Feynman Integral

Synergies Between Particle Physics and Gravitational Waves

Manoj Kumar Mandal

University of Padova and INFN Padova

QCD@Work

International Workshop on QCD Theory and Experiment

18th June, 2024

Feynman Integral

Computation of the Loop Amplitude

Integration－By－Parts Identity

Loop and external

 momenta$$
\begin{gathered}
\int_{\alpha=1}^{l} \prod d^{d} k_{\alpha} \frac{\partial}{\partial k_{j, \mu}}\left(\frac{v^{\mu}}{D_{1}^{a_{1}} \cdots D_{N}^{a_{N}}}\right)=\int_{\alpha=1}^{l} \prod d^{d} k_{\alpha}\left[\frac{\partial v^{\mu}}{\partial k_{j, \mu}}\left(\frac{1}{D_{1}^{a_{1}} \cdots D_{N}^{a_{N}}}\right)-\sum_{j=1}^{N} \frac{a_{j}}{D_{j}} \frac{\partial D_{j}}{\partial k_{j, \mu}}\left(\frac{v^{\mu}}{D_{1}^{a_{1}} \cdots D_{N}^{a_{N}}}\right)\right] \\
C_{1} I\left(a_{1}, \cdots a_{N}-1\right)+\cdots+C_{r} I\left(a_{1}+1, \cdots a_{N}\right)=0
\end{gathered}
$$

县 Gives relations between different scalar integrals with different exponents
擞 $1(I+E)$ number of equations
糘 Solve the system symbolically ：Recursion relations
䉿 Solve for specific integer value of the exponents ：Laporta Algorithm

Intersection Theory and Feynman Integral

Intersection Theory
 Feynman Integral

Examples of decomposition

Bigazzi, Brunello, Crisanti, Dave, MKM, Mastrolia, Ronca, Smith, Torres Bobadilla

LoopIn

LoopIn

Gravitational Wave Observables

MKM, Mastrolia, Patil, Steinhoff (2022)
MKM, Mastrolia, Patil, Steinhoff (2022)
MKM, Mastrolia, O Silva, Patil, Steinhoff (2023)
MKM, Mastrolia, O Siva, Patil, Steinhoff (2023)

GW observations

Masses in the Stellar Graveyard

Tasks

Supplement conventional Analysis
Increase Theoretical Precision
©Perform Gravity phenomenology

Solving two-body problem in GR

Antelis, moreno (2016)

Post-Newtonian (PN)

Numerical Relativity
Post-Minkowskian (PM)

Post-Newtonian Expansion EFT set up

Hierarchy of scales

$$
r_{\star} \ll r \ll \lambda_{G W}
$$

Tower of EFTs
 Goldberger, Rothstein

1. One-Particle EFT for Compact Object
2. EFT of Composite Particle for Binary
3. Effective Theory of Dynamical Multipoles

Potential for the 2-body system

$$
\mathcal{V}_{\text {eff }}=\mathbf{i} \lim _{d \rightarrow 3} \int_{\mathbf{p}} e^{\mathbf{i p} \cdot\left(\mathbf{x}_{(1)}-\mathbf{x}_{(2)}\right)}
$$

(2)

Key Observation

An example of the Computation [4PN Static]

$$
\mathcal{A}_{49}=\square=-2 \mathrm{i}\left(8 \pi G_{N}\right)^{5}\left(\frac{(d-2)}{(d-1)} m_{1} m_{2}\right)^{3} \bigcirc\left[N_{49}\right]
$$

Amplitude

$$
\begin{aligned}
& N_{49} \equiv\left(k_{1} \cdot k_{3} k_{12} \cdot k_{23}-k_{1} \cdot k_{12} k_{3} \cdot k_{23}-k_{1} \cdot k_{23} k_{3} \cdot k_{12}\right) \times \\
& \left(p_{2} \cdot k_{23} p_{4} \cdot k_{34}+p_{4} \cdot k_{23} p_{2} \cdot k_{34}-p_{2} \cdot p_{4} k_{23} \cdot k_{34}\right)
\end{aligned}
$$

$$
=-\mathrm{i}\left(8 \pi G_{N}\right)^{5}\left(m_{1} m_{2}\right)^{3} 2^{-4}(4 \pi)^{-(4+2 \varepsilon)} e^{2 \varepsilon \gamma_{E}} s^{(1+2 \varepsilon)}\left[\frac{1}{\varepsilon}\left(\frac{\pi^{2}}{16}-\frac{2}{3}\right)+\frac{29}{18}-\frac{13}{144} \pi^{2}-\frac{\pi^{2}}{8} \log 2+\mathcal{O}\left(\varepsilon^{1}\right)\right]
$$

