbative effects

Transverse energy–energy correlations

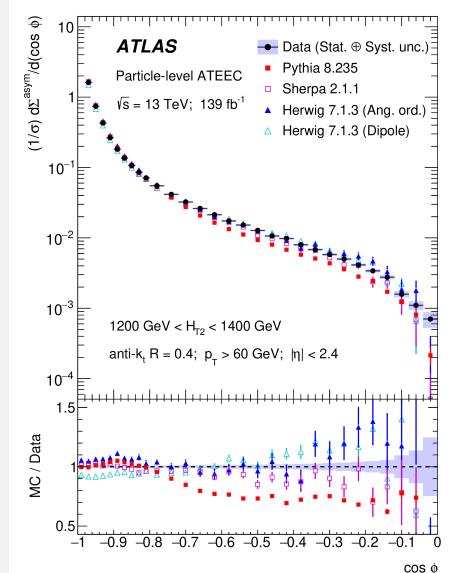
- Event shapes: Category of observables which characterise hadronic energy flow
 - Precisely test pQCD calculations and extract α_{s}
 - e.g. Energy-energy-correlations (EEC) \rightarrow IRC safe, modest O(α_s^2) corrections
- Require generalisation for hadronic colliders:
 - Transverse EECs (TEEC)
 - Transverse-energy-weighted distribution of azimuthal differences between final-state jet pairs
 - Associated Azimuthal TEECs (ATTEC)
 - Difference between forward and backward part of TEEC
 - Sensitive to gluon radiation, clear dependence on α_s
- Previously measured by ATLAS at 7 & 8 TeV

Experimental Measurement

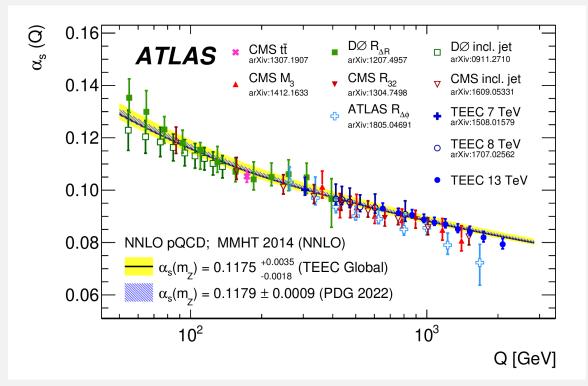

- Full ATLAS Run 2 13 TeV pp data
- Observables: TEEC, ATEEC vs H_{T2}
- Unfolded:
 - Iterative Bayesian, separately in each H_{T2} considering only cos(φ) dependence
- Uncertainties:
 - ~2% for TEECs, ~1% for ATEEC
 - Dominated by JES and unfolding model

```
      Jets:

      anti-k<sub>T</sub>, R=0.4, p<sub>T</sub> > 60 GeV, |η| < 2.4</td>


      Event:

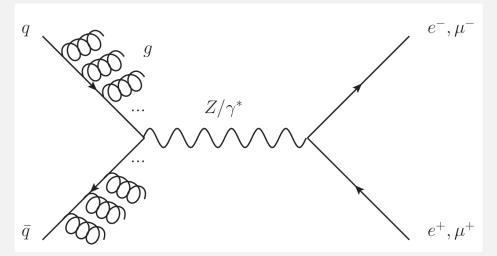
      N<sub>jets</sub> ≥ 2, H<sub>T2</sub> > 1 TeV
```

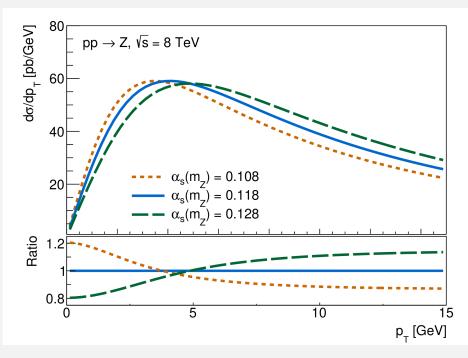


Comparison with Theory

- Compared to MC predictions
 - Pythia8, Sherpa, Herwig7 angle-ordered & dipole PS
- Compared to pQCD predictions for α_{s} extraction
 - At O(α_s⁵), TEEC calculation involves 2→3 at NNLO (first time), 2→4 at NLO and 2→5 at LO
 - $\mu_r = \mu_f = \widehat{H}_T = \sum_i p_{T,i}$
 - NP corrections from ratio $\frac{MC \text{ with hadronisation \& UE}}{MC \text{ without hadronisation & UE}}$
 - Uncertainties dominated by scale
 - ~2%, reduced 3x by NNLO corrections
 - · Excellent agreement between data and theory

