Abstract

We study the rare decays of the B_{c} meson induced by the flavour changing neutral current $c \rightarrow u \gamma$ transition. In the Standard Model they are strongly suppressed by the Glashow-Iliopoulos-Maiani mechanism, therefore they are sensitive to new physics effects. The difficulty is to get rid of long-distance hadronic effects. We study such effects in radiative B_{c} transitions both to B^{*} and to the axial-vector B_{1}^{\prime} mesons.

Introduction

Flavour changing neutral current $c \rightarrow u$ fundamental in the search for new physics (NP) phenomena:

- SM weak Hamiltonian involves small Wilson coefficients from GIM mechanism
\Rightarrow hadronic amplitudes highly suppressed.
\Rightarrow suitable for looking at enhancements from non-SM contributions.
Theoretical difficulty:
- long-distance (LD) contributions from purely hadronic processes
\Rightarrow LD precise determination to access the shortdistance part using measurements.
How to deal with LD:
- consider processes in which the LD contribution is reduced due to kinematics
$\Rightarrow B_{c}^{+} \rightarrow B_{1}^{\prime+} \gamma$ (new) and $B_{c}^{+} \rightarrow B^{*+} \gamma$ (already analysed).

Effective Weak Hamiltonian

Effective weak Hamiltonian governing the $c \rightarrow u \gamma$ transition

$$
\begin{aligned}
\mathcal{H}_{e f f} & =4 \frac{G_{F}}{\sqrt{2}}\left[\sum_{q=d, s} V_{c q}^{*} V_{u q}\left(C_{1} \mathcal{O}_{1}^{(q)}+C_{2} \mathcal{O}_{2}^{(q)}\right)\right. \\
& \left.+\sum_{i=3}^{6} C_{1} \mathcal{O}_{i}+\sum_{i=7}^{8}\left(C_{i} \mathcal{O}_{i}+C_{i}^{\prime} \mathcal{O}_{i}^{\prime}\right)\right]
\end{aligned}
$$

- $\mathcal{O}_{1,2}^{(q)}$ current-current operators
- $\mathcal{O}_{3, \ldots 6}$ QCD penguins operators
- $\mathcal{O}_{7,8}^{(\prime)}$ electromagnetic and gluon dipole operators
$C_{7}^{\prime} \sim m_{u} / m_{c} \Rightarrow \mathcal{O}_{7}^{\prime}$ neglected in SM.
\mathcal{O}_{7} GIM suppressed in SM, $C_{7} \sim 10^{-3} \Rightarrow$ significantly enhanced in a beyond SM (BSM) scenario.
General bounds:
$\left|C_{7}\right|,\left|C_{7}^{\prime}\right| \lesssim 0.5$.
Radiative B_{c} decays to beauty mesons decays need also operators $\mathcal{O}_{1,2}^{(b)}$ involving the b quark
Amplitude for $B_{c}(p) \rightarrow A\left(p^{\prime}, \epsilon\right) \gamma(q, \lambda), A$ a 1^{+}state:

$$
\begin{aligned}
& \mathcal{A}\left(B_{c}(p) \rightarrow A\left(p^{\prime}, \epsilon\right) \gamma(q, \lambda)\right)=\left\{A_{P C}[p\right. \\
& \left.\left.q g^{\alpha \beta}-q^{\alpha} p^{\beta}\right]+i A_{P V} \varepsilon^{\alpha \beta \mu \nu} p_{\mu} q_{\nu}\right\} \epsilon_{\alpha}^{*} \lambda_{\beta}^{*}
\end{aligned}
$$

Short distance

Short-distance (SD) contributions:

- Weak annihilation (WA)

Doubly-Cabibbo suppressed \Rightarrow ignored.