MIs

Lagrangian

$$
\mathcal{L}_{49}=-\mathrm{i} \lim _{d \rightarrow 3} \int_{p} \mathrm{e}^{\mathrm{i} p \cdot r} \mathcal{A}_{49}=\left(32-3 \pi^{2}\right) \frac{G_{N}^{5} m_{1}^{3} m_{2}^{3}}{r^{5}}
$$

Computational Algorithm : Towards Automation

VAutomated in-house codes
Aim to publish the code in future

VInclusion of spin-effects
MKM, Mastrolia, Patil, Steinhoff (2022)
MKM, Mastrolia, Patil, Steinhoff (2022)

VInclusion of Tidal-effects
MKM, Mastrolia, Silva, Patil, Steinhoff (2023)
MKM, Mastrolia, Silva, Patil, Steinhoff (2023)

Conclusion

I] Novel Algebraic Property Unveiled

- The algebra of Feynman Integrals is controlled by intersection numbers
[] Intersection Numbers: Scalar Product/Projection between Feynman Integrals
[Useful for both Physics and Mathematics

V Automated framework for the evaluation of Loop Amplitudes
IV Focus on Parallelization
I Modular and easily upgradable
I- Tested on a number of 1-loop and 2-loop processes in QED and QCD
(I) Applications to GW and Collider phenomenology

- progress in understanding spin effects / tidal effects for the compact binaries
- A number of observables e.g binding energy, scattering angle has been computed to high precision

I muon-electron scattering at NNLO has been obtained

- top-pair production from quark annihilation has been computed analytically

Thank You

Back Up

Notion of Loop Integral

Integration-By-Parts Identity (Example)

IBP Identity

One Loop Massless Bubble

$$
I\left(a_{1}, a_{2}\right)=\int \frac{d^{d} k_{1}}{\left.\left(k_{1}^{2}\right)^{a_{1}}\left(k_{1}+p\right)^{2}\right)^{a_{2}}}
$$

$$
I\left(a_{1}, a_{2}\right)=\frac{a_{1}+a_{2}-d-1}{p^{2}\left(a_{2}-1\right)} I\left(a_{1}, a_{2}-1\right)+\frac{1}{p^{2}} I\left(a_{1}-1, a_{2}\right)
$$

Intersection Theory

Aomoto, Gelfand, Kita, Cho, Matsumoto,
Mimachi, Mizera, Yoshida

$$
\hat{\varphi}(\mathbf{z}) d^{m} \mathbf{z}
$$

Twisted Co-cycle

$$
I=\int_{C} u(\mathbf{Z}) \varphi(\mathbf{Z})
$$

Twisted Cycle

Single-valued differential Form
$u(\mathbf{z})$ is a multi-valued function
$u(\mathbf{z})$ vanishes on the boundaries of $\mathcal{C}, u(\partial \mathcal{C})=0$

Basics of Intersection Theory

$$
0=\int_{\mathcal{C}} d(u \xi)=\int_{\mathcal{C}}(d u \wedge \xi+u d \xi)=\int_{\mathcal{C}} u\left(\frac{d u}{u} \wedge+d\right) \xi \equiv \int_{\mathcal{C}} u \nabla_{\omega} \xi
$$

$$
\omega \equiv d \log u
$$

$$
\nabla_{\omega} \equiv d+\omega \wedge
$$

Equivalence Class

$$
\omega\langle\varphi|: \varphi \sim \varphi+\nabla_{\omega} \xi
$$

$$
\int_{\mathcal{C}} u \varphi=\int_{\mathcal{C}} u\left(\varphi+\nabla_{\omega} \xi\right)
$$

$$
H_{\omega}^{n} \equiv\left\{n \text {-forms } \varphi_{n} \mid \nabla_{\omega} \varphi_{n}=0\right\} /\left\{\nabla_{\omega} \varphi_{n-1}\right\}
$$

$$
H_{-\omega}^{n} .
$$

$$
\nabla_{-\omega}=d-\omega \wedge
$$

Dimension of the Vector Space: Number of MIs

$$
\chi(X)=\sum_{k=0}^{2 n}(-1)^{k} \operatorname{dim} H_{\omega}^{k} . \quad H_{\omega}^{k \neq n} \text { vanish }
$$

$$
\begin{aligned}
\nu & =(-1)^{n} \chi(X) \\
& =(-1)^{n}\left(n+1-\chi\left(\mathcal{P}_{\omega}\right)\right) \\
& =\{\text { number of solutions of } \omega=0\}
\end{aligned}
$$