Extracting α_s

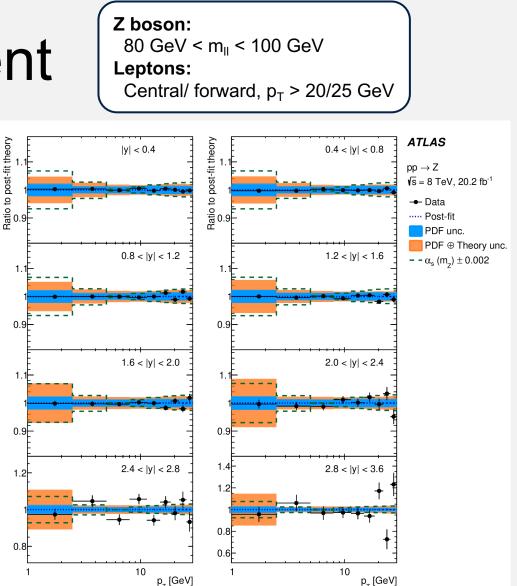
- α_s(M_Z) via χ² minimisation to TEEC & ATEEC distributions:
 - $\alpha_{s}(M_{Z}) = 0.1175 \pm 0.0006 \text{ (exp.)}^{+0.0034} -0.0017 \text{ (th.) (TEEC)}$
 - $\alpha_{s}(M_{Z}) = 0.1185 \pm 0.0009 \text{ (exp.)}^{+0.0025}_{-0.0012}$ (th.) (ATEEC)
- $\alpha_s(Q)$ extracted by evolving fitted $\alpha_s(M_Z)$ using NNLO solutions to the RGE
 - Test asymptotic behaviour of QCD
 - Good agreement RGE predictions and previous measurements up to high energy scales




α_{s} from $p_{T}{}^{Z}$

arXiv:2309.12986 [hep-ex]

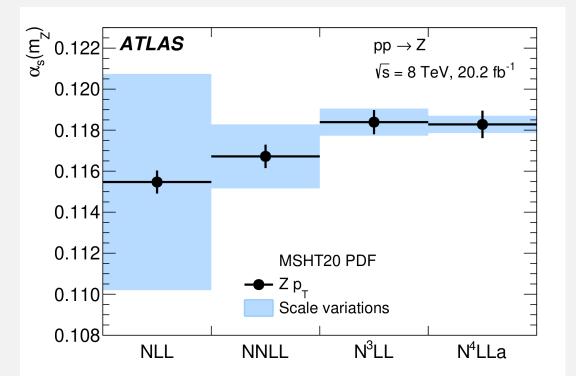
$\alpha_{s}(M_{Z})$ from p_{T}^{Z}


- Measure Drell-Yan p_T^z in low-momentum 'Sudakov region'
 - Many soft gluon emissions in the initial state
 - Strong force responsible for ISR and subsequent Z recoil
- $\alpha_s(M_z)$ determined by hardness of the p_T^Z spectrum
 - Measure of boson recoil, $\propto \alpha_s(M_z)$
- Advantages:
 - Less common to measure α_{s} using ISR objects
 - DY \rightarrow final state objects do not experience strong force
 - Reduce theoretical complexity
 - Sudakov region not usually used in PDF fits (correlations)
 - Scale fixed at Z mass
 - Clear signature and low backgrounds

Experimental measurement

- Measure 20.2 fb⁻¹ of 8 TeV events in electron & muon channels
- Observables: Double-differential σ(p_T^Z, y^Z) in Z pole region
 - $p_T^Z < 29$
 - Eight rapidity regions in |y| < 3.6
- Extended to full lepton phase space by fitting spherical harmonic templates in Collins–Soper frame to $\cos(\theta^{i})$, Φ^{i} in data
 - No longer need to model polarisation and decay of the Z
- QCD+EW backgrounds \rightarrow 0.3-1.1%
- Data stat uncertainties dominate
 - Lumi uncertainty (1.8%)
 - Otherwise, total uncertainties <1-10%(central vs forward y)