- $\mathcal{O}_{7}^{(\prime)}$ electromagnetic dipole operator

$$
B_{c}^{+}\left\{\begin{array}{l}
c \longrightarrow 0_{7}^{(\prime)}\{ \\
\bar{b} \longrightarrow \\
u
\end{array}\right\} B_{1}^{\prime+}, B^{*+}
$$

$\mathcal{O}_{7}^{(\prime)} \propto \bar{u} \sigma_{\mu \nu} c \Rightarrow$ hadronic matrix element for the 1^{+} channel

$$
\begin{aligned}
& \quad\left\langle B_{1}^{\prime}\left(p^{\prime}, \epsilon\right)\right| \bar{u} \sigma_{\mu \nu} c\left|B_{c}(p)\right\rangle= \\
& \quad \frac{\epsilon^{*} \cdot q}{\left(m_{B_{c}}+m_{B_{1}^{(\prime)}}\right)^{2}}\left(p_{\mu} p_{\nu}^{\prime}-p_{\nu} p_{\mu}^{\prime}\right) T_{0}^{\prime}\left(q^{2}\right) \\
& + \\
& \left(p_{\mu} \epsilon_{\nu}^{*}-p_{\nu} \epsilon_{\mu}^{*}\right) T_{1}^{\prime}\left(q^{2}\right)+\left(p_{\mu}^{\prime} \epsilon_{\nu}^{*}-p_{\nu}^{\prime} \epsilon_{\mu}^{*}\right) T_{2}^{\prime}\left(q^{2}\right)
\end{aligned}
$$

Therefore
$A_{P C}^{S D}=i \frac{G_{F}}{(2 \pi)^{3 / 2}} m_{c} \alpha^{1 / 2}\left(C_{7}^{e f f}+C_{7}^{\prime}\right)\left(T_{1}^{\prime}(0)+T_{2}^{\prime}(0)\right)$,
$A_{P V}^{S D}=-i \frac{G_{F}}{(2 \pi)^{3 / 2}} m_{c} \alpha^{1 / 2}\left(C_{7}^{e f f}-C_{7}^{\prime}\right)\left(T_{1}^{\prime}(0)+T_{2}^{\prime}(0)\right)$.
Heavy spin symmetry to relate T_{i} to universal form factors

$$
\begin{aligned}
T_{0}^{\prime}\left(q^{2}\right) & =2 i \frac{\left(m_{B_{c}}+m_{B_{1}^{\prime}}\right)^{2} \sqrt{m_{B_{1}^{\prime}}}}{m_{B_{c}}^{3 / 2}} a_{0} \Omega_{2}^{\prime} \\
T_{1}^{\prime}\left(q^{2}\right) & =-\frac{m_{B_{1}^{\prime}}}{m_{B_{c}}} T_{2}^{\prime}\left(q^{2}\right) \\
T_{2}^{\prime}\left(q^{2}\right) & =-i \sqrt{\frac{m_{B_{c}}}{m_{B_{1}^{\prime}}^{\prime}}} \Omega_{1}^{\prime}
\end{aligned}
$$

$a_{0} \Omega_{2}^{\prime}$ and Ω_{1}^{\prime} from form factors computed by using covariant light-front approach.

Long distance

Long-distance (LD) contributions:

- WA with intermediate hadrons

- pole contribution

Parameters in the amplitudes of the WA contributions evaluated using:

- Light-cone QCD sum rules + HQET for B_{1}^{\prime} case
- ISGW quark model for B^{*} case

Results

Comparison between LD and SD contributions for both channels varying $\left|C_{7}^{e f f}\right|$

Ratio of LD and SD contributions for both channels varying $\left|C_{7}^{e f f}\right|$

LD contributions prevail in the B_{1}^{\prime} channel $\Rightarrow B^{*}$ channel more suitable for searching NP in $C_{7}^{e f f}$.
This is due to the hadronic cancellation in the SD amplitude for B_{1}^{\prime} channel
$\Rightarrow T_{1}^{\prime}(0)+T_{2}^{\prime}(0) \propto m_{B_{c}}-m_{B_{1}^{\prime}}$.

