

Mathematical Sciences and STAG Research Centre University of Southampton

Andreas Schmitt

Southampton SO17 1BJ, United Kingdom

Dense QCD matter and neutron stars from holography

N. Kovensky, A. Poole, A. Schmitt

A. Schmitt (foreground); ESO/L. Calçada (neutron star)

Motivation: Phases of QCD and neutron stars

Motivation: Phases of QCD and neutron stars

Use holography: Witten-Sakai-Sugimoto model

- E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998)
- T. Sakai and S. Sugimoto, Prog. Theor. Phys. 113, 843 (2005)
 - top-down approach with only 2 (or 3) parameters: λ , $M_{\rm KK}$ (and L)
 - supersymmetry and conformal symmetry broken
 - successfully applied to meson, baryon, glueball spectra

Use holography: Witten-Sakai-Sugimoto model

- E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998)
- T. Sakai and S. Sugimoto, Prog. Theor. Phys. 113, 843 (2005)
 - top-down approach with only 2 (or 3) parameters: λ , $M_{\rm KK}$ (and L)
 - supersymmetry and conformal symmetry broken
 - successfully applied to meson, baryon, glueball spectra

Use holography: Witten-Sakai-Sugimoto model

E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998)

- T. Sakai and S. Sugimoto, Prog. Theor. Phys. 113, 843 (2005)
 - top-down approach with only 2 (or 3) parameters: λ , $M_{\rm KK}$ (and L)
 - supersymmetry and conformal symmetry broken
 - successfully applied to meson, baryon, glueball spectra

Results

- 1. thermal pion condensation (decompactified limit) N. Kovensky and A. Schmitt, work in progress
- 2. baryons, pions and rho mesons in the μ_B - μ_I plane at T = 0(confined geometry) N. Kovensky, A. Poole, A. Schmitt, SciPost Phys. 15, 162 (2023)
- 3. neutron stars (confined geometry)
 - N. Kovensky, A. Poole, A. Schmitt, Phys. Rev. D 105, 034022 (2022)
 - N. Kovensky, A. Poole and A. Schmitt, SciPost Phys. Proc. 6, 019 (2022)

Thermal pion condensation

N. Kovensky and A. Schmitt, work in progress comparison to lattice QCD: B. B. Brandt, F. Cuteri and G. Endrődi, JHEP 07, 055 (2023)

parameters fitted to m_{π} , f_{π} , $T_c(\mu_I = 0)$

1st order chiral phase transition, 2nd order onset of pion condensation speed of sound $c_s^2 > 1/3$ for large μ_I

Isospin-asymmetric (baryonic) matter at T = 0

N. Kovensky, A. Poole, A. Schmitt, SciPost Phys. 15, 162 (2023)

parameters fitted to $m_{\pi}, m_{\rho}, f_{\pi}$

no baryons at low μ_B O. Aharony, K. Peeters, J. Sonnenschein and M. Zamaklar, JHEP 02, 071 (2008) D. T. Son and M. A. Stephanov, PRL 86, 592-595 (2001)

effective pion mass increases in baryonic medium

Isospin-asymmetric (baryonic) matter at T = 0

N. Kovensky, A. Poole, A. Schmitt, SciPost Phys. 15, 162 (2023)

parameters fitted to $m_{\pi}, m_{\rho}, f_{\pi}$

no baryons at low μ_B O. Aharony, K. Peeters, J. Sonnenschein and M. Zamaklar, JHEP 02, 071 (2008) D. T. Son and M. A. Stephanov, PRL 86, 592-595 (2001)

 β -equilibrium + charge neutrality \rightarrow no pion condensation in neutron stars

Building a neutron star from holography (page 1/2)

N. Kovensky, A. Poole, A. Schmitt, Phys. Rev. D 105, 034022 (2022)

- \bullet construct uniform (locally neutral) and mixed (globally neutral) phases in $\beta\text{-}\text{equilibrium}$
- use Wigner-Seitz approximation and step-like interfaces (surface tension Σ as input parameter)

dynamic calculation of clusters and crust-core transition

Building a neutron star from holography (page 2/2)

"holographic stars" meet astrophysical constraints for certain $(\lambda, M_{\rm KK})$

combine with astrophysical data for predictions N. Kovensky, A. Poole and A. Schmitt, SciPost Phys. Proc. 6, 019 (2022)

	parameter independent		QCD window	
	lower bound	upper bound	lower bound	upper bound
$M_{\max}[M_{\odot}]$	(2.1)	2.46	2.11	2.40
$R_{1.4}[\mathrm{km}]$	11.9	(14.3)	12.4	14.1
$R_{2.1}$ [km]	(11.4)	13.7	(11.4)	13.7
$\Lambda_{1.4}$	277	(580)	286	(580)
$\Lambda_{2.1}$	9.13	49.3	10.1	43.7

Summary

• holographic Witten-Sakai-Sugimoto model gives a "QCD-like" theory with all necessary ingredients (chiral transition, baryons, pion condensation, ...)

- introducing isospin-asymmetric baryonic matter allows us to
 - -study phase structure for finite μ_B , μ_I , T
 - $-\operatorname{construct}$ neutron stars from a single model

Outlook

- improve holographic crust (pasta structures, inner crust, compute surface tension dynamically)
- include magnetic field pointlike baryons: F. Preis, A. Rebhan and A. Schmitt, JPG 39, 054006 (2012)
- include strangeness (kaon condensation, hyperons)
- holographic quark-hadron (quarkyonic-hadron) phase transition in neutron stars? quarkyonic matter: N. Kovensky and A. Schmitt, JHEP 09, 112 (2020)
- compute transport properties D3-D7 and VQCD: C. Hoyos *et al.*, PRD 105, 066014 (2022)