Comparison with Theory

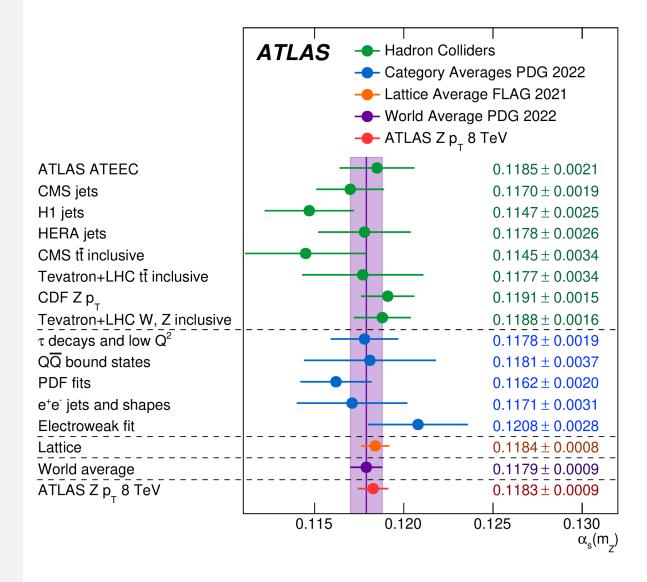

- Predictions computed with DY Turbo:
 - Hard-collinear contributions at N3LO matched to fixed order N3LO
 - Resum low- p_T logs at N4LLa accuracy
- $\mu_r = \mu_f = Q = m_{ll}^2 + (p_T^Z)^2$
- PDF: MSHT20 at aN3LO

12/06/2024

- IS photons' impact on p_T^Z estimated at LL with Pythia8.
 - Higher QED order effects considered at NLO
- Statistical analysis done with xFitter via χ^2 minimisation
 - Uncertainties (except PDF) included as nuisance parameters

Eimear Conroy – University of Oxford

- Account for correlations between PDFs and α_{s} using α_{s} -series PDF sets



 $\chi^2 = 82/72$ NDF

17

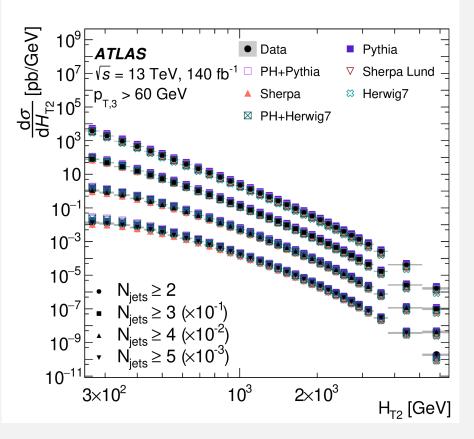
Results

- $\alpha_{s}(M_{Z}) = 0.1183 \pm 0.0009$
 - Most precise <u>experimental</u> determination of $\alpha_s(M_Z)$
 - First based in N4LLa+N3LO pQCD predictions
- Also performed simultaneous PDF fit determination of α_{s}
 - HERA combination + ATLAS p_T^Z
 - $\alpha_{\rm s}({\rm M_Z}) = 0.11866 \pm 0.00064$

Jet cross-section ratios at 13 TeV

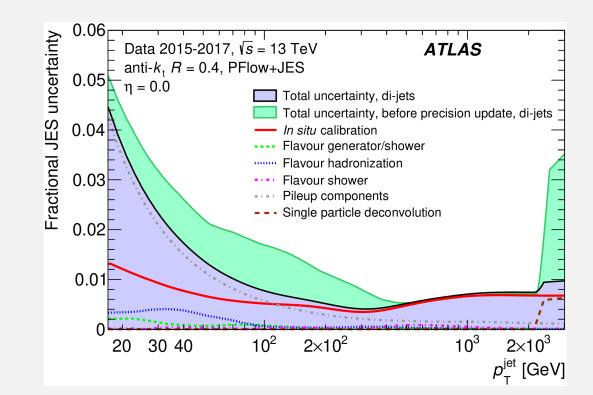
arXiv:2405.20206 [hep-ex] (submitted to PRD)

Jet cross-section ratios at 13 TeV

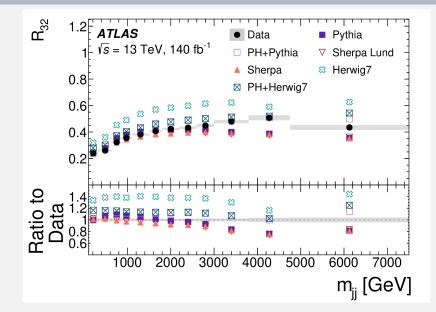

- Differential σ 's in multiple observables
 - Target different facets of QCD
 - e.g. hard-scatter energy scale, fixed-order ME, FS energy flow
- First measurement of R₃₂ in 13 TeV pp
 - $\mathsf{R}_{32} \rightarrow \frac{\sigma_{3 jets}}{\sigma_{2 jets}}$
 - Reduces sensitivity to systematic uncertainties & PDFs
- Compare with NNLO fixed order predictions
- R_{43} , R_{42} , R_{54} also measured
 - Precision predictions not yet available
 - Reference for future developments

