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Motivations of this paper

QFT with negative energy
The IR behavior of D=4 N=4 SYM on S' 1s d=3 pure YM theory
The negative Casimir energy of a gauge theory
~ The mass of an AdS soliton

DOF from EE (e.g. the coefficient of the A-type anomaly for a spherical
entangling surface in CFT, )

Renormalized EE with a spherical entangling
The entropic C function from the EE with the striped subsystem




Motivations of this paper

What is difference between two entropy? — trace anomaly part

Renormalized EE only contains either A-type or B-type anomaly

Entropic ¢ function contains both A-type and B-type anomalies




The entanglement entropy (an extension of the thermal
_entropy)

System whose total Hilbert space is a direct product:
H = H,®H;

Definition of the reduced density matrix p, = Trg(p) taking the trace over Hp

Entanglement Entropy (EE) defined using the density matrix p, as

Sa = —Try(palogps)

Von Neumann entropy of p,

In QFT, A and B: often a spatial bipartition of a system 6




The UV structure of entanglement entropy

Syv with the entangling surface St x 473 vs Sy o with the surface S%72

The UV structure of entanglement entropy is

L 4, Area(04)
Suv = 7 Suv,o SO~y Ja-1
1 . +subleading terms
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Equivalent to D-1 dimensional renormalized entanglement entropy on RV4~2




Odd dimensional results

Sren = ROpSgpr for d =3,
1

Srenn = gRﬁH{RiﬂR — 2)Sgrg  for d = 5.

Through Kaluza-Klein reduction along S, the renormalized entanglement
entropy effectively embodies d-1 dimensional one in the low-energy limit

In systems respecting Lorentz symmetry, the 2-dimensional entropic c-
function is both non-negative and monotonically decreasing

The behavior of the 4d renormalized entanglement entropy displays non-
monotonic tendencies




Renormalized entanglement entropy of 4d QFT
(even dimensional results)

The length scale R; of the subregion related to rescaling of the metric
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The log term of the entanglement entropy Sgr = slog (Ri) +..
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The AdS soliton dual to confining theory

The double Wick rotation of the AdS black hole

It corresponds to the ground state of

ds? = ( dt? + ()+f(u)d<p + Y dxtdxh),

u
where f(u) =1 — (1)4

Ug

\g

The mass of the AdS soliton = negative energy /




The AdS soliton with a background gauge field

The metric of the AdS soliton with a background gauge field

L2, ds? Elziaﬁ PR Elziaﬁ 2\ 2(d—1)
2 2 2 2 =1 — R -
ds2, | = (” ; + fa(2)do" — dt* + dR + R2d0, 3) falz) =1 (1+ g )(z+) =) (2_+) :
_ (d-1giL?
ag a constant gauge field and Y2 TN

The Kaluza-Klein mass
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The solution exists if ag < — o — g,
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The boundary energy

M = (Too)Va—2/M,

Vy o L9 G, ) 2
M= - g =1 — $+E.;.)
My 2k%29 (

The boundary energy changes the sign when we change Wilson lines a,,

For a, =0, 1t realizes

M <0 Ipdgp < 1 Casimir energy of 4d SYM
theory.
M=>=0 z,ay>1. Casimir energy is different

among periodic and anti-
periodic b.c.




The holographic entanglement entropy

The boundary region S* x S473:R=1land 0 < ¢ < L,

-3

The surface action: A= / 2L = Qq_3 Lol / dz‘jj_l 1+ R

Boundary conditions:
Disk type: R(z,) = 0,R'(z,) = 0  Acylinder: z; = z,

AN




Renormalized EE 1n 4d

REE corresponds to effective DOF from EE with spherical surface
REE non-monotonically behaves near critical lengths
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ag = 5, 0, 2, ?1.5 from the hft to ﬂu nght My =1/m, 2/5, 3/5 from the right to the left

It implies that Wilson lines make particles light
Massive modes decouple others soon




Renormalized EE 1n 3d

3d: REE 1s positive and monotonically decreasing.
consistent with the entropic ¢ function in R%1
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Discussion

Renormalized EE Entropic C function

Increase at a region
However, S,.,(I = 0) = S,.,,(l = o)
(Decrease and positive for d=3)

Increase at a region and positive
However, S,.,(I = 0) = S,.,,(l = o)

Counting the effective DOF of Wilson lines along  Counting the effective DOF of Wilson lines along
the S direction the S direction

Quantum phase transition Quantum phase transition
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Thank you!