Decomposition of differential forms

Number of Linearly independent forms (twisted co-cycle) is ν

$$
\text { Basis } \quad\left\langle e_{i}\right| \quad i=1,2, \ldots, \nu
$$

Dual Basis

$$
\left|h_{j}\right\rangle \quad j=1,2, \ldots, \nu
$$

Monomial Basis: $\quad\left\langle e_{i}\right|=\left\langle\phi_{i}\right| \equiv z^{i-1} d z$
d-Log Basis: $\quad\left\langle e_{i}\right|=\left\langle\varphi_{i}\right| \equiv \frac{d z}{z-z_{i}}$

Metric Matrix :

$$
\mathbf{C}_{i j}=\left\langle e_{i} \mid h_{j}\right\rangle
$$

$$
\mathbf{M}=\left(\begin{array}{ccccc}
\langle\varphi \mid \psi\rangle & \left\langle\varphi \mid h_{1}\right\rangle & \left\langle\varphi \mid h_{2}\right\rangle & \ldots & \left\langle\varphi \mid h_{\nu}\right\rangle \\
\left\langle e_{1} \mid \psi\right\rangle\left\langle e_{1} \mid h_{1}\right\rangle & \left\langle e_{1} \mid h_{2}\right\rangle & \ldots & \left\langle e_{1} \mid h_{\nu}\right\rangle \\
\left\langle e_{2} \mid \psi\right\rangle\left\langle e_{2} \mid h_{1}\right\rangle & \left\langle e_{2} \mid h_{2}\right\rangle & \ldots & \left\langle e_{2} \mid h_{\nu}\right\rangle \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\left\langle e_{\nu} \mid \psi\right\rangle\left\langle e_{\nu} \mid h_{1}\right\rangle & \left\langle e_{\nu} \mid h_{2}\right\rangle & \ldots & \left\langle e_{\nu} \mid h_{\nu}\right\rangle
\end{array}\right) \equiv\left(\begin{array}{cc}
\langle\varphi \mid \psi\rangle & \mathbf{A}^{\top} \\
\mathbf{B} & \mathbf{C}
\end{array}\right)
$$

$$
\begin{aligned}
& \operatorname{det} \mathbf{M}=\operatorname{det} \mathbf{C}\left(\langle\varphi \mid \psi\rangle-\mathbf{A}^{\top} \mathbf{C}^{-1} \mathbf{B}\right)=0 \\
&\langle\varphi \mid \psi\rangle=\mathbf{A}^{\top} \mathbf{C}^{-1} \mathbf{B} \\
&=\sum_{i, j=1}^{\nu}\left\langle\varphi \mid h_{j}\right\rangle\left(\mathbf{C}^{-1}\right)_{j i}\left\langle e_{i} \mid \psi\right\rangle
\end{aligned}
$$

Master Decomposition Formula :

$$
\langle\varphi|=\sum_{i, j=1}^{\nu}\left\langle\varphi \mid h_{j}\right\rangle\left(\mathbf{C}^{-1}\right)_{j i}\left\langle e_{i}\right|
$$

Computation of Intersection Number

Matsumoto (1998)
Goto (2015)
Fibration Method
Secondary Equation
Matsubara-Heo (2019)
Chestnov, Gasparotto, MKM, Mastrolia, Matsubara-Heo, Munch, Takayama (2022)

Multivariate Differential Equation

Matsumoto (1998)
Chestnov, Frellesvig, Gasparotto, MKM, Mastrolia (2022)