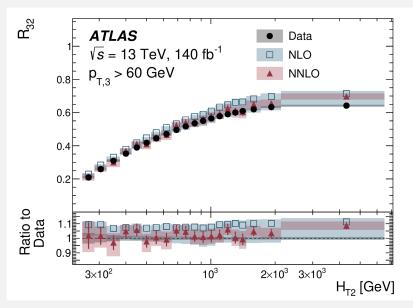
Experimental Measurement

- Measure dijet events in 140 fb⁻¹ of 13 TeV data
- Observables:
 - $d\sigma/(dN_{jets} dH_{T2} dp_{T,3})$ vs H_{T2} , p_T^{Nincl}
 - And ratios
 - H_{T2}: Proxy for hard-scatter energy scale
 - p_{T,3}: Determines sensitivity to resummation effects
 - R_{32} vs m_{jj} , Δy_{jj}
 - Target arge logarithmic corrections
- Unfolding:
 - Iterative Bayesian, double/triple differentially



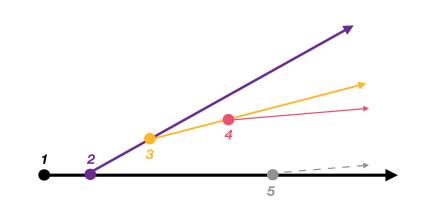
Jets: anti-k_T, R=0.4, pT > 60 GeV, |y| < 4.5Event: N_{jets} ≥ 2, H_{T2} > 250 GeV

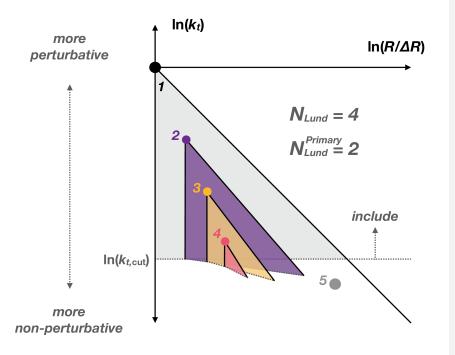

Improvements to experimental uncertainties


- Jet Energy Scale (JES) calibration → Leading source of experimental uncertainty
 - Updated JES prescriptions...
- Jet Flavour Response
 - Impact of initial parton flavour
 - Previously estimated from two-point MC comparison
 - Factorised → components targeting specific flavour/factorisation/hadronisation effects
 - 2x reduction, p_T^{jet} > 100 GeV
- 'Single particle deconvolution':
 - High-p_T component of JES,
 - From extrapolation of single-particle response
 - Several inputs updated
 - EM showers, high- p_T pion response, detector simulation
 - 3x reduction p_T^{jet} > 2 TeV

Results

- High-precision: Uncertainties O(<10%)
- Compared to:
 - MC generators:
 - Pythia 8.230, Sherpa2.2.5, 2.2.11, Herwig7.1.6, Powheg2+Pythia8, Powheg2+Herwig7
 - Fixed-order predictions: NLO, NNLO
 - $\mu_r = \mu_f = \widehat{H}_T = \sum_i p_{T,i}$
 - NP corrections from ratio
 <u>hadron-level</u>, with MPI
 - parton-level, no MPI
 - High Energy Jet: Resummed LL corrections
 - e.g. VBS/VBF
- MC: Significant differences at large m_{ii}, Δy_{ii}
- **NNLO:** H_{T2} modelled well across all p_{T3} bins
- HEJ: Good description of ratios in regions where log terms contribute




Lund Subjet Multiplicities

arXiv:2402.13052 [hep-ex] (submitted to Phys. Lett. B)

