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Motivation

What we know

From the Ginzburg-Landau theory:

There is a phase transition between Type-I and Type-II superconductors at a critical
value of the phase of the Higgs field. At the transition point a BPS bound is saturated
by multi-vortex configurations, and where the magnetic flux density plays the role of the
topological charge density. A. A. Abrikosov, Sov. Phys. JETP 5, 1174-1182 (1957), H. B.
Nielsen and P. Olesen, Nucl. Phys. B 61, 45-61 (1973).

From QCD at finite isospin chemical potential:

At finite µI phase transitions occur. At low isospin density, the ground state is a pion
condensate, while at higher density a Fermi liquid with Cooper pairing should appear.
D.T. Son, M. A. Stephanov, Phys. Rev. Lett. 86 (2001) 592-595 .

From QCD at low energies:

The low energy limit of QCD can be described by ChPT through an action obtained
from the momentum expansion. This theory allows topological soliton solutions. S.
Scherer, Adv. Nucl. Phys., vol. 27, p. 277, 2003 .



Motivation

The idea:

Since µI is responsible for the Cooper pairing, playing a similar role to the Higgs
coupling in GL, one would expect that at a special value of µI it should be possible to
saturate a BPS bound providing some suitable topological charge density.

From ChPT coupled to the Maxwell theory, one could derive a BPS bound for a critical
value of the isospin chemical potential in such a way that multi-vortices solutions should
appear.

In order to do that, we can take as inspiration recent results on the construction of charged
solitons;
G. W. Evans and A. Schmitt, JHEP 2024, no.02, 041 (2024),
A. Edery, Phys. Rev. D 106, no.6, 065017 (2022),
M. Eto, K. Nishimura and M. Nitta, JHEP 12, 032 (2023),
M. Eto, K. Nishimura and M. Nitta, JHEP 03, 035 (2024),
F. Canfora, JHEP 11 (2023) 007,
F. Canfora, S. Carignano, M. Lagos, M. Mannarelli and A. Vera, Phys. Rev. D 103, no.7, 076003
(2021).



Gauged ChPT

The gauged ChPT (up to order O(p2)) is described by the action
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−1

DµU = L
j
µtj , Fµν = ∂µAν − ∂νAµ , tj = iσj .

Here U(x) ∈ SU(2) is the pionic field, Aµ is the Maxwell potential. The couplings constants

are K = ( efπ
2

)2, being fπ the pions decay constant and e the electric charge; fπ = 93MeV and

e =
√
4πα = 0.303. In Eq. (1), Dµ denotes the covariant derivative, defined as

DµU = ∇µU + AµUÔ , Ô = U
−1

[t3, U ] .

The isospin chemical potential can be introduced to the model through the covariant derivative
in the following form

DµU → D̄µU = DµU + µI [t3, U ]gµt ,

where µI is the value of isospin chemical potential.



The matter fields

The pionic field in the exponential representation is written as

U = cos(α)1 + sin(α)nit
i
, (2)

ni = {sinΘ cosΦ, sinΘ sinΦ, cosΘ} ,

where α = α(xµ), Θ = Θ(xµ), Φ = Φ(xµ) are the three degrees of freedom of the U field. In
terms of this parametrization, the covariant derivative reads

Dµα = ∂µα , DµΘ = ∂µΘ , DµΦ = ∂µΦ − 2Aµ .

One can see that the scalar degree of freedom Φ(xµ) plays the role of the phase of the complex
Higgs field in the GL theory. For multi-vortices with quantized magnetic field along the third
spatial direction, the natural Ansatz is

α = α(x1, x2) , Φ = Φ(x1, x2) , Θ =
π

2
, (3)

Aµdx
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= A1 dx1 + A2 dx2 , Ai = Ai(x1, x2) . (4)



The Gibbs free energy

Replacing the above Ansatz, the free energy density 𭟋 of the system becomes
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In order to derive a BPS bound it is convenient to rewrite Eq. (5) as follows:
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The above expression would be positive definite if one could eliminate the last constant term,
so that, the appropriate thermodynamical potential in this case is not the free energy F , but
rather the Gibbs free energy G,

G = F + PV , F =

∫
d
3
x𭟋 , G =

∫
d
3
xG ,

being V the volume and P the pressure fixed by the chemical potential, namely P = 2Kµ2
I .