Intersection Number Evaluation

$$
\left.I=\int_{\mathcal{C}} u \varphi=\langle\varphi| \mathcal{C}\right]
$$

Uni-variate Intersection Number

$$
\begin{gathered}
\left\langle\varphi_{L} \mid \varphi_{R}\right\rangle_{\omega}=\sum_{p \in \mathcal{P}} \operatorname{Res}_{z=p}\left(\psi_{p} \varphi_{R}\right) \\
\nabla_{\omega_{p}} \psi_{p}=\varphi_{L, p}
\end{gathered}
$$

$$
\left\langle\varphi_{L} \mid \varphi_{R}\right\rangle=\frac{1}{2 \pi i} \int_{X} \varphi_{L} \wedge \varphi_{R}
$$

Multivariate Intersection Number

Recursive Formula :

$$
\begin{gathered}
\mathbf{n}\left\langle\varphi_{L}^{(\mathbf{n})} \mid \varphi_{R}^{(\mathbf{n})}\right\rangle=-\sum_{p \in \mathcal{P}_{n}} \operatorname{Res}_{z_{n}=p}\left(\mathbf{n - \mathbf { 1 }}\left\langle\varphi_{L}^{(\mathbf{n})} \mid h_{i}^{(\mathbf{n}-\mathbf{1})}\right\rangle \psi_{i}^{(n)}\right) \\
\partial_{z_{n}} \psi_{i}^{(n)}-\hat{\mathbf{\Omega}}_{i j}^{(n)} \psi_{j}^{(n)}=\hat{\varphi}_{R, i}^{(n)}
\end{gathered}
$$

Analytical Approximation Methods

Post-Newtonian (PN)
 $$
\frac{v^{2}}{c^{2}} \sim \frac{G M}{r c^{2}} \ll 1
$$

Post-Minkowskian (PM)

$\frac{G M}{r c^{2}} \ll 1$

Self-Force (SF)

$$
\frac{m_{1}}{m_{2}} \ll 1
$$

Effective One-Body (EOB)

Advantage of QFT techniques

\& Use of Feynman diagrams

© Dimensional regularization

Better to handle spurious divergences

Multi-loop Techniques

$=c_{1}$
 $+c_{2}$

Post-Newtonian Expansion EFT set up

Equations of Motion

$$
\begin{array}{ll}
\dot{r}=\frac{d \mathcal{H}}{d p_{r}} & \dot{p}_{r}=-\frac{d \mathcal{H}}{d r}+\mathcal{F}_{r} \\
\dot{\phi}=\frac{d \mathcal{H}}{d p_{\phi}} & \dot{p}_{\phi}=-\frac{d \mathcal{H}}{d \phi}+\mathcal{F}_{\phi}
\end{array}
$$

Need:

Hamiltonian \mathcal{H}
Radiation Reaction \mathcal{F}

Post-Newtonian Expansion EFT set up

$$
\begin{aligned}
& S\left[g_{\mu \nu}\right]=-\frac{1}{16 \pi G} \int d^{4} x \sqrt{g} R \\
& S_{p p}\left[g_{\mu \nu}\right]=-m \int d \sigma \sqrt{u^{2}}
\end{aligned}
$$

Post-Newtonian Expansion EFT set up

$$
\begin{aligned}
& S\left[g_{\mu \nu}\right]=-\frac{1}{16 \pi G} \int d^{4} x \sqrt{g} R \\
& S_{p p}\left[g_{\mu \nu}, x_{K}\right]=\sum_{K=1}^{2}-m_{K} \int d \sigma \sqrt{u_{K}^{2}}
\end{aligned}
$$

Hierarchy of scales
$r_{\star} \ll r \ll \lambda_{G W}$

Tower of EFTs

2. EFT of Composite Particle for Binary
potential gravitons $H_{\mu \nu}$ with scaling $\left(k_{0}, \mathbf{k}\right) \sim(v / r, 1 / r)$
radiation gravitons $h_{\mu \nu}$ with scaling $\left(k_{0}, \mathbf{k}\right) \sim(v / r, v / r)$

EFT at the orbital scale: Conservative Dynamics

$$
e^{i S_{e f f}\left[x_{K}\right]}=\int \mathcal{D} \bar{h}_{\mu \nu} \int \mathcal{D} H_{\mu \nu} \exp \left\{i S[\eta+\bar{h}+H]+i \sum_{K=1}^{2} S_{p p}\left[x_{K}(t), \eta+\bar{h}+H\right]\right\}
$$