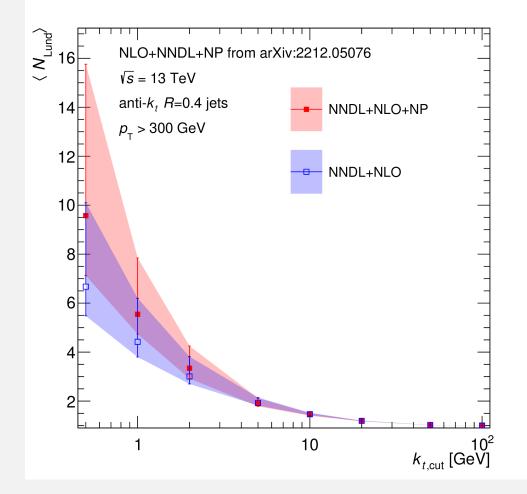
Lund Subjet Multiplicities

- Jet substructure (JSS): Setting for colinear limit QCD tests involving wide range of energy scales e.g. PS algorithms
- Lund multiplicity \rightarrow JSS observable
 - Tests for inclusion of double-soft splittings
 - Calculated with analytical resummation at NNDL in QCD
- Count N_{subjet} > k_T^{thresh} in jet's angle-ordered clustering history via reclustering with C/A algorithm
 - Measure N_{Lund} and/or $N_{Lund}^{Primary}$
- **Goals:** Precision measurement, test higher-order effects in QCD predictions, input to parton shower developments

Experimental Measurement

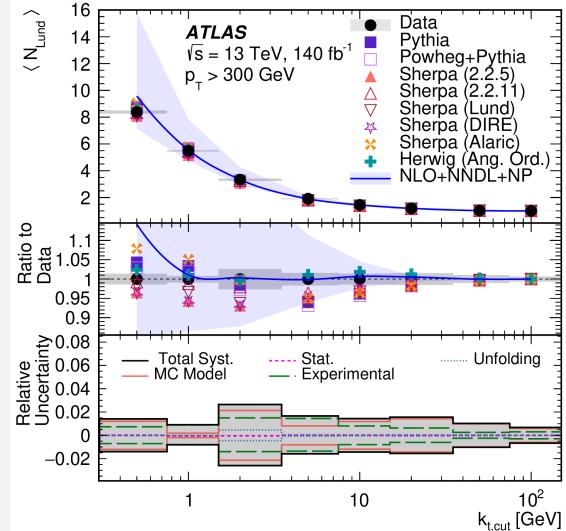
- Measure dijet events in 140 fb⁻¹ of 13 TeV data
- Observables: N_{Lund} and N_{Lund}^{Primary}, differentially in:
 - Jet p_{T} (300-4500 GeV) and...
 - ...relative rapidity, with...
 - ...8 different emission k_T requirements

• Procedure:


- 1. Recluster ID tracks within $\Delta R=0.4$ of a $\Delta R=0.4$ anti-k_T jet using CA
- 2. Iteratively decluster reclustered jet
- 3. Rescale emmission $k_T \rightarrow$ account for neutral particles
- Unfolded → Correct N_{Lund}^(Primary) from detector to charged-particle level
 - Regularized migration matrix inversion

	racks: p _T > 500 MeV, matched to PV	
-	l ets: Both > 120 GeV, central, dijet balancing	

Uncertainty	~Size
Jet Energy Scale	2-4%
Tracking	2%
Unfolding non-closure	< 2%
Stat	<1 %
Others	Negligible


Comparison with theory

- Unfolded (N_{Lund}) and (N_{Lund}^{Primary}) compared to MC with state-of-the-art parton scatter
 - Pythia8, Powheg Box+Pythia8, Sherpa2.2.5, Sherpa2.2.11, Sherpa2.2.11 (Lund hadronisation), Sherpa2.2.11 (DIRE PS), Sherpa3 (ALARIC PS), Herwig7.1.3 (angle-ordered PS)
- (N_{Lund}) also compared to analytic NLO+NNDL+NP prediction
 - NLO matched to NNDL resummation + NP corrections
 - NP corrections from ratio hadron-level, with MPI parton-level, no MPI

Results

- Most predictions fail to accurately describe the data, particularly at jet p_T
- Herwig angle-ordered PS:
 - Best overall description of both observables
- Recent Sherpa setups:
 - Best when more non-perturbative (k_T < 2 GeV) emissions allowed
- Resummed analytic prediction:
 - Good agreement with data in the perturbative (k_T > 2 GeV) region, matching best PS MC
 - Jet $p_T \square \rightarrow$ performance \blacksquare
- Highlights importance of JSS measurements at the LHC

Conclusion

- ATLAS, both historically and presently, has a strong track record of producing precision datasets and world-leading QCD measurements
- LHC Run 3 is underway! Wealth of new data to analyse → many more exciting results in the future!

Questions?