Thus, the Gibbs free energy density G reads
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BPS completion

One can gauge away locally the phase Φ as follows

Aµ → Âµ = Aµ +
1

2
∂µΦ ,

Φ → Φ̂ = Φ − Φ = 0 .

As Φ is a multi-valued function due to the non-vanishing magnetic flux, this choice do not define
a proper gauge transformation. However, the elimination of Φ simplifies the derivation of the
BPS bound. One can rewrite the free energy density as
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The last two terms conform a total derivative for a critical value of the isospin chemical potential

µ
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In fact, for this value
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This is the magnetic flux density but dressed by the hadronic profile!



BPS completion

Thus, the free energy density is minimized when the following BPS first order equations are
satisfied

∂1α + sin(α) Â2 = 0 , (8)

∂2α − sin(α) Â1 = 0 , (9)

B̂z − 2K cos(α) = 0 . (10)

Note that, for small α, the BPS system reduces exactly to the BPS system of multi-vortices in
critical superconductors. In fact, considering

|α| ≪ 1 , sin(α) ∼ α , cos(α) ∼ 1 −
α2

2
,

we obtain the well-known system

∂1α + α Â2 = 0 ,

∂2α − α Â1 = 0 ,

B̂z − K(1 −
α2

2
) = 0 .



Multi-vortices at critical values

The novel BPS bound has many relevant properties.

1. The topological charge density is not simply the magnetic flux density, it is a “dressed
magnetic flux” modulated by the hadronic profile. F. Canfora, JHEP 11 (2023) 007.

2. The fact that these multi-solitons are minima of the Gibbs free energy (and not of the free

energy) means that they can be realized at P = 2K(µc
I )

2 = 858.474 (MeV)4.

3. The present BPS bound allows to find very easily the maximum value for the magnetic field
beyond which the condensate ceases to exist. Indeed, looking at Eq. (10), one gets

Bmax = 2K = 2

(
efπ

2

)2
= 397, 03 (MeV)

2
= 2, 04 × 10

14
G . (11)

Note that this maximum value is of the order of what is expected for magnetars (∼ 1013 G to

∼ 1015 G).

4. The magnetic field is generated by a self-sustained current, given by

Jµ = 2K sin
2
(α)DµΦ . (12)

This current is not-null even when the electromagnetic field is suppressed. In fact, there is a

persistent current generated by the coupling with pions, given by J
(0)
µ = 2K sin2(α)∂µΦ.



Multi-vortices at critical values

5. As expected, the first order BPS equations imply the following second order system

△α − sin(α) cos(α)

(
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2
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∂jF
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2
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i
Φ = 0 ,

obtained through the variation of the free energy density with respect to the field α, Φ and Aµ.

6. The present formalism can be applied even when the gauged ChPT includes a pions mass
term S. B. Gudnason and M. Nitta, Phys. Rev. D 94, no.6, 065018 (2016). In particular,
considering
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Consequently, the inclusion of the mass term for the pions manifests itself in a shift:

µ
2
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Hence, all the previous results still hold. The critical value for the isospin chemical potential
when the pions mass is taken into account reads

µ
c
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A single vortex

Let us consider the Ansatz for a single vortex

α = α(r) , Ar = Az = 0 , Aθ = A(r) , Φ = nθ ,
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together with the boundary conditions; α →
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π
2
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π, Φ(r, θ) = Φ(r, θ + 2π) + 2nπ,

n ∈ N.
The Gibbs free energy of the system is
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It follows that the Gibbs free energy is minimized when the following BPS equations are satisfied
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A single vortex
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A single vortex



Summary

A novel BPS bound can be derived form gauged ChPT.

This bound is saturated at a critical value of the isospin chemical potential,
0.1mπ ≲ µc

I , < 1.1mπ , by superconducting multi-vortex configurations.

The corresponding topological charge density is related to the magnetic flux density, but
is screened by the hadronic profile.

Such a screening effect allows to derive the maximal value of the magnetic field
generated by these BPS magnetic vortices, being Bmax = 2, 04 × 1014G.