Effective Action for Dynamical Multipoles

$$
\begin{aligned}
& \int \mathcal{D} H \exp \left\{i S[\eta+H, h=0]+i S_{p p}\left[x_{K}, \eta+H, h=0\right]\right\}=e^{i S_{e f f}\left[h=0, x_{K}\right]}=e^{i \int d t \mathcal{L}_{e f f}}
\end{aligned}
$$

Status of PN Results

Levi, McLeod, Steinhoff, Teng, Von Hippel,..
Kim, Levi, Yin (2021)
Kim, Levi, Yin (2022)
MKM, Mastrolia, Patil, Steinhoff (2022)
Levi, Yin (2022)
MKM, Mastrolia, Patil, Steinhoff (2022)
Brunello, MKM, Mastrolia, Patil (W.I.P)

1PN [Einstein, Infeld, Hoffman '38].
2PN [Ohta et al., '73].
3PN [Jaranowski, Schaefer, '97; Damour, Jaranowski, Schaefer, '97; Blanchet, Faye, '00; Damour, Jaranowski, Schaefer, '01]
4PN [Damour, Jaranowski, Schäfer, Bernard, Blanchet, Bohe, Faye, Marsat, Marchand, Foffa, Sturani, Mastrolia, Sturm, Porto, Rothstein...]
5PN [Foffa, Mastrolia, Sturani, Sturm, Bodabilla, '19; Blümlein, Maier, Marquard, '19; Bini, Damour, Geralico, '19; Blümlein, Maier, Marquard, '19; Almeida, Foffa, Sturani, '22;]

Diagrams for Spinning Binaries

\mathbf{S}^{0}				
Order	Diagrams	Loops	Diagrams	
0PN	1	0	1	
1PN	4	1	1	
		0	3	
2PN	21	2	5	
		1	10	
		0	6	
3 PN	130	3	8	
		2	75	
		1	38	

(a) Non-spinning sector

Order	Diagrams	Loops	Diagrams
LO	2	0	2
NLO	13	1	8
		0	5
$\mathrm{~N}^{2} \mathrm{LO}$	100	2	56
		1	36
		0	8
$\mathrm{~N}^{3} \mathrm{LO}$	894	3	288
		2	495
		1	100
		0	11

(b) Spin-orbit sector

S^{2}

Order	Diagrams	Loops	Diagrams
LO	1	0	1
NLO	7	1	3
		0	4
$\mathrm{~N}^{2} \mathrm{LO}$	58	2	27
		1	24
		0	7
$\mathrm{~N}^{3} \mathrm{LO}$	553	3	125
		2	342
		1	76
		0	10

(a) Spin1-Spin2 and Spin1 ${ }^{2}\left(\operatorname{Spin} 2^{2}\right)$ sector

Order	Loops	Diagrams
LO	1	1

(c) E^{2} sector

MKM, Mastrolia, Patil, Steinhoff (2022)

MKM, Mastrolia, Patil, Steinhoff (2022)

Order	Diagrams	Loops	Diagrams
LO	1	0	1
NLO	4	1	1
		0	3
$\mathrm{~N}^{2} \mathrm{LO}$	25	2	7
		1	12
		0	6
$\mathrm{~N}^{3} \mathrm{LO}$	168	3	15
		2	101
		1	43
		0	9

(b) ES^{2} sector

Order	Loops	Diagrams
LO	1	1

(d) $E^{2} S^{2}$ sector

$$
\begin{aligned}
\mathcal{L}\left(x_{a}, \dot{x}_{a}, \ddot{x}_{a}, \ldots S_{a}, \dot{S}_{a}, \ddot{S}_{a}, \ldots\right) & =-\mathbf{i} \lim _{d \rightarrow 3} \int_{\mathbf{p}} e^{\mathbf{i} \mathbf{p} \cdot\left(\mathbf{x}_{(1)}-\mathbf{x}_{(2)}\right)} \\
& =-\mathbf{i} \lim _{d \rightarrow 3} \int_{\mathbf{p}} e^{\mathbf{i} \mathbf{p} \cdot\left(\mathbf{x}_{(1)}-\mathbf{x}_{(2)}\right)}
\end{aligned}
$$

Dimensional Regularization $\mathrm{d}=3+\epsilon$
\% IBP Decomposition

$$
\longrightarrow
$$

(a) $M_{1,1}$

(a) $M_{2,1}$

(b) $M_{2,2}$

(a) $M_{3,1}$

